# РЕАЛЬНАЯ СТРУКТУРА КРИСТАЛЛОВ

УДК 544.344.015.3

# МИКРОСТРУКТУРА ЭВТЕКТИЧЕСКИХ КОМПОЗИТОВ $Ln_{1-x}Ln'_x$ MnO<sub>3</sub> (Ln = Eu, Tb; Ln' = Y, Ho) В ОБЛАСТИ ПЕРЕХОДА ОТ РОМБИЧЕСКОЙ СТРУКТУРЫ К ГЕКСАГОНАЛЬНОЙ

© 2012 г. Л. Д. Исхакова, В. Ю. Иванов\*, А. А. Мухин\*, А. М. Балбашов\*\*,

С. В. Лаврищев, А. С. Орехов\*\*\*

Научный центр волоконной оптики РАН, Москва E-mail: ldisk@fo.gpi.ru \*Институт общей физики РАН, Москва \*\*Московский энергетический институт \*\*\*Институт кристаллографии РАН, Москва Поступила в редакцию 05.07.2011 г.

Методом бестигельной зонной плавки выращены кристаллы мультиферроиков  $Ln_{1-x}Ln'_x MnO_3$ (Ln = Eu, Tb; Ln' = Y, Ho) с составами в области концентрационного перехода от ромбической структуры к гексагональной. С использованием сканирующего микроскопа показано существование в кристаллических булях регулярной слоистой структуры из чередующихся слоев ромбической и гексагональной фаз, типичной для материалов, полученных направленной кристаллизацией эвтектических композитов. Определены локальный химический и фазовый составы и параметры элементарных ячеек сосуществующих фаз. Охарактеризованы микростроение и морфология слоистых структур для разных условий роста кристаллов. Методом EBSD определена взаимная ориентация кристаллографических осей ромбической и гексагональной фаз в соседних слоях. Особенности ориентации рассмотрены с точки зрения кристаллического строения обеих фаз.

# **ВВЕДЕНИЕ**

В последнее время ведутся интенсивные исследования манганитов редкоземельных элементов (**P3Э**) *Ln*MnO<sub>3</sub> (*Ln* – катион P3Э) как базовых соединений для создания не только магниторезистивных, но и мультиферроэлектрических материалов, имеющих важное прикладное значение [1-9]. Совмещение в одной системе магнитных и сегнетоэлектрических свойств открывает принципиальную возможность для создания элементов магнитоэлектрической памяти, датчиков магнитного поля, электрических компонентов, управляемых магнитным полем. Это стимулировало поиск новых соединений данного класса замещенных манганитов  $Ln_{1-x}Ln'_{x}$ MnO<sub>3</sub> [8–11]. Известно, что в зависимости от ионного радиуса РЗЭ манганиты кристаллизуются или в структуре типа перовскита с ромбической решеткой для Ln = La - Dy [2, 3], или в гексагональной структуре для Ln = Ho-Lu, Sc, Y [5–7]. В смешанных манганитах  $Ln_{1-x}Ln'_{x}$  MnO<sub>3</sub> в зависимости от состава и размеров катионов РЗЭ происходит стабилизация ромбической или гексагональной фазы, и при определенных условиях могут сосуществовать фазы с сильно различающейся структурой. Кристаллы ромбических *Ln*MnO<sub>3</sub> имеют искаженную структуру перовскита, в которой связанные по вершинам [MnO<sub>6</sub>]-октаэдры образуют трехмерный каркас [2]; находящиеся в нем катионы РЗЭ имеют координационное число 8. Структура гексагонального YMnO<sub>3</sub> не принадлежит к перовскитовому ряду и имеет псевдослоистый характер [7], в ней катионы марганца, окруженные атомами кислорода по мотиву тригональной бипирамиды, образуют слои, между которыми, сочленяясь по вершинам и ребрам, расположены два типа независимых [YO<sub>7</sub>]-полиэдров.

