РОСТ КРИСТАЛЛОВ

УДК 548.5

ПЕРЕКРИСТАЛЛИЗАЦИЯ ПРИРОДНОГО ХРИЗОБЕРИЛЛА В МНОГОКОМПОНЕНТНЫХ РАСПЛАВАХ

© 2012 г. Н. А. Громалова, В. В. Мальцев, Г. И. Дорохова, Н. И. Леонюк, В. С. Урусов

Московский государственный университет им. М.В. Ломоносова E-mail: gromalnat@mail.ru Поступила в редакцию 08.11.2010 г.

При кристаллизации хризоберилла и александрита из растворов в расплавах на основе $Li_2CO_3-MoO_3$, $Bi_2O_3-MoO_3$, $PbO-V_2O_5$, $Na_2B_4O_7$, $K_2MoO_4-MoO_3$ в качестве исходного соединения $BeAl_2O_4$ использовались обломки природного александрита и хризоберилла. Анализ морфологии и однородности полученных кристаллов позволил рассматривать растворитель $Bi_2O_3-MoO_3$ как наиболее приемлемый, а их оптимальные цветовые характеристики ("качество" александритового эффекта) проявляются при добавлении Cr_2O_3 около 5 мол. %. Самые крупные кристаллы (до 10 мм) в этом случае получены из раствора в расплаве на основе $PbO-V_2O_5$ при соотношении кристаллообразующий компонент–растворитель 9 : 91 мас. %, что наряду с относительно низкой рабочей температурой (970°C) дает основание отнести этот тип растворителя к разряду перспективных.

ВВЕДЕНИЕ

Впервые кристаллы хризоберилла $BeAl_2O_4$ были получены в лабораторных условиях сплавлением в платиновом тигле шихты BeO, Al_2O_3 и CaCO₃ в присутствии H_3BO_3 [1]. В справочнике [1] сообщается и о синтезе этого минерала в графитовом тигле при нагревании до белого каления смеси BeF₂, AlF₃ и B₂O₃, а также при твердофазных реакциях Al(OH)₃, BeOH и BeO, Al₂O₃ при температуре около 1400°C; в случае модификаций α -Be(OH)₂ и γ -AlOOH синтез осуществлялся при 1200°C.

В настоящее время искусственные александриты в коммерческих масштабах выращивают в основном методом Чохральского, окраску придают ионами хрома. Полученные таким способом кристаллы содержат газовые пузырьки и случайные твердофазные включения треугольных и шестиугольных очертаний. В лабораторных условиях александрит также получают из раствора в расплаве V₂O₅ + PbO с добавлением натурального берилла и оксида хрома [2]. В Массачусетском технологическом институте, например, кристаллы хризоберилла и александрита выращивались при медленном охлаждении раствора-расплава на основе литий-молибдатного плавня, но их размер не превышал 3 мм [3]. Несколько лет спустя В. Боннер и Л. Ван-Эйтерт из лаборатории "Белл" при медленном охлаждении (0.5°С/ч) получили кристаллы размером до 4.4 см в поперечнике, используя сложный растворитель из PbO, PbF_2 , SiO₂ и B₂O₃ [4]. Александрит был получен и методом Вернейля, однако в [4] данных о качестве кристаллов нет. Кроме того, александрит синтезировали гидротермальным методом, имитирующим природный процесс; в этом случае кристаллы наиболее сложны в диагностике [5]. В лабораториях Сибирского отделения РАН [6] получают кристаллы как из раствора в расплаве, так и газотранспортными методами. На основе анализа диаграммы фазового равновесия Al_2O_3 —BeO в [7] реализован метод выращивания объемных монокристаллов хризоберилла и александрита из высококонцентрированного раствора $BeAl_2O_4$ в расплаве Al_2O_3 и BeO, что полностью исключило появление высокотемпературной β -модификации BeAl₂O₄

Опираясь на информацию об известных способах синтеза александрита [6], цель настоящей работы – использование различных раствор-расплавных систем в основном при умеренных температурах, т.е. в сравнительно "мягких" термических условиях для сравнительного анализа искусственных монокристаллов хризоберилла И александрита, полученных в широком диапазоне внешних параметров, и их дальнейшего изучения. Предпочтение отдано спонтанной растворрасплавной кристаллизации как наиболее простой и доступной, исходя из имеющихся технологических возможностей. В качестве кристаллообразующего сырья использовался природный хризоберилл – нетоксичный при работе.

