РОСТ КРИСТАЛЛОВ

УДК 621.215

РОСТ И СТРУКТУРА СВЕРХПРОВОДЯЩИХ КРИСТАЛЛОВ FeSe

© 2012 г. Ю. И. Горина¹, Г. А. Калюжная¹, М. В. Голубков¹, В. В. Родин¹, Н. Н. Сентюрина¹, С. Г. Черноок^{1, 2}

¹ Физический институт РАН, Москва E-mail: golubkov@lebedev.ru ² Научный центр волоконной оптики РАН, Москва Поступила в редакцию 27.06.2011г.

Выращены сверхпроводящие кристаллы селенида железа FeSe, исследованы их фазовый и элементный составы. Структурный анализ отдельных выращенных кристаллов FeSe_{1-x} показал сосуществование двух фаз этого соединения. Исследованы удельное сопротивление и магнитная восприимчивость кристаллов.

Недавнее открытие сверхпроводимости в Fепниктидах RFeAsO_{1-x}F_x (R = La, Nd, Sm) [1–3] и Fe-халькогенидах FeSe и FeSe_{1-x}Te_x [4–6] вызвало огромную активность в исследовании этих материалов, сверхпроводящие свойства в которых определяются слоями Fe–As и Fe–Se соответственно. Интерес к соединениям FeSe и FeSeTe связан с тем, что они имеют относительно простые кристаллические структуры и гораздо меньшую токсичность, чем Fe-пниктиды. Многие исследователи рассматривают FeSe как модельную систему для изучения механизмов, ведущих к появлению сверхпроводимости в Fe-пниктидах и Fe-халькогенидах [4–7].

Известно, что FeSe – соединение переменного состава существует в двух модификациях, одна из которых – тетрагональная фаза структурного типа PbO (β-FeSe) обладает сверхпроводимостью с $T_{\rm c} = 8 - 10$ K, а вторая — гексагональная фаза FeSe со структурой типа NiAs (δ-FeSe) не является сверхпроводящей [6]. На рис. 1 приведен фрагмент комбинированной фазовой диаграммы системы Fe–Se [6]: линии взяты из диаграммы [8], а полоса составов вблизи 49.5 ат. % показывает, что β-FeSe реализуется в узкой области гомогенности вблизи стехиометрического состава Fe : Se = 1:1со стороны Fe [8]. Несверхпроводящая фаза б-FeSe кристаллизуется при температуре 1075° C, а сверхпроводящая фаза β-FeSe образуется ниже 450°С, поэтому в ряде работ по выращиванию кристаллов использованы низкотемпературные методы из растворов-расплавов [9, 10] и газовой фазы [11]. Данные по составу, области гомогенности и сверхпроводящим свойствам FeSe_{1-x}, полученные в разных работах, существенно различаются, что можно отнести к различным условиям получения селенида железа.

В настоящей работе пластинчатые кристаллы $FeSe_{1-x}$ выращены из флюса хлорида калия. По

сравнению с предыдущими работами ставилась цель — получить кристаллы FeSe, имеющие большой объем сверхпроводящей фазы, и провести комплексное исследование этих кристаллов: структуры на основе данных рентгеновских дифрактограмм состава, включая определение распределения элементов по поверхности образца, физических свойств: компонентов удельного сопротивления кристалла вдоль и перпендикулярно плоскостям кристалла и магнитной восприимчивости.

Структурные исследования проводились на дифрактометре ДРОН-2.0 с использованием графитового монохроматора и излучения CuK_{α} . Исследованию подвергались отдельные пластинчатые кристаллы.

Морфология и состав выросших кристаллов изучались с помощью растрового электронного микроскопа JSM-5910-LV, оснащенного энергодисперсионным анализатором рентгеновского излучения производства Oxford Instruments с программным обеспечением INCA. Несомненным достоинством этой системы является возможность регистрации характеристического рентгеновского излучения всех элементов, начиная с бора. Это позволило провести количественный анализ состава компонентов данных образцов.