Недавно в кристаллах  $Eu_{0.5}Y_{0.5}MnO_3$  спектроскопическими и рентгеновским методами было найдено микроструктурное фазовое расслоение с образованием чередующихся полос из ромбической и гексагональной фаз [12]. Это явление наблюдалось и в кристаллах  $Eu_{0.4}Y_{0.6}MnO_3$  [13]. Учитывая интерес к изучению физико-химических свойств замещенных мультиферроиков и возможность их практического применения, цель данной работы состояла в исследовании особенностей микроструктурного фазового расслоения в соединениях  $Ln_{1-x}Ln'_xMnO_3$  (Ln = Eu, Tb; Ln' = = Y, Ho).

## МЕТОДЫ ЭКСПЕРИМЕНТА

Поликристаллические образцы манганитов  $Ln_{1-x}Ln'_{x}$  MnO<sub>3</sub> (Ln = Eu, Tb; Ln' = Y, Ho) синтезированы твердофазным методом с использовани-

619

ем особо чистых оксидов РЗЭ и марганца. Последний был превращен в Mn<sub>3</sub>O<sub>4</sub> прокаливанием при 1200°С. Величины x в изученных образцах были выбраны вблизи границ фазового перехода от ромбической структуры к гексагональной и составляли: x = 0.5 - 0.6 для  $Eu_{1-x}Y_xMnO_3$ ,  $Eu_{1-x}Ho_xMnO_3$  и x = 0.2-0.3 для  $Tb_{1-x}Y_xMnO_3$ . Смеси оксидов с рассчитанным составом прокаливали при 1200°С, прессовали в цилиндрические стержни диаметром 10 мм и прокаливали на воздухе при 1400°С в течение 10 ч. Объемные кристаллические були  $Ln_{1-x}Ln'_{x}$ MnO<sub>3</sub> (Ln = Eu, Tb; Ln' = Y, Ho) выращены методом бестигельной зонной плавки с радиационным (световым) нагревом на установках зонной плавки УРН-2-3П [14] в потоке аргона или на воздухе со скоростью 1-20 мм/ч с использованием в качестве затравок поликристаллических заготовок этого же состава или ориентированных вдоль [100] кристаллов ромбического манганита лантана-стронция  $Ln_{0.875}$ Sr<sub>0.125</sub>MnO<sub>3</sub>. Трудной проблемой при вырашивании кристаллов манганитов является предотвращение образования трещин в их объеме, обусловленного возникающими в процессе роста кристалла большими напряжениями. Для получения кристаллов высокого качества следовало проводить процесс со скоростями не более 3-5 мм/ч.

Рентгенографическое исследование образцов выполнено на дифрактометре ДРОН-4-13 (Си $K_{\alpha}$ -излучение, графитовый монохроматор). Малые объемы образцов из отдельных участков выращенных кристаллов исследованы с помощью высокочувствительной камеры Гинье Huber G670 (Си $K_{\alpha1}$ -излучение, графитовый монохроматор).

Изучение химического состава, микроструктуры и морфологии образцов проводили с использованием сканирующих электронных микроскопов (СЭМ) Quanta 200 3D (FEI) и JSM 5910-LV (JEOL) с аналитической системой INCA (Oxford Instruments) с приставками ENERGY для энергодисперсионного микроанализа (EDS) и CRYSTAL для исследований методом дифракции обратнорассеянных электронов (EBSD). Для выявления микроструктурного расслоения предварительно анализировались изображения в Z-контрасте в режиме отраженных электронов, затем методом EDS устанавливался химический состав различных участков кристалла. Идентификация кристаллических фаз, построение пространственных карт распределения фаз, определение взаимной ориентации кристаллографических осей ромбической и гексагональной фаз в соседних слоях выполнены методом EBSD. Перед исследованием образцы подвергались сначала механической, затем химической полировке.

### РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Данные о фазовом составе образцов и уточненные параметры их элементарных ячеек приведены в табл. 1. Из нее видно, что для трех типов изученных твердых растворов: Eu<sub>1-x</sub>Y<sub>x</sub>MnO<sub>3</sub>,  $Eu_{1-x}Ho_xMnO_3$  и  $Tb_{1-x}Y_xMnO_3$  получены кристаллы с расслоением на ромбическую (пр. гр. Pbnm) и гексагональную (пр. гр. Р6<sub>3</sub>ст) фазы. Величина х, при которой становится устойчивой гексагональная структура, снижается с уменьшением ионного радиуса РЗЭ от европия к тербию с x = 0.5 - 0.6 для  $Eu_{1-x}Y_xMnO_3$  и до x = 0.2-0.3 для  $Tb_{1-x}Y_xMnO_3$ . Далее состав двухфазных образцов обозначается условно по валовому составу, рассчитанному из исходной загрузки компонентов. В двухфазных образцах, полученных для кристаллов с близкими величинами х в валовом составе, параметры элементарных ячеек как ромбических, так и гексагональных фаз соответственно близки по величине.

На состав сосуществующих фаз и их количественные соотношения большое влияние оказывают условия роста кристалла (атмосфера, скорость роста и др.). Так, в случае  $Tb_{1-x}Y_{x}MnO_{3}$  рост в инертной атмосфере дает возможность получить однофазные кристаллы с гексагональной структурой при меньшем содержании иттрия, чем при проведении процесса на воздухе [15]. Стабилизация гексагональной модификации в атмосфере аргона и ромбической в атмосфере с кислородом установлена для кристаллов  $DyMnO_3$  в [6]. Наиболее сложный фазовый состав имеют участки кристаллов вблизи их поверхности. Например, на поверхности кристалла Tb<sub>0.7</sub>Y<sub>0.3</sub>MnO<sub>3</sub> обнаружены две фазы, в то время как в его сердцевине присутствует только гексагональная фаза (таблица).

На изображениях поперечных и продольных сечений изученных кристаллов (СЭМ, режим отраженных электронов с идентификацией фаз методом EBSD) присутствовали чередующиеся полосы ромбической и гексагональной фаз (рис. 1). Темные полосы на микрофотографиях в Z-контрасте соответствуют обогащенной иттрием гексагональной фазе, а светлые полосы – обогащенной европием ромбической фазе. В Eu<sub>0.4</sub>Ho<sub>0.6</sub>MnO<sub>3</sub>, наоборот, светлые полосы соответствуют обогащенной гольмием гексагональной фазе с большим атомным номером, чем у европия. В кристаллах Eu<sub>0.5</sub>Y<sub>0.5</sub>MnO<sub>3</sub> в ромбической фазе величина  $x_{\text{ромб}}$  изменяется в пределах 0.48–0.54, а в гексагональной фазе  $x_{\text{гекс}} =$ = 0.67-0.74; при этом в кристаллах имеются участки с составом, мало отличающимся от стехиометрии  $Eu_0 {}_5Y_0 {}_5MnO_3$ . В кристаллах  $Eu_{0.4}Y_{0.6}MnO_3 x_{pom6} = 0.56 - 0.63 \text{ M} x_{rekc} = 0.69 - 0.75.$ В случае  $Eu_{0.4}Ho_{0.6}MnO_3 x_{\text{ромб}} = 0.58 - 0.60$  и  $x_{\text{гекс}} =$ = 0.73 - 0.75, а для Tb<sub>0.7</sub>Y<sub>0.3</sub>MnO<sub>3</sub>  $x_{\text{ромб}} = 0.28 - 0.31$ и  $x_{\text{текс}} = 0.39 - 0.41$ .

