ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ

УДК 541.135.4

ИОННАЯ ПРОВОДИМОСТЬ ПЯТИ ТИПОВ ФАЗ, ОБРАЗУЮЩИХСЯ В СИСТЕМЕ BaF₂-GdF₃

© 2012 г. Н. И. Сорокин, Б. П. Соболев

Институт кристаллографии РАН, Москва E-mail: fluorides@ns.crys.ras.ru Поступила в редакцию 29.08.2011г.

Измерена ионная проводимость керамик фаз пяти структурных типов, установленных в системе BaF_2-GdF_3 : типа флюорита CaF_2 , его тригонального и тетрагонального искажений, типа тисонита (LaF_3) и типа ромбической модификации β -YF₃. Фазы получены твердофазным синтезом из смесей BaF_2 и GdF₃ в герметичных никелевых контейнерах при 925, 964 и 1067°C в течение 108–360 ч во фторирующей атмосфере. Проведено сравнение их σ в связи с составом и типом структуры. Наибольшие значения проводимости у тисонитовой фазы $Gd_{1-y}Ba_yF_{3-y}$ (0.10 $\leq y \leq$ 0.25), равные $(1-2) \times 10^{-3}$ См/см при 683 К. Наименьшими значениями проводимости ~(1.5 – 3.5) $\times 10^{-5}$ См/см характеризуются упорядоченные фазы $Ba_{0.60}Gd_{0.40}F_{2.40}$ и $Ba_{0.57}Gd_{0.43}F_{2.43}$ с производными от флюорита структурами и разной степенью упорядочения.

ВВЕДЕНИЕ

В бинарных системах типа MF_2-RF_3 образуются двухкомпонентные фазы, многие из которых обладают высокой ионной проводимостью (σ) по фтору [1–4]. Наибольшие из достигнутых величин σ позволяют использовать такие фторидные кристаллы, как твердые электролиты и химические сенсоры на фтор в газах [5, 6]. Обычно для выявления наиболее проводящих составов изучались σ групп кристаллов с одинаковой кристаллической структурой. Такой подбор кристаллов дает информацию о влиянии химического состава на проводимость в рамках выбранного типа структуры. Установлено, что фазы с дефектной структурой типа флюорита (CaF₂) и тисонита (LaF₃) обладают высокими значениями проводимости.

Представляло интерес осуществить сравнительное изучение проводимости всех структурных типов фаз, образующихся в одной системе. Такое исследование проводится впервые. Это выявит общую связь величины ионной проводимости с типом кристаллической структуры при одинаковом качественном химическом составе (*M*, *R*) кристаллов и различии количественного состава.

Однако некоторые фазы образуются в субсолидусной области систем, и получение их крупных монокристаллов затруднено. Доступная мелкокристаллическая форма таких фаз легко переводится в плотную керамику. Керамическая форма является для твердых электролитов более дешевой и технологичной, чем монокристаллическая.

Для первого сравнительного исследования σ всех структурных типов фаз, образующихся в одной системе и имеющих керамическую форму, выбрана система BaF_2 -GdF₃, в которой по данным физико-химического анализа [7] выше

800°С образуются пять типов кристаллических фаз (рис. 1): $Ba_{1-x}Gd_xF_{2+x}(C)$ со структурным типом флюорита (CaF₂), $Ba_{4\pm x}Gd_{3\mp x}F_{17\mp x}(R)$ с тригональным искажением структуры флюорита; $Ba_{0.57}Gd_{0.43}F_{2.43}(T)$ с тетрагональным искажением структуры CaF₂; $Gd_{1-y}Ba_yF_{3-y}(t)$ со структурой типа тисонита (LaF₃), $Gd_{0.95}Ba_{0.05}F_{2.95}(\beta)$ со структурой ромбической модификации β-YF₃.

Цель работы — изучение σ керамик пяти фаз, образующихся в одной системе BaF_2 —GdF₃, для сравнения этой характеристики разных структурных типов фаз при одном качественном (Ba, Gd) составе.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Электрофизические исследования проведены на мелкокристаллических порошках, полученных и охарактеризованных в Институте кристаллографии РАН при физико-химическом исследовании системы BaF2-GdF3 [7]. Фазы готовились твердофазным синтезом из смеси BaF₂ и GdF₃, гомогенизированной под ацетоном в агатовой ступке. Смеси прессовались в таблетки и отжигались в герметичных никелевых контейнерах при 925, 964 и 1067°С в течение 108-360 ч во фторирующей атмосфере. Контейнеры закаливались от температуры отжига в проточной воде со скоростью 200–300 град/с. Среднее содержание кислорода после отжига составляло 0.07-0.15 мас. %. Составы и параметры твердофазного синтеза фаз даны в табл. 1.

