КРИСТАЛЛОГРАФИЯ, 2012, том 57, № 4, с. 574–582

СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.736.6

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА МАГНЕЗИОНЕПТУНИТА

© 2012 г. О. В. Каримова, О. В. Якубович*, А. Е. Задов**, А. Г. Иванова***, В. С. Урусов*

Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН, Москва E-mail: oksa@igem.ru

* Московский государственный университет им. М.В. Ломоносова

** ООО "НПП Теплохим", Москва *** Институт кристаллографии РАН, Москва

Поступила в редакцию 27.12.2010 г.

Рентгенографически (дифрактометр XCalibur-S, R = 0.0244) исследована кристаллическая структура нового минерала магнезионептунита ($K_{0.8}$ Na_{0.1} $\Box_{0.1}$)Na₂Li(Ti_{0.39}Mg_{0.34}Fe_{0.27})₂(Ti_{0.59}Mg_{0.22}Fe_{0.19})₂[Si₄O₁₁]₂(O,OH) из ксенолита Верхнечегемской кальдеры (г. Лакарги, Северный Кавказ): a = 16.3271(7), b = 12.4788(4), c = 9.9666(4) Å, $\beta = 115.651(5)$, V = 1830.5(1) Å³, пр. гр. C2/c, Z = 4, $\rho_{выч} = 3.152$ г/см³. Установлен неупорядоченный характер распределения атомов Ti, Mg и Fe в октаэдрах, формирующих основу катионного каркаса структуры. Показано, что изоморфное заселение октаэдрических позиций катионами трех типов отвечает центросимметричной кристаллической структуре и, вероятно, обусловлено высокотемпературным режимом кристаллизации минерала.

ВВЕДЕНИЕ

Минеральная группа нептунита включает в себя нептунит - железодоминантный член $KNa_2Li(Fe,Mn)_2Ti_2Si_8O_{24}$, манганнептунит KNa₂Li(Mn,Fe)₂Ti₂Si₈O₂₄ и ватацумит – ванадиевую разновидность в этом ряду изоструктурных силикатов, KNa₂LiMn₂V₂Si₈O₂₄. Первые работы, посвященные рентгеновскому анализу кристаллической структуры нептунита, выполненные фотометодом и опубликованные в 1965 и 1966 гг. [1, 2], характеризуются высокими значениями факторов недостоверности (23.5 и 11.7% соответственно). Однако эти исследования установили структурный мотив минерала и позволили постулировать его абсолютную оригинальность. Структура решена в рамках центросимметричной пр. гр. С2/с. В [1, 2] высказано предложение о необходимости проверки варианта структуры минерала в пространственной группе без центра инверсии, поскольку кристаллы изученного нептудемонстрировали пьезоэлектрические нита свойства. Спустя почти 30 лет структурные исследования минералов этой группы были возобновлены. Так, в 1991 г. исследована кристаллическая структура нептунита в рамках ацентричной пр. гр. Сс [3] и отмечена высокая корреляция уточняемых позиционных и тепловых атомных параметров при использовании как рентгеновских, так и нейтронографических экспериментальных данных, обусловленная наличием ярко выраженного псевдоцентра инверсии. В процессе уточнения структуры большинство параметров атомов, имеющих "центросимметричные эквиваленты", было связано общим значением. Кроме того, многие

атомы, включая Ti и Si, удалось уточнить лишь в изотропном приближении. Та же пр. гр. *Cc* установлена для кристаллической структуры ватацумита, где отсутствие центра инверсии при высокой степени "псевдоцентрированности" кристаллической постройки обусловлено упорядочением атомов Mn и V в различных структурных позициях [4]. Уточнение структуры манганнептунита [5] показало ацентричный характер кристаллической постройки минерала, обусловленный, по мнению авторов, как и в предыдущих случаях, способом распределения катионов по октаэдрическим позициям.

Недавно в ксенолитах вблизи горы Лакарги (Верхнечегемская кальдера, Кабардино-Балкария, Северный Кавказ) была обнаружена магнийдоминантная разновидность нептунита, которая в 2009 г. утверждена IMA в качестве самостоятельного минерального вида — магнезионептунита. Химический состав магнезионептунита, средний по 29 анализом микропробы, (мас. %; микрозонд, содержание Li рассчитано по стехиометрии) следующий: К₂O 3.61, Na₂O 8.08, Li₂O 1.71, CaO 0.08, MgO 5.36, MnO 0.07, FeO 7.30, Al₂O₃ 0.12, TiO₂ 18.38, V₂O₅ 0.07, ZrO₂ 0.05, SiO₂ 56.88, сумма 99.67 (табл. 1). Эмпирическая формула, рассчитанная на 24 атома кислорода, (K_{0.67}Na_{0.27}Ca_{0.01})_{Σ 0.95}Na_{2.00}Li_{1.00}(Mg_{1.16}Fe²⁺_{0.88}Mn²⁺_{0.01})_{Σ 2.05} Ti_{2.01}(Si_{7.90}Al_{0.01}V⁵⁺_{0.01})_{Σ 7.92}(O,OH)₂₄.