Электрическое сопротивление кристаллов измерялось на постоянном токе четырехзондовым методом. Контакты выполнены напылением золота на кристаллы и имели форму полосок или точек: два на верхних и два на нижних поверхностях, параллельных плоскостям образцов. Для определения двух компонентов удельного сопротивления кристалла вдоль и перпендикулярно наиболее развитым плоскостям пластинчатого кристалла (ρ_{ab} и ρ_c соответственно) проводились последовательно два измерения с разным подключением контактов. Удельное сопротивление

Рис. 1. Фрагмент комбинированной фазовой диаграммы Fe–Se [6]. Линии являются частью диаграммы [8], узкая полоса вокруг 49.5 ат. % Se соответствует области существования β-фазы FeSe, согласно [5].

рассчитано по формулам из [12, 13]. Магнитная восприимчивость $\chi(T)$ измерялась на переменном токе частотой 96 кГц.

Высокочистые элементы Fe (99.98%) Se (99.99%) и KCl (99.99%) или предварительно синтезированный FeSe использованы для выращивания кристаллов. Во избежание окисления материалов на воздухе работу с образцами проводили в герметичном боксе в атмосфере Ar. Выращивали кристаллы в откачанных и запаянных кварцевых ампулах, помещаемых в печи с вертикальным нагревателем. Вид рабочей ампулы, градиент температуры вдоль ампулы и режим выращивания приведены на рис. 2.

Рис. 2. Режим выращивания кристаллов FeSe — зависимость температуры роста от времени, рисунок рабочей ампулы и градиент температуры вдоль ампулы.

Выросшие на поверхности раствора-расплава пластинчатые кристаллы размерами до 2.5 мм не требовали отмывки от KCl в воде, а кристаллы, полученные в объеме KCl, отмывались в течение 1–2 мин и, как правило, загружались для хранения в кварцевые контейнеры в атмосфере Ar. Часть кристаллов для исследования стабильности их свойств хранилась на воздухе.

На рис. 3 дано электронномикроскопическое изображение двух типичных противоположных сторон пластинок с гексагональной огранкой. Видно, что одна сторона имеет гладкую поверхность без деталей роста, это означает достижение стабильных условий послойного роста, когда новые слои полностью покрывают поверхность ро-

Рис. 3. Электронно-микроскопические изображения двух поверхностей (101) типичных пластинчатых кристаллов FeSe; крестики (а) – точки анализа состава.

КРИСТАЛЛОГРАФИЯ том 57 № 4 2012

Рис. 4. Электронно-микроскопическое изображение участка поверхности кристалла FeSe (a) и карты распределения по поверхности этого участка трех элементов: O (б), Fe (в), Se (г), полученные в характеристических рентгеновских лучах линии K_{α} .

ста (рис. 3а). На противоположной стороне кристалла видны пирамиды нарастания и другие детали роста, что указывает на нестабильность роста этой грани (рис. 3б). В работах по росту кристаллов из пересыщенных газовых или жидких растворов отмечена эта поразительная разница в росте двух противоположных сторон пластинчатых кристаллов, что, по мнению авторов, связано с неравновесностью роста в условиях недостаточной конвекции в вязких растворах-расплавах [14, 15]. Видны также микротрещины на поверхности кристаллов.

Средний элементный состав, определенный на семи кристаллах, проанализированный с шагом 50–100 мкм в зависимости от размера образцов, соответствует формуле FeSe_{0.89–0.90}, что находится в интервале значений номинальных составов сверхпроводящих кристаллов селенида железа, полученных в [10, 11]. Никаких загрязнений элементами расплава в концентрациях в пределах погрешности метода (0.5%) не найдено.

На рис. 4 представлены карты распределения элементов по поверхности кристалла, полученные в характеристических рентгеновских лучах. Четко видно, что в области трещины интенсивность сигнала от кислорода максимальна, сигнал от селена ослаблен, а от железа не изменен, что означает увеличение концентрации О и уменьшение концентрации Se в трещине.