КРИСТАЛЛОГРАФИЯ том 57 № 4 2012

| Валовый состав кристалла                                         | Сингония* | Параметры элементарной ячейки, Å |            |                         | VÅ3            |
|------------------------------------------------------------------|-----------|----------------------------------|------------|-------------------------|----------------|
|                                                                  |           | а                                | b          | С                       | $V, A^3$       |
| EuMnO <sub>3</sub>                                               | 0         | 5.338(2)                         | 5.849(2)   | 7.455(3)                | 232.7          |
| $Eu_{0.9}Y_{0.1}MnO_3$                                           | 0         | 5.336(2)                         | 5.862(2)   | 7.438(3)                | 232.7          |
| $Eu_{0.8}Y_{0.2}MnO_3$                                           | 0         | 5.331(2)                         | 5.867(2)   | 7.431(2)                | 232.4          |
| $Eu_{0.7}Y_{0.3}MnO_3$                                           | 0         | 5.321(3)                         | 5.858(3)   | 7.415(4)                | 231.2          |
| $Eu_{0.5}Y_{0.5}MnO_3$                                           | 0<br>H    | 5.3002(10)<br>6.212(3)           | 5.8499(7)  | 7.4025(10)<br>11.342(4) | 229.5<br>379.0 |
| Eu <sub>0.5</sub> Y <sub>0.5</sub> MnO <sub>3</sub>              | 0         | 5.2994(4)                        | 5.8509(5)  | 7.4026(7)               | 229.6          |
| $Eu_{0.4}Y_{0.6}MnO_3$                                           | 0<br>H    | 5.2939(9)<br>6.2141(21)          | 5.8391(11) | 7.3960(14)<br>11.345(3) | 228.6<br>379.4 |
| Eu <sub>0.25</sub> Y <sub>0.75</sub> MnO <sub>3</sub>            | Н         | 6.1955(9)                        |            | 11.419(3)               | 379.6          |
| $Eu_{0.4}Ho_{0.6}MnO_3$                                          | 0<br>H    | 5.277(1)<br>6.1743(9)            | 5.8408(8)  | 7.384(2)<br>11.363(2)   | 227.5<br>375.2 |
| $Tb_{0.8}Y_{0.2}MnO_3$                                           | 0         | 5.293(2)                         | 5.845(2)   | 7.394(2)                | 228.8          |
| $Tb_{0.8}Y_{0.2}MnO_3$ (Ar)                                      | 0<br>H    | 5.2317(4)<br>6.198(3)            | 5.8047(5)  | 7.3875(6)<br>11.415(1)  | 224.3<br>371.4 |
| Тb <sub>0.7</sub> Y <sub>0.3</sub> MnO <sub>3</sub> (периферия)  | 0<br>H    | 5.289(2)<br>6.185(6)             | 5.841(2)   | 7.390(2)<br>11.440(7)   | 223.0<br>379.0 |
| Тb <sub>0.7</sub> Y <sub>0.3</sub> MnO <sub>3</sub> (сердцевина) | H         | 6.192(4)                         |            | 11.42(2)                | 379.0          |
| $Tb_{0.6}Y_{0.4}MnO_3$                                           | Н         | 6.180(1)                         |            | 11.446(5)               | 378.6          |
| $Tb_{0.6}Y_{0.4}MnO_3$                                           | 0         | 6.182(3)<br>5.287(2)             | 5.854(3)   | 11.442(8)<br>7.391(3)   | 378.6<br>227.9 |
| $Tb_{0.6}Y_{0.4}MnO_3$                                           | Н         | 6.184(2)                         |            | 11.447(7)               | 379.1          |
| Tb <sub>0.5</sub> Y <sub>0.5</sub> MnO <sub>3</sub> (Ar)         | Н         | 6.180(1)                         |            | 11.441(5)               | 378.4          |

Рентгенометрические данные для кристаллов  $Ln_{(1-x)}Ln'_{x}$  MnO<sub>3</sub> (Ln = Eu, Tb; Ln' = Y, Ho)

\* О – ромбическая, пр. гр. Pbnm; H – гексагональная, пр. гр. P63cm.