ПОСТАНОВКА ЭКСПЕРИМЕНТА

В опытах использовались кристаллизационные установки с максимальными температурами нагрева 1600, 1150°С при точности регулирования $\pm 0.1 - \pm 0.3$ °С. Кристаллообразующая шихта представляла собой обломки природного алек-

Точка анализа	TiO ₂	Fe ₂ O ₃	Cr ₂ O ₃			
Образец 1						
1.1	нпо	2.52	0.72			
1.2	нпо	2.78	0.64			
1.3	0.03	2.59	0.76			
1.4	0.02	2.75	0.73			
Образец 2						
2.1	0.24	0.36	0.29			
2.2	0.09	0.43	0.15			
2.3	0.28	0.40	0.14			
2.4	2.4 0.49		0.17			
2.5	0.56	0.45	0.20			
2.6	0.34	0.40	0.10			

Таблица 1. Содержание основных примесей в природном александрите — кристаллообразующем компоненте исходной шихты (мас. %)

Примечание. Нпо – ниже предела обнаружения.

сандрита и хризоберилла размером до 4-5 мм (Урал, г. Асбест, Малышевское рудопроявление). Содержание элементов-примесей в пересчете на оксиды в них (с шагом сканирования микрозонда около 1 мм) приведено в табл. 1. Эти кристаллы предварительно механически измельчались до тонкодисперсного состояния, причем фрагменты с наибольшим количеством посторонних включений, видимых невооруженным глазом, удалялись для минимизации вхождения примесей в выращиваемые кристаллы. В качестве растворителей использовались двухкомпонентные системы: Li₂CO₃-MoO₃, Bi₂O₃-MoO₃, PbO-V₂O₅, Na₂B₄O₇ и K₂MoO₄-MoO₃. Все реактивы обезвоживались в течение суток при 300-400°C в зависимости от типа соединения. Оксид молибдена для достижения постоянного веса требовал более длительного прокаливания (до нескольких суток) при температуре 500°С.

Кристаллизация осуществлялась в Рt-тиглях объемом 20 мл. На первом этапе смесь реагентов, составляющих растворитель и порошок природного хризоберилла, механически гомогенизировалась. Соотношение хризоберилл—растворитель менялось от 1 : 99 до 14 : 86 мас. %. Такая концентрация хризоберилла в шихте обусловлена его низкой растворимостью (первые единицы процентов в зависимости от типа растворителя) при температурах до 1150°С, т.е. в сравнительно "мягком" температурном режиме, что диктовалось возможностями кристаллизационных установок. Содержимое платинового тигля, закрываемого на время опыта крышкой, выдерживалось при максимальной температуре несколько суток и медленно охлаждалось.

Одной из основных проблем при выращивании кристаллов хризоберилла из раствора-расплава системы Bi₂O₃—MoO₃, характеризующегося наибольшей плотностью среди систем, рассматриваемых в данной работе, является расслоение жидкой фазы на более легкую фракцию — природного хризоберилла и тяжелую —растворителя. Для получения более крупных монокристаллов в этом случае использовалось интенсивное перемешивание расплава.

После окончания эксперимента нерастворимый в концентрированной H_2SO_4 остаток изучался методами оптической и электронной микроскопии, ИК-, мессбауэровской спектроскопии (спектрометр MS 1104Em), гониометрии, монокристального рентгеновского эксперимента (дифрактометр Xcalibur Oxford Diffraction). Химический состав образцов, т.е. концентрации химических элементов с атомными номерами Z более восьми, определялся с помощью микрорентгеноспектральных анализаторов Camebax-microbeam и Cameca SX 50.

Таким образом, было проведено пять серий опытов в зависимости от типа растворителя с различными концентрациями растворов-расплавов, примесей Cr_2O_3 , Fe_2O_3 и температурными условиями (табл. 2).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В большинстве опытов получены монокристаллы хризоберилла и александрита размером до 2 мм. При визуальном сравнении под оптическим микроскопом кристаллы из серии, проведенной при использовании растворителя Bi₂O₃-MoO₃, выглядят совершеннее и в среднем крупнее, чем в экспериментах с использованием растворителей Li₂CO₃-MoO₃, K₂MoO₄-MoO₃ и Na₂B₄O₇. При использовании растворителя на основе PbO-V₂O₅ и соотношения кристаллообразующий компонент-растворитель 9:91 мас. % они достигают размера 10 мм (опыты 19, 20, табл. 2). Изменение данного соотношения до 14 : 86 и 8 : 92 мас. % приводит к уменьшению до 0.5 мм размеров, полученных при том же температурном режиме кристаллов, что связано с резким уменьшением температурного интервала зародышеобразования и кристаллизации.