Измерения σ выполнялись на таблетках диаметром 3 мм и толщиной 1—3 мм, полученных прессованием керамических образцов под давлением 1.6 × 10⁹ Па с последующим дополнительным отжигом при 700°С в течение 20 ч в атмосфе-

Рис. 1. Фазовая диаграмма системы BaF₂ – GdF₃ [7] (а) и значения lgσ при 683 K от состава для фаз *C*, *T*, *R*, *t* и β (б).

ре аргона. Плотность полученной керамики составляла более 90% рентгенографической.

Электропроводность определялась методом импедансной спектроскопии в частотном диапазоне 5 Гц–500 кГц (прибор Tesla BM-507). В экспериментах регистрировали общее сопротивление керамических образцов без разделения вкладов межзеренного сопротивления и сопротивления кристаллических зерен. Электрофизические измерения проведены в вакууме ~1 Па в интервале температур 477–734 К. Наличие в спектрах импеданса блокирующего эффекта от инертных электродов (Аg) указывает на преимущественный ионный характер проводимости. Температурные зависимости σ изученных фаз в системе BaF_2 —GdF₃ (рис. 2) соответствуют уравнению типа Аррениуса

$$\sigma T = A \exp(-E_{\rm a}/kT),$$

где $E_{\rm a}$ — энергия активации ионного транспорта, A — предэкспоненциальный множитель, k — постоянная Больцмана и T — температура. Рассчитанные параметры ионного переноса пяти типов кристаллических фаз даны в табл. 1.

Флюоритовая фаза $Ba_{1-x}Gd_xF_{2+x}(C)$. Ионная проводимость флюоритовой керамики $Ba_{0.75}Gd_{0.25}F_{2.25}$ составляет 1×10^{-5} См/см при 500 К, что в ~2 раза меньше проводимости монокристаллов

Состав	Характеристики синтеза	Тип фазы	Проводимость σ _{683 K} , См/см	Энергия <i>E</i> _a , эВ
Ba _{0.75} Gd _{0.25} F _{2.25}	1067°С, 108 ч	С	5×10^{-4}	0.68
Ba _{0.65} Gd _{0.35} F _{2.35}	1067°С, 108 ч	С	$1.5 imes 10^{-4}$	0.72
$Ba_{0.60}Gd_{0.40}F_{2.40}$	964°С, 192 ч	R	$2.5 imes 10^{-5}$	0.80
$Ba_{0.59}Gd_{0.41}F_{2.41}$	964°С, 192 ч	R	$2.5 imes 10^{-5}$	0.78
$Ba_{0.58}Gd_{0.42}F_{2.42}$	925°С, 360 ч	R	$1.5 imes 10^{-5}$	
$Ba_{0.57}Gd_{0.43}F_{2.43}$	1067°С, 108 ч	Т	3.5×10^{-5}	0.76
$Ba_{0.56}Gd_{0.44}F_{2.44}$	964°С, 192 ч	R	$1.5 imes 10^{-5}$	0.89
Ba _{0.52} Gd _{0.48} F _{2.48}	964°С, 192 ч	T + t	7×10^{-5}	
Gd _{0.75} Ba _{0.25} F _{2.75}	1067°С, 108 ч	t	2×10^{-3}	0.61
Gd _{0.80} Ba _{0.20} F _{2.80}	1067°С, 108 ч	t	1×10^{-3}	0.65
Gd _{0.85} Ba _{0.15} F _{2.85}	1067°С, 108 ч	t	1.5×10^{-3}	0.64
Gd _{0.90} Ba _{0.10} F _{2.90}	1067°С, 108 ч	t	1.5×10^{-3}	0.64
Gd _{0.95} Ba _{0.05} F _{2.95}	1067°С, 108 ч	β	2×10^{-4}	0.77

Таблица 1. Состав, характеристики твердофазного синтеза, структурный тип и параметры ионной проводимости кристаллических фаз в системе BaF₂–GdF₃

Примечание. Фазы: C – структурный тип CaF₂, t – структурный тип LaF₃, R – тригональное искажение CaF₂, T – тетрагональное искажение CaF₂, β – структурный тип β -YF₃.