Микроструктура трех типов изученных кристаллов  $Ln_{1-x}Ln'_x MnO_3$  — типичная для полосчатых структур эвтектик с направленной кристаллизацией (**НКЭ**) [16, 17]. Для систем с манганитами это явление ранее детально не исследовалось.

Морфологические особенности кристаллических буль показаны на рис. 1 и 2. Для образцов Eu<sub>0.5</sub>Y<sub>0.5</sub>MnO<sub>3</sub> и Eu<sub>0.4</sub>Y<sub>0.6</sub>MnO<sub>3</sub> характерно достаточно регулярное расположение полос (рис. 1а, 1б). В поперечном сечении кристаллов Eu<sub>0.4</sub>Y<sub>0.6</sub>MnO<sub>3</sub> чередующиеся полосы, как правило, ориентированы вдоль одного из диаметров. На фоне полосчатой структуры имелись концентрические кольца из обогащенной иттрием гексагональной фазы (рис. 1б). В кристаллах Eu<sub>0.4</sub>Ho<sub>0.6</sub>MnO<sub>3</sub> наблюдались домены с нерегулярным расположением полос (рис. 1г). Изменения в ориентации полос и их отклонение от преимущественного направления, в особенности на периферийных участках кристаллов, наблюдались даже при малых скоростях роста (рис. 2a). В кристаллах  $Eu_{1-x}Ln_xMnO_3$  реализовались протяженные однофазные области. Как видно из рис. 26, на примере кристалла с валовым составом  $Eu_{0.5}Y_{0.5}MnO_3$  показана однофазная область, состав которой практически совпадает со стехиометрией  $Eu_{0.5}Y_{0.5}MnO_3$ .

Период полосчатой структуры  $\lambda$  [16, 17], определяемый суммой ширин двух смежных слоев разных фаз (рис. 1а), изменялся в пределах 10–40 мкм; при этом наиболее характерны участки с  $\lambda$  15–20 мкм. Величины  $\lambda$  и толщина полос каждой из фаз зависели от скорости роста, участка кристалла и его состава. На рис. 2в, 2г на примере Eu<sub>0.4</sub>Y<sub>0.6</sub>MnO<sub>3</sub> показано, что величина  $\lambda$  увеличивается с уменьшением скорости роста. Периферийные зоны кристалла Tb<sub>0.7</sub>Y<sub>0.3</sub>MnO<sub>3</sub> содержали ~20% гексагональной фазы с  $\lambda ~ 5-10$  мкм. Центральная часть кристалла Tb<sub>0.8</sub>Y<sub>0.2</sub>MnO<sub>3</sub> содержала менее 10% этой фазы, она представляет собой либо очень тонкие полосы, либо присутствует в виде отдельных включений.

В качестве исходных параметров элементарных ячеек при идентификации фаз использовались данные, полученные ранее при рентгенографическом исследовании (таблица). Во всех исследованных образцах в пределах самих полос фазы надежно идентифицировались.

КРИСТАЛЛОГРАФИЯ том 57 № 4 2012



**Рис. 1.** Микрофотографии полосчатых структур для поперечных сечений в режиме отраженных электронов в Z-контрасте:  $a - Eu_{0.5}Y_{0.5}MnO_3$ ;  $6 - Eu_{0.4}Y_{0.6}MnO_3$ ;  $B - Eu_{0.4}Ho_{0.6}MnO_3$ ;  $r - Tb_{0.7}Y_{0.3}MnO_3$ .



**Рис. 2.** Микрофотографии  $Ln_{1-x}Ln'_{x}MnO_{3}$ : а – домены с различным расположением полос и микротрещины в Eu<sub>0.4</sub>Y<sub>0.6</sub>MnO<sub>3</sub>; б – однофазная область (показана стрелкой) в Eu<sub>0.5</sub>Y<sub>0.5</sub>MnO<sub>3</sub>; толщина полос в Eu<sub>0.4</sub>Y<sub>0.6</sub>MnO<sub>3</sub> при скорости роста в 1 мм/ч (в) и 5 мм/ч (г).