Магнезионептунит и сопровождающий его высокомагнезиальный нептунит находятся в ксенолите слабофенитизированного песчаника, разделяющего скарнированный карбонатный ксенолит и вмещающего игнимбрит, в виде разрозненТаблица 1. Химический состав магнезионептунита по данным микрозондового анализа (средний из 29 анализов и интервал разброса атомных содержаний катионов)

Таблица 2. Кристаллографические характеристики, данные эксперимента и уточнения структуры магнезионептунита $K_{0.80} Na_{2.10} LiMg_{1.11} Fe_{0.93} Ti_{1.98} [Si_8 O_{22}] (O,OH)_2$

Оксид	Средний состав мас. %	Интервал разброса содержаний
V_2O_5	0.07	0-0.25
SiO ₂	54.78	53.32-55.37
TiO ₂	18.38	17.59-19.87
ZrO ₂	0.05	0-0.17
Al_2O_3	0.12	0.06-0.31
Cr_2O_3	0.06	0-0.24
MgO	5.36	4.73-6.47
CaO	0.08	0.03-0.40
MnO	0.07	0-0.38
FeO	7.30	5.78-8.43
Na ₂ O	8.08	7.78-8.36
K ₂ O	3.61	3.34-3.77
Li ₂ O	1.71	1.70-1.73
Total	99.67	98.74-100.74
Атом	Количество ато- мов на формулу	Интервал разброса содержаний
Атом Li	Количество ато- мов на формулу 1.00	Интервал разброса содержаний 0.99—1.01
Атом Li K	Количество ато- мов на формулу 1.00 0.67	Интервал разброса содержаний 0.99–1.01 0.61–0.70
Атом Li K Na	Количество ато- мов на формулу 1.00 0.67 2.27	Интервал разброса содержаний 0.99–1.01 0.61–0.70 2.22–2.34
Атом Li K Na Ca	Количество ато- мов на формулу 1.00 0.67 2.27 0.01	Интервал разброса содержаний 0.99–1.01 0.61–0.70 2.22–2.34 0–0.06
Атом Li K Na Ca Mn	Количество ато- мов на формулу 1.00 0.67 2.27 0.01 0.01	Интервал разброса содержаний 0.99–1.01 0.61–0.70 2.22–2.34 0–0.06 0–0.05
Атом Li K Na Ca Mn Mg	Количество ато- мов на формулу 1.00 0.67 2.27 0.01 0.01 1.16	Интервал разброса содержаний 0.99–1.01 0.61–0.70 2.22–2.34 0–0.06 0–0.05 1.03–1.39
Атом Li K Na Ca Mn Mg Fe ²⁺	Количество ато- мов на формулу 1.00 0.67 2.27 0.01 0.01 1.16 0.88	Интервал разброса содержаний 0.99–1.01 0.61–0.70 2.22–2.34 0–0.06 0–0.05 1.03–1.39 0.7–1.02
Атом Li K Na Ca Mn Mg F e^{2+} Ti ⁴⁺	Количество ато- мов на формулу 1.00 0.67 2.27 0.01 0.01 1.16 0.88 2.01	Интервал разброса содержаний 0.99–1.01 0.61–0.70 2.22–2.34 0–0.06 0–0.05 1.03–1.39 0.7–1.02 1.93–2.20
Aтом Li K Na Ca Mn Mg F e^{2+} Ti ⁴⁺ V ⁵⁺	Количество ато- мов на формулу 1.00 0.67 2.27 0.01 0.01 1.16 0.88 2.01 0.01	Интервал разброса содержаний 0.99–1.01 0.61–0.70 2.22–2.34 0–0.06 0–0.05 1.03–1.39 0.7–1.02 1.93–2.20 0–0.02
Атом Li K Na Ca Mn Mg Fe^{2+} Ti ⁴⁺ V ⁵⁺ Cr ³⁺	Количество ато- мов на формулу 1.00 0.67 2.27 0.01 0.01 1.16 0.88 2.01 0.01 0.01 0.01	Интервал разброса содержаний 0.99–1.01 0.61–0.70 2.22–2.34 0–0.06 0–0.05 1.03–1.39 0.7–1.02 1.93–2.20 0–0.02 0–0.03
Атом Li K Na Ca Mn Mg Fe^{2+} Ti ⁴⁺ V ⁵⁺ Cr ³⁺ Zr	Количество ато- мов на формулу 1.00 0.67 2.27 0.01 0.01 1.16 0.88 2.01 0.01 0.01 0.01 <0.01	Интервал разброса содержаний 0.99–1.01 0.61–0.70 2.22–2.34 0–0.06 0–0.05 1.03–1.39 0.7–1.02 1.93–2.20 0–0.02 0–0.03
Атом Li K Na Ca Mn Mg Fe^{2+} Ti ⁴⁺ V ⁵⁺ Cr ³⁺ Zr Si	Количество ато- мов на формулу 1.00 0.67 2.27 0.01 0.01 1.16 0.88 2.01 0.01 0.01 <0.01 <0.01 <0.01 7.95	Интервал разброса содержаний 0.99–1.01 0.61–0.70 2.22–2.34 0–0.06 0–0.05 1.03–1.39 0.7–1.02 1.93–2.20 0–0.02 0–0.03 7.85–8.01