КРИСТАЛЛОГРАФИЯ том 57 № 4 2012

Рис. 2. Температурные зависимости ионной проводимости кристаллических фаз: $1 - Ba_{0.75}Gd_{0.25}F_{2.25}, 2 - Ba_{0.60}Gd_{0.40}F_{2.40}, 3 - Ba_{0.57}Gd_{0.43}F_{2.43}, 4 - Gd_{0.75}Ba_{0.25}F_{2.75}, 5 - Gd_{0.95}Ba_{0.05}F_{2.95}, 6 - BaF_2$ [8].

Ва_{1-х}Gd_xF_{2+х} (x = 0.2 и 0.3) [2], но в то же время в ~250 раз превышает о керамического образца ВаF₂ [8], полученного горячим прессованием. Механизм высокой анионной проводимости во флюоритовых твердых растворах Ва_{1-х}R_xF_{2+x} (R – редкоземельные элементы, **РЗЭ**) связан с агрегацией дефектов в структурные кластеры и появлением около кластеров подвижных междоузельных ионов фтора [2, 4].

Упорядоченные фазы (R, T) с производной от флюорита структурой. Уменьшение предельной растворимости примесного компонента во флюоритовой фазе $Ba_{1-x}Gd_xF_{2+x}$ (по сравнению с $Ba_{1-x}La_xF_{2+x}$) связано с появлением кристаллических фаз с производной от типа флюорита структурой (тригональной фазы R и тетрагональной фазы T). Фаза R отделена от флюоритовых твердых растворов $Ba_{1-x}Gd_xF_{2+x}$ двухфазной областью и может быть представлена как $Ba_{4\pm x}Gd_{3\mp x}F_{17\mp x}$ (или $Ba_{8+\delta}Gd_{6-\delta}F_{34-\delta}$) с областью гомогенности 41–45 мол.% GdF₃ [9, 10]. Фаза R имеет тригональное искажение ячейки флюорита a_{cub} с соотношением параметров решеток (в гексагональной установке): $a_{hex} = a_{cub}7/\sqrt{2}$ и $c_{hex} = a_{cub}4\sqrt{3}$. В [11] показано, что тригональная фаза Ва₈₊₈Gd₆₋₈F₃₄₋₈ кристаллизуется в пр. гр. *R* $\overline{3}$. Параметры элементарной ячейки фазы *R* приведены в табл. 2.

Фаза T образуется из тригональной фазы Ва_{8+δ}Gd_{6-δ}F_{34-δ} при повышении температуры. Переход от тригональной фазы к тетрагональной сопровождается термическим эффектом [7] и является переходом первого рода. Фаза T обладает областью гомогенности 43–45 мол. % GdF₃, левая граница которой близка к стехиометрическому составу Ва₄Gd₃F₁₇. Параметры элементарной ячейки фазы T приведены в табл. 2.

Разница составов областей гомогенности фаз *R* и *T* и переход от первой ко второй при повышении температуры между эвтектоидной и перитектоидной горизонталями позволяет полагать, что они соотносятся как морфортропные формы двух упорядоченных фаз [12], в которых смена структуры выражается в изменении конфигурации кластеров и (или) степени их упорядочения. Кластерная структура фазы T не расшифрована, что не позволяет конкретизировать предположение о возможном изменении кластеров при повышении температуры и изменении состава в сторону повышения содержания GdF₃. Отсутствие слабых сверхструктурных рефлексов на рентгенограмме порошка фазы Т свидетельствует о ее большем разупорядочении, чем фазы **R**, у которой такие рефлексы есть, и они отражают появление дальнего порядка в расположении кластеров дефектов. При этом дефекты трансформируются в строительные блоки новой структуры. Ранее для других химических классов соединений было показано (например, оксидных твердых электролитов на основе ZrO₂ [13]), что упорядочение структурных дефектов сопровождается уменьшением проводимости.