Кристаллы хризоберилла или бесцветны, или окрашены в желтоватый и светло-зеленый цвета (опыты 1–3, 5–6). В первом случае это свидетельствует о захвате микровключений компонентов растворителя в основном Bi_2O_3 , а во втором – Cr_2O_3 и Fe_2O_3 как из природного хризоберилла, изначально содержащего примеси этих элементов, так и дополнительных компонентов. При

КРИСТАЛЛОГРАФИЯ том 57 № 4 2012

ПЕРЕКРИСТАЛЛИЗАЦИЯ ПРИРОДНОГО ХРИЗОБЕРИЛЛА

Опыт	Соотношение кристалло- образующий компонент – раствори- тель, мас. %	Температур- ный интервал, <i>t</i> °C	Скорость охлажде- ния, <i>t</i> , град/ч	Дополнительные примеси, мол. %		Химический состав основных примесей в выращенных кристаллах, мас.%			
				Cr ₂ O ₃	Fe ₂ O ₃	Cr ₂ O ₃	Fe ₂ O ₃	TiO ₂	V ₂ O ₃
I серия (Li ₂ CO ₃ -MoO ₃)									
1"	9:91	1400-1100	100			0.01-0.11	0.02-0.90	0.01-0.67	0.01-0.03
2"	1:99	1140-980	2.5			0.02-0.16	до 0.20	нпо	нпо
3"	2:98	1150-980	0.8			0.34	0.49	нпо	нпо
4'	4 : 96	1150-950	1.0	5		0.98-6.93	0.14-2.18	до 0.05	0.03-0.19
II серия (Bi ₂ O ₃ -MoO ₃)									
5"	2:98	1150-1090	0.25			0.10-0.11	0.14	нпо	нпо
6"	14 : 86	1140-980	0.1			0.13-0.16	0.01-0.44	нпо	нпо
7'	4 : 96	1120-760	0.5	1		0.09-2.28	0.02-0.59	0.01-0.35	до 0.02
8'	4 : 96	1120-760	0.5	3		0.01-4.26	0.02-1.73	до 0.01	до 0.04
9'	4 : 96	1120-760	0.5	5		0.17-5.57	0.18-0.40	0.03-0.16	0.06
10'	4 : 96	1150-950	1	5		0.49-6.34	0.10-0.62	0.01-0.06	до 0.01
11'/11"	4 : 96	1130-1000	0.5	5		0.25– 9.14/0.17– 0.80	0.04— 0.79/2.33— 5.45	0.01- 0.47/0.01- 0.11	0.01- 0.05/0.01- 0.03
12""	4 : 96	1200-900	0.5	50		32.29-36.90	0.09-0.21	до 0.02	до 0.03
13""	4 : 96	1130-870	1	5	7	0.20-9.39	0.69-1.64	до 0.03	до 0.07
14""	4 : 96	1130-870	1	5	3	0.11-0.27	2.19-2.33	0.01-0.06	до 0.07
15""	4 : 96	1130-870	1	5	5	0.42-12.11	0.29-0.84	0.01-0.83	до 0.03
16""	4 : 96	1210-900	0.5		50	0.01-0.94	0.01-9.35	0.01-0.97	0.01-0.26
		·	II	I серия (PbO-V ₂ O	D ₅)		·	
17"	14:86	1030-980-790	1-0.5			не определен			
18"	8:92	1030-980-790	1-0.5			не определен			
19'	9:91	970-890	1			0.01-0.63	0.55-0.81	0.06-0.37	0.01-0.06
20'	9:91	970-890	1			0.01-6.23	0.18-0.82	0.01-0.42	0.01-1.66
IV серия (K ₂ MoO ₄ -MoO ₃)									
21'	4 : 96	1150-950	1	5		7.26-12.62	0.05-0.18	0.01-0.03	0.01-0.03
V серия (Na ₂ B ₄ O ₇)									
22'	4 : 96	1150-950	1	5		0.01-8.76	0.90-2.42	0.01-0.09	0.01-0.07
-				•	•		•		

Таблица 2. Условия экспериментов по раствор-расплавной кристаллизации

Примечание. Пустая ячейка означает, что дополнительные примеси не вводились; нпо – ниже предела обнаружения; ' – александритовый эффект различной степени насыщенности; " – александритовый эффект отсутствует; "' – непрозрачные, темнозеленого цвета; "" – в основном бурые с желтым оттенком.