В настоящей работе рентгеноструктурные исследования выполнены на отдельных кристаллах, всего было измерено более 70 образцов. Исследования показали сосуществование в кристаллах FeSe двух фаз. На рис. 5 приведены дифрактограмма и кривые качания одного кристалла FeSe_{1-x}. На дифрактограмме (рис. 5а) присутствуют сильный рефлекс (101) β -фазы (структурный тип PbO) и слабые рефлексы (00*l*) δ -фазы (структурный тип NiAs). Никаких рефлексов от других фаз или других кристаллических плоскостей в кристаллах не наблюдалось.

Положения максимумов кривых качания β - и δ -фаз практически совпадают (рис. 56), что позволяет по соотношению величин интенсивностей рефлексов (101) и (002) β -, δ -фаз соответственно заключить, что β -фаза преобладает в кристалле, а содержание δ -фазы находится в пределах нескольких процентов. Совпадение максимумов кривых качания также предполагает эпитаксиальное сращивание фаз, у которых наблюдается близкое сходство кристаллических сеток плоскостей (рис. 6).

Регистрация отражений в режиме θ -2 θ -сканирования позволила определить параметры решетки для β -FeSe: a = 3.780, c = 5.490 Å, для δ -FeSe: a = 3.605, c = 5.889Å.

Сопоставление данных по магнитной восприимчивости (а) и удельному сопротивлению ρ_{ab} (б) в области низких температур для двух кристаллов показано на рис. 7, на котором виден линейный "металлический ход" удельного сопротивления $\rho_{ab}(T)$ выше температуры сверхпроводящего пе-

КРИСТАЛЛОГРАФИЯ том 57 № 4 2012

Рис. 5. Дифрактограмма (а) и кривые качания рефлексов (101) тетрагональной и (002) гексагональной фаз (б) кристалла FeSe. Рефлексы тетрагональной фазы обозначены "тетра", гексагональной – "гекс". Кривая качания рефлекса (002) гексагональной фазы для наглядности увеличена в 2 раза.

Рис. 6. Наложение сеток атомов Fe (а) и Se (б) для кристаллографической плоскости (001) гексагональной δ-фазы и кристаллографической плоскости (101) тетрагональной β-фазы.

Рис. 7. Низкотемпературные участки зависимостей магнитной восприимчивости $\chi(T)$ (а) и удельного сопротивления в плоскости *ab* $\rho_{ab}(T)$ (б) от температуры для двух кристаллов. Показана температура начала сверхпроводящего перехода T_c .

КРИСТАЛЛОГРАФИЯ том 57 № 4 2012

Рис. 8. Удельное сопротивление в плоскости *ab* для двух кристаллов в диапазоне температур от 300 до 4 К. *1* и 2 – кристаллы 3 и 4 соответственно из таблицы. Стрелки – особенность кривых при 50 К.

рехода T_c . Амплитуда сигнала магнитной восприимчивости достигает 80% от полного выталкивания магнитного поля из кристалла, что свидетельствует о наличии в кристалле сверхпроводящей области, протяженной почти по всему кристаллу. Выше T_c сигнал магнитной восприимчивости в данных кристаллах равен нулю в пределах ошибки магнитных измерений, образцы не являются парамагнитными в отличие от кристаллов [10, 16].

Для наших образцов температура начала сверхпроводящего перехода T_c , определенная по началу перехода по сопротивлению (рис. 7), и ширина перехода ΔT_c (10–90%), определенная по кривым $\rho_{ab}(T)$, составляли 11–13 и 2–3 К соответственно (таблица). Эти значения совпадают с данными [10, 11, 16]. Необходимо отметить, что параметры сверхпроводящего перехода для образцов, полученных в одном процессе роста, близки и не превышают ошибок определения этих параметров.

Параметры сверхпроводящих переходов пяти кристаллов FeSe, полученных в трех процессах роста

Кристалл	<i>T</i> _c , K	$\Delta T_{\rm c},{\rm K}$
Процесс 1		
1	11.2	3.1
2	11.2	2.7
Процесс 2		
3	12.8	2.6
4	13.1	2.5
Процесс 3		
5	11.1	2.1

Рис. 9. Зависимости удельного сопротивления кристалла FeSe от температуры в плоскости *ab* $\rho_{ab}(T)$ и перпендикулярно плоскости *ab* $\rho_c(T)$; кривая $\rho_{ab}(T)$ увеличена в 800 раз.