М	868.8
Сингония, пр. гр., <i>Z</i>	Моноклинная, <i>C</i> 2/ <i>c</i> , 4
a, b, c, Å	16.3271(7), 12.4788(4), 9.9666(4)
β, град	115.651(5)
$V, Å^3$	1830.5(1)
D_x , г/см ³	3.152
Излучение λ, Å	$MoK_{\alpha}; 0.71073$
Размер кристалла, мм	$0.04 \times 0.16 \times 0.08$
μ, мм ⁻¹	2.50
<i>Т</i> , К	293
Дифрактометр	Xcalibur-S-CCD
Тип сканирования	ω
Учет поглощения	Полуэмпирический, по эквивалентам
T_{\min}, T_{\max}	0.802, 0.927
θ _{max} , град	29.99
Пределы h, k, l	$-22 \le h \le 22, -17 \le k \le 17, \\ -14 \le h \le 14,$
Число отражений: измеренных/независи- мых (N ₁)/с I > 1.96(I) (N ₂)	26639/2667/2114
Метод уточнения	по <i>F</i> ²
Число параметров	193
Весовая схема	$1/[s^2(F_o^2) + (0.0280P)^2],$
	$P = (F_o^2 + 2F_c^2)/3$
$R_{\rm BH}, R_{\sigma}$	0.046, 0.037
<i>R</i> 1/ω <i>R</i> 2 по <i>N</i> ₁	0.0396/0.0524
<i>R</i> 1/ <i>ωR</i> 2 по <i>N</i> ₂	0.0244/0.0503
S	0.950
$\Delta \rho_{max}, \Delta \rho_{min}, 3/Å^3$	0.397, -0.382

ных зерен размером менее 0.1 мм. Зерна от темнобурого до красно-коричневого цвета, полупрозрачные, со стеклянным блеском. Спайность совершенная по (110). Магнезионептунит и нептунит образовались по зернам ильменита [6]. Магнезионептунит образовался раньше нептунита и слагает в его кристаллах центральную зону, реже магнезионептунит образует самостоятельные кристаллы. Образование минералов группы нептунита связано с контактовым взаимодействием игнимбрит—песчаник—скарн.

Настоящая работа посвящена описанию результатов структурного и кристаллохимического изучения новой магнезиальной разновидности нептунита, принципиально отличающейся от

КРИСТАЛЛОГРАФИЯ том 57 № 4 2012

других членов группы неупорядоченным характером распределения катионов Ti⁴⁺, Mg²⁺ и Fe²⁺ в октаэдрическом окружении и, как следствие, центросимметричной кристаллической постройкой.

РЕНТГЕНОВСКИЙ ЭКСПЕРИМЕНТ И УТОЧНЕНИЕ СТРУКТУРЫ

Для изучения кристаллической структуры минерала выбран кристалл размером $0.04 \times 0.16 \times 0.08$ мм темно-коричневого цвета. Набор экспериментальных интенсивностей был получен на монокристальном рентгеновском дифрактометре XCaliburS, оснащенном CCD-детектором

Рис. 1. Независимый фрагмент структуры магнезионептунита. Эллипсоиды тепловых колебаний показаны с вероятностью 90%.