КРИСТАЛЛОГРАФИЯ том 57 № 4 2012



**Рис. 3.** Взаимная ориентация кристаллографических осей гексагональной и ромбической фаз в Eu<sub>0.4</sub>Y<sub>0.6</sub>MnO<sub>3</sub>.

Для наиболее точного определения взаимной ориентации осей двух фаз выбран малодефектный образец состава Eu<sub>0.4</sub>Y<sub>0.6</sub>MnO<sub>3</sub>, плоскость среза которого отклонялась от кристаллографической плоскости (010) ромбической ячейки на  $\sim$ 5°, а ось его роста была направлена вдоль оси *b* элементарной ячейки ромбической фазы. Линейный профиль межзеренной разориентации для этого кристалла показал, что как для ромбической, так и гексагональной фаз величина разориентации не превышала 1.6°. Таким образом, в пределах ошибки эксперимента этот двухфазный образец можно рассматривать как монокристалл. При построении пространственной ориентационной карты с осями прибора были совмещены оси ячейки ромбической фазы (рис. 3). При этом ориентации  $(0\overline{1}0)[00\overline{1}]$  ромбической фазы (установка *Pbnm*) соответствуют ориентации (20 16 36  $\overline{1}$ ) $[\overline{13} \ 14 \ \overline{10}]$  гексагональной фазы. Для данного кристалла приближенно взаимную ориентацию осей ромбической и гексагональной фаз можно представить как  $[010]_{\text{ром6}} \parallel \approx [2\,\overline{1}\,\overline{1}0\,]_{\text{гекс}}, [100]_{\text{ром6}} \parallel \approx [0001]_{\text{гекс}}$  и  $[001]_{\text{ром6}} \parallel \approx [10\,\overline{1}0\,]_{\text{гекс}}$ .

В изученных образцах наблюдались в основном два варианта взаимных ориентаций осей двух фаз. В образцах с направлением [0001] гексагональной фазы соотносятся оси X или Y ромбической фазы в соседнем слое. В кристаллах с большей дефектностью в областях, где происходил сдвиг полос или изменение их направления, наблюдалась четко выраженная блочность с независимым изменением ориентации осей обеих фаз. Это показано на рис. 4, где представлены карты пространственной ориентации образца  $Eu_{0.4}Y_{0.6}MnO_3$ , выращенного со скоростью 20 мм/ч.

Совокупность данных, полученных для образцов всех трех составов, показывает, что особенность микроструктур изученных манганитов это отсутствие жесткого закона взаимных ориентаций ромбической и гексагональной фаз в данных твердых растворах. Таким образом, можно говорить лишь о размерных соответствиях в ориентации фаз. Так, ось Z гексагональной ячейки (c<sub>гекс</sub> =11.4Å) почти параллельна осям ромбической ячейки, удвоенные величины параметров которых 2*a* (5.3 Å × 2) или 2 *b* (5.8 Å × 2) близки к с<sub>гекс</sub>. При этом наибольшее отклонение между осями могло достигать 20°-25°. Увеличение блочности и разориентации проявлялось в большей степени для гексагональной фазы, когда ее содержание в кристалле было существенно меньше, чем ромбической. Отсутствие строго определенной закономерности во взаимной ориентации в слоях объясняется различием в строении этих двух фаз. Как указывалось выше, в сравниваемых структурах нет аналогичных по строению и геометрическим параметрам фрагментов. В боль-



**Рис. 4.** Пространственная карта ориентации в направлении нормали к поверхности кристалла  $Eu_{0,4}Y_{0,6}MnO_3$  (20 мм/ч): *I* – исследованный участок образца; карты ориентации для ромбической (*2*) и гексагональной фаз (*3*).

шинстве работ, например в [17, 18] по микроструктурам НКЭ в оксидных системах, изучались и рассматривались случаи, когда структуры сосуществующих фаз основаны на принципах плотнейших упаковок и имеют большее размерное соответствие в строении катионных каркасов.