При рассмотрении поведения удельного сопротивления выше T_c отмечается особенность в районе 50–70 К (рис. 8): кривые $\rho_{ab}(T)$ имеют излом при этой температуре. Наиболее вероятной причиной возникновения этой особенности является фазовый переход в кристаллах FeSe_{1-x}. Действительно, на поликристаллических образцах наблюдается переход из тетрагональной в орторомбическую фазу при 70 [17] и 100 К [6], а в [4] на приведенных кривых магнитной восприимчивости поликристаллических образцов видны особенности в диапазоне температур 70–100 К, что говорит о фазовом переходе, связанном с магнитным упорядочением.

Данные по двум компонентам удельного сопротивления ρ_c и ρ_{ab} (вдоль оси *c* и вдоль плоскости *ab* соответственно) для одного из кристаллов FeSe_{1-x} приведены на рис. 9. Видно, что отношение сопротивлений ρ_c/ρ_{ab} составляет около 1000, а температуры перехода в сверхпроводящее состояние T_c , определенные по кривым ρ_c и ρ_{ab} , практически совпадают. Проводимости вдоль оси *c* во всем диапазоне температур имеют металлический характер.

Таким образом, в настоящей работе выращены сверхпроводящие кристаллы селенида железа, исследованы их морфология, фазовый и элементный составы, магнитная восприимчивость и удельное сопротивление. Выявлено, что механизм роста пластинчатых кристаллов и характер срастания в них двух структурных модификаций FeSe типичен для роста кристаллов из пересыщенных растворов.

Авторы выражают благодарность С.И. Веденеву за постановку задачи и обсуждение в ходе

ее выполнения и Т.А. Романовой за помощь в работе.

- 8. Okamoto H. // J. Phase Equilibria. 1991. V. 12. P. 383.
- Zhang S.B., Sun Y.P., Zhu X.D. et al. // Supercond. Sci Technol. 2009. V. 22. P. 015020.

СПИСОК ЛИТЕРАТУРЫ

- Kamihara J., Watanabe T., Hirano M., Hisono H. // J. Am. Chem. Soc. 2008. V. 130. P. 3296.
- 2. *Chen X.A., Wu T., Wu G. et al.* // Nature. 2008. V. 453. P. 761.
- Chen G.F., Li Z., Wu D. et al. // Phys. Rev. Lett. 2008. V. 100. P. 247002.
- Hsu F.-C., Luo J.-Y., Yeh K.-W. et al. // Proc. Natl. Acad. Sci, U.S.A. 2008. V. 105. P. 14262.
- McQueen T.M., Huang Q., Ksenofontov V. et al. // Phys. Rev. B. 2009. V. 79. P. 014522.
- 6. Pomjakushina E., Conder K., Pomjakushin V. et al. // Phys. Rev. B. 2009. V. 80. P. 024517.
- Taen T., Tsuchiya Y., Nakajima Y., Tamegai T. // Phys. Rev. B. 2009. V. 80. P. 092502.

- Mok B.H., Rao S.M., Ling M.C. et al. // Cryst. Growth Design. 2009. V. 9. P. 3260.
- Patel U., Hua J., Yu S.H. et al. // Appl. Phys. Lett. 2009. V. 94. P. 082508.
- 12. Levin G.A., Stein T., Jiang C.N. et al. // Physica C. 1997. V. 282–287. P. 1147.
- 13. Schnabel P. // Z. Ang. Phys. 1967. B. 22. S. 136.
- Процессы реального кристаллообразования / Отв. ред. Белов Н.В. М.: Наука, 1977. 234 с.
- 15. Рост кристаллов / Под ред. Вайнштейна Б.К. М.: Наука, 1974. 367 с.
- Dong J.K., Guan T.Y., Zhou, S.Y. et al. // Phys. Rev. B. 2009. V. 80. P. 024518.
- 17. Margadonna S., Takabayashi Y., McDonald M.T. et al. // Chem. Commun. Cambridge. 2008. P. 5607.