 $(\lambda MoK_{\alpha} = 0.7107$ Å, графитовый монохроматор). Обработка массива интенсивностей, включая поправки на фактор Лоренца и поляризацию, а также уточнение параметров элементарной ячейки

Таблица 3. Магнезионептунит. Координаты атомов и эквивалентные температурные коэффициенты ($Å^2$)

Атом	x/a	y/b	<i>z</i> / <i>c</i>	$U_{_{ m ЭKB}}$
<i>M</i> 1	0.08740(3)	0.05561(3)	0.61400(4)	0.00804(13)
М2	0.15909(3)	0.17557(3)	0.39973(4)	0.00855(13)
Si1	0.35547(4)	0.09319(4)	0.44202(6)	0.00586(11)
Si2	0.10532(4)	0.14951(4)	0.91902(6)	0.00593(12)
Si3	0.27090(4)	0.02667(4)	0.11077(6)	0.00624(12)
Si4	0.52283(4)	0.22840(4)	0.58514(6)	0.00593(12)
Li1	0	-0.0637(4)	0.75	0.0129(10)
K1	0.5	0.0827(2)	0.25	0.0262(5)
Na1	0.26351(6)	0.19730(7)	0.80729(10)	0.0198(2)
Na2	0.4810(17)	0.128(3)	0.248(3)	0.026(2)
01	0.34228(10)	0.05119(11)	0.27966(15)	0.0108(3)
O2	0.46302(9)	0.11816(11)	0.53033(15)	0.0090(3)
O3	0.10877(10)	0.16766(11)	0.76357(15)	0.0104(3)
O4	0.29025(9)	0.19253(11)	0.43060(15)	0.0092(3)
O5	0.20724(9)	0.07542(11)	0.59439(15)	0.0094(3)
O6	0.21194(9)	0.13494(10)	0.04518(15)	0.0097(3)
O 7	0.04637(9)	0.17325(11)	0.43500(15)	0.0100(3)
O 8	0.33354(10)	-0.00924(11)	0.52258(15)	0.0096(3)
09	0.13070(11)	-0.06026(12)	0.76521(18)	0.0205(3)
O10	0.07127(9)	0.25854(11)	0.97080(15)	0.0090(3)
011	0.10463(9)	0.28513(11)	0.24744(15)	0.0106(3)
012	0.04691(9)	-0.4881(11)	0.43260(15)	0.0089(3)

Примечание. Заселенность позиций: M1 = 0.395(11)Ti + + 0.33(2)Mg + 0.274(4)Fe; M2 = 0.595(11)Ti + 0.22(2)Mg + + 0.191(4)Fe; K1 = 0.797(8); Na2 = 0.100(10).

проведены с помощью программного пакета CrysAlis RED (Oxford Diffraction Ltd). Поглощение образца учтено методом моделирования формы кристалла. Все расчеты по расшифровке и уточнению структуры осуществлены в рамках программного пакета winGX [7]. Структура решена прямыми методами в рамках пр. гр. C2/с и уточнена до значения *R*-фактора 0.0244 с помощью программ SHELX97 [8, 9]. Использованы кривые атомного рассеяния и поправки на аномальную дисперсию из [10]. Основные кристаллографические характеристики, параметры рентгеновского эксперимента и уточнения структуры приведены в табл. 2. Полученные координаты атомов и межатомные расстояния - в табл. 2 и 3 соответственно.

В структуре магнезионептунита (рис. 1) имеются две кристаллографически независимые октаэдрические позиции – *М*1 и *М*2. Учитывая данные анализа химического состава минерала, который фиксирует среднее отношение катионов в формуле Mg:Fe:Ti = 0.58:0.42:1, на первом этапе расчетов предположено, что атом титана занимает одну из позиций, тогда как вторая – изоморфно заселена атомами железа и магния. Уточнение структуры показало, что электронные плотности в рассматриваемых позициях близки по величине, а характер искажения полиэдров отражает неупорядоченное распределение трех типов катионов. Последующие вычисления проводились в рамках этой гипотезы, принимая во внимание данные химического анализа, количество электронной плотности в каждой позиции, заряд этих позиций, а также особенности геометрии соответствующих кислородных октаэдров. Полученные данные уточнения кристаллической структуры минерала в рамках пр. гр. С2/с свидетельствуют об изоморфном заселении октаэдров обоих типов атомами железа, магния и титана в следующих соотношениях: M1 (Ti_{0.39(1)}Mg_{0.34(2)}Fe_{0.27(1)}) и M2 (Ti_{0.59(1)}Mg_{0.22(2)}Fe_{0.19(1)}). Согласно [11], катионы Fe^{2+} и Mg^{2+} (наряду с Fe^{3+} и Al^{3+}) в первую очередь должны изоморфно замещаться катионами Ti⁴⁺ в кристаллических постройках породообразующих минералов, прежде всего силикатов вследствие характерной для титана октаэдрической координации и "средней" величине ионного радиуса. В качестве примера такого рода замещения можно привести структуру клиногумита, где одна из октаэдрических позиций статистически заселена катионами Mg^{2+} , Fe^{3+} и Ti^{4+} в соотношении 0.65:0.12:0.33 [12]. Случай магнезионептунита, где Ті количественно превалирует в обеих позициях, показывает, что и в собственных минералах титана такой изоморфизм может иметь место. Изоморфное вхождение катионов Fe²⁺ и Ti⁴⁺ в одну структурную позицию в различных соотношениях установлено, например, в случае энигматита