#### выводы

Методами СЭМ, РФА и EBSD установлены области кристаллохимической нестабильности для твердых растворов манганитов  $Ln_{1-x}Ln'_x MnO_3$  (Ln = Eu, Tb; Ln' = Y, Ho) с микроструктурным расслоением на ромбическую и гексагональную фазы. Определены составы сосуществующих фаз и параметры их элементарных ячеек.

Показано, что морфологические особенности образцов твердых растворов типичны для кристаллизации эвтектического типа с выделением фаз в виде пластин микронных размеров. В зависимости от условий кристаллизации наблюдались изменения в толщине и направлении полос, образование доменов с нерегулярным расположением полос и выделением одной из фаз. Выявлена зависимость толщины полос от скорости роста кристаллов.

Пространственные карты ориентации ромбической и гексагональной фаз показывают, что в образцах могут реализоваться два типа взаимной ориентации:  $[100]_{\text{ромб}} \| \approx [0001]_{\text{гекс}}$  или  $[010]_{\text{ромб}} \| \approx [0001]_{\text{гекс}}$ . Области с изменением в направлении полос отличаются блочностью; наибольшая разориентация кристаллов характерна для гексагональной фазы и увеличивается с уменьшением ее доли в образце.

Работа выполнена в рамках проекта Российского фонда фундаментальных исследований (№ 08-02-91326-IND).

#### СПИСОК ЛИТЕРАТУРЫ

- *Kimura T., Goto T., Shintani H. et al.* // Nature. 2003. V. 426. P. 55.
- Mori T., Kamegashira N., Aoki K. et al. // Mater. Lett. 2002. V. 54. P. 238.
- 3. *Uusi-Esko K., Malm J., Imamura N. et al.* // Mater. Chem. Phys. 2008. V. 112. P. 1029.
- Blasko J., Ritter C., Garcia J. et al. // Phys. Rev. B. 2002. V. 62. № 9. P. 5609.
- Katsufuji T., Masaki M., Machida A. et al. // Phys. Rev. B. 2002. V. 66. P. 134434.
- 6. Иванов В.Ю., Мухин А.А., Прохоров А.С. и др. // ФТТ. 2006. Т. 48. Вып. 9. С. 1630.
- Van Aaken B.B., Meetsma A., Palstra Th.T.M. // Acta Cryst. C. 2001. V. 57. P. 230.
- Noda K., Akaki M., Kikuchi T. et al. // J. Appl. Phys. 2006. V. 99. P. 089905.
- Hemberger J., Schrettle F., Pimenov A. et al. // Phys. Rev. B. 2007. V. 75. P. 035118.
- Togunaga M., Yamasaki Y., Onose Y. et al. // Phys. Rev. Let. 2009. V. 103. P. 187202.
- Yamasaki Y., Miyasaka S., Goto Y. et al. // Phys. Rev. B. 2007. V. 76. P. 184418.
- 12. Sarma D.D., Budai J., Shenoy G. et al. //Adv. Functional Mater. 2012.
- Iskhakova L.D., Ivanov V. Yu., Mukhin A.A. et al. // Int. Conf. "Functional Materials" Partenit, Crimea, Ukraine, October 5–10, 2009. Abstr. P. 461.
- Balbashov A.M., Egorov S.K. // J. Cryst. Growth. 1981. V. 52. P. 498.
- 15. Иванов В.Ю., Мухин А.А., Прохоров А.С. и др. // Письма в ЖЭТФ. 2010. Т. 91. Вып. 8. С. 424.
- Курц В., Зам П.Р. // Направленная кристаллизация эвтектических материалов. М.: Металлургия, 1980. 272 с.
- 17. *LLorca J., Orera V.M.* // Progr. Mat. Sci. 2006. V. 51. P. 711.
- 18. *Mazerolles L., Michel D., Hytch M.J.* // J. Europ. Ceram. Soc. 2005. V. 25. P. 1389.