КРИСТАЛЛОГРАФИЯ том 57 № 4 2012

		Параметры элементарной ячейки, Å					
Т	Фаза	Настояща	я работа	[8]			
Опы		а	С	а	с		
12	MgCr ₂ O ₄ маг- незиохромит	8.125 (3)		8.333			
12	Cr ₂ O ₃ эсколаит	5.0	13.8	4.958	13.587		
16	Fe_2O_3 гематит	5.038 (14)	13.64(2)	5.038	13.472		

введении в шихту Cr₂O₃ до 50 мол. % полученные кристаллы обладали насыщенным темно-зеленым цветом и были почти непрозрачные (опыт 12, табл. 2). Если добавка варьировала от 1 до 5 мол. %, то они имели зеленый цвет при дневном и фиолетово-розовый при электрическом освещении, т.е. в полной мере проявлялся "александритовый эффект" (ярко выраженный с добавлением Cr₂O₃ в количестве 5 мол. %). Оптимальный эффект отмечался в опытах 9-11 (табл. 2). При содержании в шихте Fe₂O₃ 50 мол. % (опыт 16, табл. 2) хризоберилл в основном бурый с желтым оттенком. Совместное добавление Cr₂O₃ и Fe₂O₃ (опыты 13-15) ведет к формированию полупрозрачных кристаллов с множеством бурых и серых тонов в основном цвете.

Для всех синтезированных кристаллов с учетом электронной микроскопии получены снимки большого увеличения и с помощью программы WinSHAPE [8] построены их полногранные формы (рисунок). Практически во всех случаях для хризоберилла характерна разнообразная огранка, что свидетельствует о кристаллизации в широком диапазоне внешних параметров. Габитус синтезированных кристаллов изменяется от ромбопризматически пинакоидально бипирамидального до пинакоидально ромбопирамидально ромбопризматического. В расплаве состава Li₂CO₃-MoO₃ образуются два типа кристаллов: удлиненно-пластинчатого и псевдоизометричного обликов, что связано с кристаллизацией в различных областях тигля. Кристаллы с наиболее богатой огранкой отмечены в серии на основе Bi₂O₃-MoO₃ раствора-расплава. Для серии с использованием в качестве растворителя K_2MoO_4 —MoO₃ отмечены кристаллы пластинчатого облика, в опытах в присутствии расплава на основе буры $Na_2B_4O_7$ характерны мелкие кристаллы (до 0.5 мм), реконструкция которых невозможна.

Для всех серий экспериментов с введением дополнительных примесей Cr₂O₃ и/или Fe₂O₃ отмечено их неравномерное вхождение в кристаллы; при этом зоны, обогащенные Cr₂O₃, обеднены Fe_2O_3u – наоборот. Например, в опыте 13 содержание примесей менялось от 0.20 до 9.39 мас. % для Cr₂O₃ и от 0.69 до 1.64 мас. % для Fe₂O₃ (табл. 2). Аналогичная картина наблюдалась при отсутствии дополнительных примесей, когда использовался раствор хризоберилла в расплаве РbO-V₂O₅ (опыт 20, табл. 2). Для этой серии зафиксирован также неравномерный захват ванадия растущими кристаллами (от 0.01 до 1.66 мас. % V₂O₅). Кристаллы хризоберилла, полученные в системах на основе Li₂CO₃-MoO₃ и Bi₂O₃-MoO₃ без добавление примесей Cr и Fe, по данным электронно-зондового анализа имеют достаточно однородный состав. В некоторых синтетических кристаллах содержания примесных Cr и Fe ниже, чем в исходном кристаллообразующем природном веществе (опыты 1-3, 5-6) (табл. 1, 2).