КРИСТАЛЛОГРАФИЯ том 57 № 4 2012

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА МАГНЕЗИОНЕПТУНИТА

М1-он	ктаэдр	М2-ог	ктаэдр	Si1-те	граэдр
<i>M</i> 1–O3	1.962(1)	Ti–O9	1.883(2)	Si1–O4	1.606(1)
09	1.985(2)	011	1.948(1)	O2	1.618(1)
O12	2.037(1)	O7	2.018(1)	O1	1.624(1)
O5	2.064(1)	O4	2.038(1)	O8	1.630(1)
O12'	2.090(1)	O5	2.150(1)	$\langle Si1-O \rangle$	1.620
O7	2.180(1)	O4'	2.245(1)		
$\langle M1-O \rangle$	2.053	$\langle M2-O \rangle$	2.047		
Si2-те	Si2-тетраэдр		Si3-тетраэдр		граэдр
Si2–O3	1.591(1)	Si3–O5	1.607(1)	Si4-011	1.599(1)
O12	1.618(1)	O 1	1.608(1)	O7	1.621(1)
O10	1.636(1)	O6	1.623(1)	O2	1.638(1)
O6	1.658(1)	O 8	1.626(1)	O10	1.653(1)
$\langle Si2-O \rangle$	1.626	$\langle Si3-O \rangle$	1.616	$\langle Si4-O \rangle$	1.628
Li1-or	Li1-октаэдр		вершинник	Na1-семин	вершинник
Li1-09	$2.073(2) \times 2$	K1–O1	$2.744(2) \times 2$	Na1–O3	2.399(2)
O 7	$2.153(4) \times 2$	O10	$2.811(2) \times 2$	O5	2.444(2)
O12	$2.159(4) \times 2$	O8	$2.834(2) \times 2$	O11	2.450(2)
$\langle Li1-O \rangle$	2.128	O2	$3.135(1) \times 2$	O6	2.489(2)
		O2'	$3.209(3) \times 2$	O4	2.546(2)
		$\langle K1-O \rangle$	2.947	O10	2.703(2)
				O6'	2.943(2)
				⟨Na1−O⟩	2.568
	Na2-o	ктаэдр			
Na2-O10	2.42(3)	Na2-O8	2.90(3)		
O10'	2.50(3)	O3	2.91(4)		
O1	2.61(2)	O2	2.96(3)		
$\langle Na2-O \rangle$	2.72				

Таблица 4. Межатомные расстояния (Å) в структуре магнезионептунита

[13]. Практически повсеместная октаэдрическая координация магния в структурах силикатов при близких значениях радиусов Ti⁴⁺ и Mg²⁺ способствует ограниченному изоморфному замещению и этих катионов [11].

Все минералы группы нептунита с горы Лакарги характеризуются пониженным содержанием калия и избытком натрия. В изученном кристалле эта особенность выразилась в образовании дополнительной, не фиксируемой в предыдущих структурных исследованиях, позиции для атомов натрия — Na2, расположенной на недопустимо коротком расстоянии в 0.65 Å от позиции K1, что означает статистический характер их размещения в соотношении 0.8:0.1. В сумме в позиции [K1 + Na2] остается вакансия 0.1 ф.е.

В результате проведенных исследований установлена следующая кристаллохимическая форму-

КРИСТАЛЛОГРАФИЯ том 57 № 4 2012

ла минерала: $(K_{0.8}Na_{0.1}\Box_{0.1})Na_2Li(Ti_{0.39}Mg_{0.34}Fe_{0.27})_2$ $(Ti_{0.59}Mg_{0.22}Fe_{0.19})_2[Si_4O_{11}]_2(O,OH)_2 = LiNa2_{.10}K_{0.80}Mg_{1.11}$ $Fe_{0.93}^{2+}Ti_{1.98}Si_8O_{22}(O,OH)_2$. Она хорошо согласуется со средней из 29 анализов микропробы бруттоформулой, рассчитанной на 24 атома кислорода: $Li_{1.0}Na_{2.27}K_{0.67}Mg_{1.16}Fe_{0.88}^{2+}Ti_{2.00}Si_8O_{24}$.

Идеализированная формула магнезионептунита — $KNa_2Li(Ti_2Mg_{1.1}Fe_{0.9})[Si_8O_{22}]O_2$.