В настоящей работе обнаружена та же закономерность для фторидов. В нестехиометрической флюоритовой фазе *C* структурные дефекты (кластеры) разупорядочены. Проводимость флюоритовой фазы *C* в системе BaF₂—GdF₃ уступает только тисонитовой фазе *t*. Полное структурное упорядочение в области гомогенности фазы Ba_{1-x}Gd_xF_{2+x} (x == 0.40, 0.41, 0.42 и 0.44; фаза *R*) и частичное у состава Ba_{0.57}Gd_{0.43}F_{2.43} (фаза *T*, также имеющая область гомогенности) приводит к снижению ион-

Таблица 2. Параметры элементарной ячейки (a, c), число формульных единиц (z) и формульный объем (V/z) для неупорядоченной и упорядоченных флюоритовых фаз в системе BaF₂–GdF₃

Состав	Тип фазы	<i>a</i> , Å	c, Å	$z (MF_{2+x})$	V/z, Å ³
Ba _{0.75} Gd _{0.25} F _{2.25}	С	6.0578		4	55.6
$Ba_{0.572}Gd_{0.428}F_{2.428}$ ($Ba_4Gd_3F_{17}$)	R	11.155	20.523	42	52.6
$Ba_{0.57}Gd_{0.43}F_{2.43}$ ($Ba_{3.99}Gd_{3.01}F_{17.01}$)	R	11.162	20.580	42	52.9
$Ba_{0.57}Gd_{0.43}F_{2.43}$	Т	4.216	5.971	2	53.1

ной проводимости по сравнению с неупорядоченной флюоритовой фазой $Ba_{0.75}Gd_{0.25}F_{2.25}$ в ~20—30 и ~15 раз соответственно (табл. 1). Появление дальнего порядка приводит к получению минимальных значений σ для упорядоченных фаз в этой системе.

Фаза $Gd_{1-y}Ba_{y}F_{3-y}$ (t) со структурой типа тисонита представляет собой твердый раствор BaF₂ в высокотемпературной тисонитовой модификации α-GdF₃. Образование фазы *t* ниже температуры полиморфного перехода α -GdF₃ в β -GdF₃ (1070°С) указывает на стабилизацию тисонитовой формы путем гетеровалентных изоморфных замещений ионов Gd³⁺ ионами Ba²⁺. Для керамики $Gd_{0.75}Ba_{0.25}F_{2.75} \sigma = 2 \times 10^{-3} \text{ См/см при 683 K в}$ ~5 раз меньше ионной проводимости монокристалла Gd_{0.83}Ba_{0.17}F_{2.83} [14]. Механизм высокой анионной проводимости тисонитовых твердых растворов R_{1-v} Ba_v F_{3-v} связан с образованием подвижных вакансий фтора вследствие гетеровалентных замещений матричных редкоземельных катионов катионами Ba²⁺.

Фаза Gd_{0.95}Ba_{0.05}F_{2.95} (β) со структурой ромбической β -YF₃. Ионная проводимость керамики Gd_{0.95}Ba_{0.05}F_{2.95} со структурой β -YF₃ при 500 K составляет 3 × 10⁻⁶ См/см при энергии активации 0.77 эВ. Полученные результаты хорошо согласуются с данными [15] 2 × 10⁻⁶ См/см и 0.7 эВ для эвтектического композита 48MgF₂ × 52GdF₃, проводимость которого целиком определяется проводимость ю ромбической фазы β -GdF₃ (проводимость MgF₂ пренебрежимо мала). При изучении фазовой диаграммы системы BaF₂–GdF₃ [7] область гомогенности на основе β -GdF₃ выделили предположительно, поэтому на рис. 1 ее граница показана пунктирной линией.

Сильное различие фтор-ионной проводимости в ромбической и тисонитовой структурах трифторидов лантаноидов находит объяснение с кристаллохимических позиций [16]. Характерным координационным полиэдром R^{3+} является тригональная призма, обеспечивающая минимальное координационное число (к.ч.) 6. Способ взаимного расположения таких призм в пространстве приводит к увеличению к.ч. до 9 в структурах типа β-YF₃ и до 11 в структурах типа тисонита. В последних координационный полиэдр R^{3+} фтора представляет собой тригональную призму с фторами над всеми ее пятью гранями (прямоугольными и треугольными). При гетеровалентном изоморфном замещении R^{3+} на Ba²⁺, Ca²⁺, Sr²⁺ вакантными оказываются позиции фтора над тремя прямоугольными гранями. В структурах типа β-YF₃ фторы расположены в вершинах тригональных призм и только над одной боковой гранью. Образование анионных вакансий (подвижных носителей заряда) в этом типе

КРИСТАЛЛОГРАФИЯ том 57 № 4 2012

структуры затруднено, что выражается в резком снижении растворимости MF_2 (M = Ca, Sr, Ba) в ромбических трифторидах РЗЭ (рис. 1).