В ряде экспериментов избыток железа инициирует образование побочной тонкодисперсной фазы состава Fe₂O₃, что подтверждается данными мессбауэровской спектроскопии. Иногда идентифицировались и другие фазы, кристаллизующиеся из компонентов раствора-расплава. С введением в расплав Cr₂O₃ и Fe₂O₃ в высоких концентрациях (50 мол. %) эти оксиды формируют собственные визуально различимые фазы (опыты 12, 16, табл. 2). Максимальное содержание Cr₂O₃ (до 37 мас. %) отмечено в кристаллах из опыта 12, для Fe₂O₃ (до 9 мас.%) – в опыте 16. В случае эксперимента 12 выделены прозрачные кристаллы красного (фаза магнезиохромит $MgCr_2O_4$) и темно-зеленого (эсколаит – Cr_2O_3) цветов с параметрами элементарных ячеек, приведенных в табл. 3. В опыте 16 присутствует непрозрачная фаза с металлическим блеском - гематит Fe₂O₃ (табл. 3). В ряде случаев (опыты 6, 11 и др.) кристаллизуется Bi_2O_3 , что подтверждается данными электронно-зондового анализа. В опытах 18-19 с добавлением в шихту природного берилла последний кристаллизовался в виде собственной фазы изумрудно-зеленого цвета, что подтверждено методом ИК-спектроскопии.

Морфология и идеализированная модель кристаллов хризоберилла и александрита, полученных в экспериментах по раствор-расплавной кристаллизации; слева вверху – номер опыта, римская цифра в кружке – номер серии опыта с использованием различных растворителей: I – Li₂CO₃–MoO₃; II – Bi₂O₃–MoO₃; III – PbO–V₂O₅; IV – K₂MoO₄–MoO₃; V – Na₂B₄O₇.

КРИСТАЛЛОГРАФИЯ том 57 № 4 2012

ЗАКЛЮЧЕНИЕ

Эксперименты по спонтанной кристаллизации хризоберилла и его разновидности александрита показали, что системы Bi_2O_3 —MoO₃ и PbO—V₂O₅ более предпочтительны. Самые крупные кристаллы (до 10 мм) получены из раствора хризоберилла в расплаве PbO—V₂O₅ при соотношении кристаллообразующий компонент — растворитель 9:91 мас. %, что наряду с относительно низкой температурой 970°C дает основание отнести его к разряду перспективных.

Оптимальные цветовые характеристики ("качество" александритового эффекта) проявляются при добавлении Cr₂O₃ около 5 мол. %.

Следы Мо и Ві обнаружены во всех полученных кристаллах. При использовании растворителя Bi_2O_3 -MoO₃ зачастую отмечался захват Bi_2O_3 растущими кристаллами, что приводило к окрашиванию их в желтый цвет и снижению качества выращенных монокристаллов.

В отличие от кристаллов, полученных с введением в исходную шихту дополнительных примесей Cr_2O_3 и Fe_2O_3 , состав хризоберилла без их добавления, синтезированного на основе Li_2CO_3 -MoO₃ и Bi_2O_3 -MoO₃, достаточно однороден и соответствует формуле $BeAl_2O_4$. Авторы выражают благодарность Н.Н. Еремину за помощь в представлении результатов ростового эксперимента, А.А. Кременецкому, а также И.М. Куликовой, О.А. Набелкину и И.А. Брызгалову за проведение электронно-зондового анализа.

СПИСОК ЛИТЕРАТУРЫ

- 1. Минералы. Справочник. Т. 2. Вып. 3. 1972. 676 с.
- 2. Букин Г.В., Волков С.Ю., Матросов В.Н. и др. // Квантовая электроника. 1978. Т. 5. № 5. С. 1168.
- 3. *Farrell E.F., Fang J.H.* // J. Am. Ceram. Soc. 1964. V. 47. P. 274.
- 4. Bonner W.A., van Uitert L.G. US Pat, 3. 370.963. 1968.
- 5. *Элуэлл. Д.* Искусственные драгоценные камни. М.: Мир, 1986. 160 с.
- 6. Родионов А.Я., Новгородцева Н.А. // Материалы по генетической и экспериментальной минералогии. Рост и свойства кристаллов. Новосибирск, 1988. С. 182.
- 7. Винник Д.А. // Тр. Всерос. конф. "Химия твердого тела и функциональные материалы". Екатеринбург, 2008. С. 65.
- 8. http//www.shapesoftware.com
- 9. http//www.database.iem.ac.ru