АНАЛИЗ МЕЖАТОМНЫХ РАССТОЯНИЙ

Межатомные расстояния в октаэдрах M1 изменяются в пределах от 1.962(1) до 2.181(1) Å, а в октаэдрах M2 — от 1.883(2) до 2.245(1) Å при близких средних значениях расстояний в полиэдрах, равных 2.053 и 2.047 Å соответственно. Проведенный анализ характерных расстояний катион—анион в

	<i>M</i> 1	<i>M</i> 2	Si1	Si2	Si3	Si4	K1	Na1	Na2	Li1	Σ
01			1.000		1.041		0.173 _{2↓}		0.010		2.22
O2			1.016			0.963	$0.060_{2\downarrow}; 0.049_{2\downarrow}$		0.004		2.09
O3	0.579			1.093				0.198	0.004		1.87
O4		0.497; 0.284	1.050					0.133			1.96
O5	0.439	0.368			1.047			0.175			2.03
06				0.910	1.003			0.155; 0.046			2.11
O 7	0.321	0.527				1.011				$0.156_{2\downarrow}$	2.01
O 8			0.984		0.995		$0.136_{2\downarrow}$		0.005		2.12
09	0.546	0.757								$0.194_{2\downarrow}$	1.50
O10				0.968		0.925	$0.144_{2\downarrow}$	0.087	0.017; 0.014		2.15
011		0.634				1.070		0.173			1.88
O12	0.473; 0.410			0.910						0.154 _{2↓}	1.95
Σ	2.77	3.07	4.05	3.88	4.09	3.97	1.12	0.97	0.08	1.01	

Таблица 5. Баланс валентных усилий в структуре магнезионептунита

Примечание. При расчете использованы усредненные значения расстояний Ті−О, Мg−О и Fe−O, полученные в рамках статистической модели их распределения в структуре; знаком ↓ показано удвоение соответствующих валентных вкладов в столбцах за счет симметрии.

октаэдрах смешанного заселения катионами Fe²⁺ и Mg^{2+} в надежно установленных структурах показал, что нижняя граница этих значений не выходит за 2.0 Å. Так, в структуре оливина ($Fe_{0.5}Mg_{0.5}$)₂[SiO₄], где октаэдры двух типов имеют состав $M1(Fe_{0.54}Mg_{0.46})$ и $M2(Fe_{0.46}Mg_{0.54})$, межатомные расстояния в полиэдрах изменяются от 2.096 до 2.186 Å (*M*1) и от 2.082 до 2.249 Å (*M*2) [14]. Даже в случае преимущественного заселения обоих неэквивалентных октаэдров более мел- Mg^{2+} кими катионами (оливин состава $(Mg_{0.88}Fe_{0.12})(Mg_{0.89}Fe_{0.11})[SiO_4])$ минимальное значение длины связи катион-анион в октаэдре *М*2 оказывается равным 2.061 Å [15].

Напротив, очень сильное искажение октаэдров Ті⁴⁺ вплоть до образования полуоктаэдров (например, в минерале натисите и его многочисленных структурных аналогах [16]) – характерная черта минералогической кристаллохимии титана. Длины связей Ti-O в искаженных октаэдрах могут меняться в очень широких пределах, но их нижняя граница всегда меньше (иногда очень существенно, вплоть до величины около 1.7 Å), чем 2.0 Å. Вторая особенность кристаллохимии кислородных соединений титана, тесно связанная с указанной выше, состоит в стремлении октаэдров Ті к взаимной конденсации с образованием различных устойчивых структурных фрагментов, часто с реберными контактами соседних полиэдров [11]. Разброс межатомных расстояний катион-анион в октаэдрах, делящих общие ребра с образованием колонок, в структуре магнезионептунита (табл. 4) обусловлен, вероятно, участием атомов Ті в их формировании. Таким образом, подобное искажение полиэдров в рамках установленного химического состава минерала может быть интерпретировано только статистическим их заселением катионами трех возможных типов: Ti^{4+} , Fe^{2+} и Mg^{2+} . Закономерно большие вариации длин связей характерны для октаэдра M^2 , содержащего большее количество титана, в сравнении с октаэдром M1 (табл. 3, 4).

Наиболее укороченное среди межатомных расстояний M–O – это расстояние M2–O9 = = 1.883(2) в октаэдре, который на 60% заселен атомами титана. Анализ баланса валентных усилий в структуре показывает (табл. 5, [17]), что данный атом кислорода, не участвующий в координации атомов кремния, является валентно ненасыщенным: сумма валентных усилий, передаваемых катионами, составляет 1.50. Такая ситуация отвечает статистическому заселению указанной позиции анионами O^{2–} и (OH)[–].