выводы

Керамические образцы фаз пяти структурных типов, установленных в системе BaF₂-GdF₃ методом термического анализа [7], обладают существенно различающимися величинами σ. Наилучшими транспортными свойствами обладает фаза $Gd_{1-y}Ba_{y}F_{3-y}$ (0.10 $\leq y \leq$ 0.25) (*t*) с дефектной структурой типа тисонита. За ней идут фазы Ва_{0.75}Gd_{0.25}F_{2.25} (С) с флюоритовой структурой и $Gd_{0.95}Ba_{0.05}F_{2.95}$ (**β**) со структурой типа β-YF₃. Наименее проводящими являются составы двух упорядоченных фаз $Ba_{0.60}Gd_{0.40}F_{2.40}$ (*R*) и $Ba_{0.57}Gd_{0.43}F_{2.43}$ (Т) с производной от флюорита структурой и разной степенью упорядочения. Для керамики $Gd_{0.75}Ba_{0.25}F_{2.75}\sigma = 5 \times 10^{-5}$ См/см при 500 К, что превышает электропроводность керамик и $Gd_{0.95}Ba_{0.05}F_{2.95}$ и BaF₂ в 10 и 10⁶ раз соответственно.

Авторы выражают благодарность Н.Л. Ткаченко за твердофазный синтез образцов для исследования.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ivanov-Shitz A.K., Sorokin N.I., Fedorov P.P., Sobolev B.P. // Solid State Ionics. 1989. V. 31. № 4. P. 253.
- Ivanov-Shitz A.K., Sorokin N.I., Fedorov P.P., Sobolev B.P. // Solid State Ionics. 1989. V. 31. № 4. P. 269.
- 3. Ivanov-Shitz A.K., Sorokin N.I., Fedorov P.P., Sobolev B.P. // Solid State Ionics. 1990. V. 37. № 1–2. P. 125.
- 4. *Сорокин Н.И.* // Электрохимия. 2006. Т. 42. № 7. С. 828.
- 5. *Сорокин Н.И., Соболев Б.П.* // Кристаллография. 2007. Т. 52. № 5. С. 870.
- Functionalized Inorganic Fluorides / Ed. Tressaud A. United Kingdom: Wiley & Sons Ltd, 2010.
- Sobolev B.P., Tkachenko N.L. // J. Less-Common Metals. 1982. V. 85. P. 155.
- Сорокин Н.И., Каримов Д.Н., Комарькова О.Н. и др. // Неорган. материалы. 2009. Т. 45. № 10. С. 1265.
- 9. Tkachenko N.L., Garashina L.G., Izotova O.E. et al. // J. Solid State Chem. 1973. V. 8. № 3. P. 213.
- Kiezer M., Greis O. // Z. Anorg. Allg. Chem. 1980. B. 469. S. 164.
- 11. Максимов Б.А., Соланс Х., Дудка А.П. и др. // Кристаллография. 1996. Т. 41. № 1. С. 51.
- 12. Федоров П.П., Соболев Б.П. // Кристаллография. 1995. Т. 40. № 2. С. 315.
- Иноземцев М.В., Перфильев М.В., Горелов В.П. // Электрохимия. 1976. Т. 12. С. 1231.
- Сорокин Н.И., Соболев Б.П. // Электрохимия. 2007. Т. 43. № 4. С. 420.
- Trnovcova V., Fedorov P.P., Valkovskii M.D. et al. // Ionics. 1997. V. 3. P. 313.
- Гарашина Л.С., Закалюкин Р.М., Кривандина Е.А. и др. // Тез. докл. II Нац. кристаллохим. конф. Черноголовка, Россия. 22–26 мая 2000. С. 163.