Кремнекислородные тетраэдры также сильно искажены. Значительные вариации длин связей Si–O в интервалах 1.606(1)–1.630(1) Å (Si1-тетраэдр), 1.591(1)–1.658(1) Å (Si2-тетраэдр), 1.607(1)–1.626(1) Å (Si3-тетраэдр) и 1.599(1)–1.653(1) Å (Si4-тетраэдр) являются следствием неэквивалентного окружения атомов кислорода анионной подрешетки структуры катионами. Расстояния Si–O до мостиковых атомов кислорода, поделенных между двумя Si-тетраэдрами, в каждом полиэдре закономерно увеличены (табл. 4). По степени разброса значений расстояний кремний–кислород SiO₄-тетраэдры разделяются на два типа: относительно более правильные Si1 и Si3, где три атома кислорода каждого тетраэдра участвуют в

КРИСТАЛЛОГРАФИЯ том 57 № 4 2012

Рис. 2. Пироксеновые цепочки (фрагмент кремнекислородного паракаркаса), пересекающиеся под углом около 79°. Часть октаэдров, формирующих колонки катионного каркаса, убраны.

образовании мостиковых Si–O–Si-связей, и более деформированные Si2 и Si4, для которых характерно участие лишь двух атомов кислорода в формировании таких связей. Минимальные значения расстояний Si2–O3 = 1.591(1) Å и Si4–O11 = = 1.591(1) Å обусловлены валентными вкладами двух катионов (одного сильного Si и одного "среднего" M)¹ в соответствующие атомы кислорода. При наличии валентных вкладов двух Mатомов в «висячие» (неподеленные с другими атомами кремния) вершины кремнекислородных тетраэдров, длины связей Si–O до таких вершин закономерно возрастают (табл. 4, 5).

Октаэдры Li с собственной симметрией C_i довольно правильные, характеризуются межатомными расстояниями Li–O, которые изменяются от 2.073(2) до 2.159(3) Å. Атомы К также в частной позиции в центре инверсии имеют десять ближайших атомов кислорода на расстояниях в интервале от 2.744(1) до 3.209(2) Å. Длины связей Na–O в семивершинниках Na1 меньше; изменяются от 2.399(2) до 2.944 Å (среднее 2.568 Å). В октаэдрах Na2 с малой заселенностью расстояния Na2–O варьируют в пределах 2.42(3)–2.95(2) Å (среднее 2.72 Å).

ОПИСАНИЕ СТРУКТУРЫ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Кремнекислородный анионный паракаркас в кристаллической структуре магнезионептунита

образован пироксеновыми цепочками, втянутыми вдоль диагоналей грани *ab* элементарной ячейки (рис. 2) и перекрещивающиеся под углом $\approx 79^{\circ}$. Интересной особенностью данного структурного типа является наличие двух проникающих скрещивающихся, но не пересекающихся квазикаркасов из SiO₄-тетраэдров (рис. 3). Такого рода анионные постройки встречаются довольно редко. В качестве примера можно привести скрещивающиеся каркасы из борокислородных тетраэдров в структурах высокотемпературных кубических β -разновидностей минералов группы борацита: собственно борацита, эрикаита и чемберсита.

Октаэдры M1 и M2, статистически заселенные катионами Ti⁴⁺, Mg²⁺ и Fe²⁺, делят общие ребра с формированием колонок, вытянутых в тех же направлениях, что и цепочки кремнекислородных тетраэдров (рис. 4, 1), обрамляющие эти колонки с разных сторон [1, 18]. Li-октаэдры в центре инверсии выступают в роли «замка» по образному выражению H.B. Белова [18], скрепляя колонки из *M*-полиэдров подобно тому, как это происходит в срубе из пересекающихся брусьев. Более крупные катионы щелочных металлов Na и K располагаются в пустотах структуры.

Кристаллическая структура магнезионептунита (рис. 5), как и структуры других представителей этой минеральной группы, представляет собой единственный пример анионного каркаса, который описывается формулой $[Si_4O_{11}]_{\infty\infty\infty}$ [18]. Двумерные анионные тетраэдрические постройки ленточного типа с той же формулой $[Si_4O_{11}]_{\infty}$ характерны для структур амфиболов и власовита.

¹ При данном анализе не рассматривались вклады щелочных катионов ввиду их относительно равномерного распределения и небольших значений валентных усилий.

Рис. 3. Скрещивающиеся кремнекислородные каркасы (светлый и темный тон) – специфическая особенность структурного типа нептунита.

Слоистые анионные радикалы $[Si_4O_{11}]_{\infty\infty}$ – основа кристаллических структур минералов пенквилксита [19] и тумчаита [20].

Магнезионептунит из месторождения Лакарги (Северный Кавказ) кристаллизуется в центросимметричной пр. гр. C2/c в отличие от других минеральных разновидностей нептунита, для которых принята ацентричная модель. Отсутствие центра инверсии в их структурах, подчиняющихся пр. гр. Cc, обусловлено упорядочением катионов Ti⁴⁺ (нептунит, манганнептунит) либо V⁴⁺ (ватацумит) в октаэдрах: в колонках, параллельных направлениям [110] и [110], чередуются полиэд-

Рис. 4. Вытянутые в направлениях [110] и [110] колонки делящих ребра Ті, Mg, Fe-октаэдров – основа катионного каркаса структуры магнезионептунита.

Рис. 5. Кристаллическая структура магнезионептунита в проекции *ху*.

КРИСТАЛЛОГРАФИЯ том 57 № 4 2012

Характеристики	Нептунит	Манганнептунит
Идеализированная формула	$KNa_2Li(Fe_{1.6}Mg_{0.4})Ti_2[Si_8O_{22}]O_2$	KNa ₂ Li(Fe,Mn) ₂ Ti ₂ [Si ₈ O ₂₂]O ₂
<i>a, b, c,</i> Å	16.427(2), 12.478(2), 9.975(1)	16.4821(6), 12.5195(4), 10.0292(3)
β, град, <i>V</i> , Å ³	115.56(1), 1844.5(1)	115.474(1), 1868.3(1)
Пр. гр., <i>Z</i>	<i>Cc</i> , 4	<i>Cc</i> , 4
$ ho_{\rm B b I 4}$	3.23	3.23
<i>M</i> 1 (<i>M</i> 1')	Ti (Fe _{0.85} Mg _{0.15})	Ti (Fe, Mn, Mg)
M2 (M2')	Ti (Fe _{0.78} Mg _{0.22})	Ti (Fe, Mn, Mg)
<i>M</i> 1–O	1.726(4)-2.198(4)	1.709(2)-2.195(3)
<i>M</i> 1'–O	1.969(5)-2.202(4)	2.027(3)-2.243(2)
М2-О	1.705(4)-2.209(4)	1.712(2)-2.195(2)
<i>M</i> 2'–O	1.984(4)-2.210(4)	2.026(3)-2.266(2)
Фактор недостоверности, R	0.024	0.031
Литература	[3]	[5]
Характеристики	Ватацумит	Магнезионептунит
Характеристики Идеализированная формула	Ватацумит KNa ₂ Li(Mn _{1.6} Mg _{0.4})(V _{1.7} Ti _{0.3)} [Si ₈ O ₂₂]O ₂	Магнезионептунит KNa ₂ Li(Ti ₂ Mg _{1.1} Fe _{0.9})[Si ₈ O ₂₂]O ₂
Характеристики Идеализированная формула <i>a, b, c,</i> Å	Ватацумит KNa ₂ Li(Mn _{1.6} Mg _{0.4})(V _{1.7} Ti _{0.3)} [Si ₈ O ₂₂]O ₂ 16.450(16), 12.492(7), 9.995(8)	Магнезионептунит KNa ₂ Li(Ti ₂ Mg _{1.1} Fe _{0.9})[Si ₈ O ₂₂]O ₂ 16.3271(7), 12.4788(4), 9.9666(4)
Характеристики Идеализированная формула <i>a, b, c,</i> Å β, град, <i>V</i> , Å ³	Ватацумит KNa ₂ Li(Mn _{1.6} Mg _{0.4})(V _{1.7} Ti _{0.3})[Si ₈ O ₂₂]O ₂ 16.450(16), 12.492(7), 9.995(8) 115.32(6), 1857(2)	Магнезионептунит KNa ₂ Li(Ti ₂ Mg _{1.1} Fe _{0.9})[Si ₈ O ₂₂]O ₂ 16.3271(7), 12.4788(4), 9.9666(4) 115.651(5), 1830.5(1)
Характеристики Идеализированная формула <i>a, b, c,</i> Å β, град, <i>V</i> , Å ³ Пр. гр., <i>Z</i>	Ватацумит KNa ₂ Li(Mn _{1.6} Mg _{0.4})(V _{1.7} Ti _{0.3)} [Si ₈ O ₂₂]O ₂ 16.450(16), 12.492(7), 9.995(8) 115.32(6), 1857(2) <i>Cc</i> , 4	Магнезионептунит KNa ₂ Li(Ti ₂ Mg _{1.1} Fe _{0.9})[Si ₈ O ₂₂]O ₂ 16.3271(7), 12.4788(4), 9.9666(4) 115.651(5), 1830.5(1) <i>C</i> 2/ <i>c</i> , 2
Характеристики Идеализированная формула <i>a, b, c,</i> Å β, град, <i>V</i> , Å ³ Пр. гр., <i>Z</i> Р _{выч}	Ватацумит KNa ₂ Li(Mn _{1.6} Mg _{0.4})(V _{1.7} Ti _{0.3})[Si ₈ O ₂₂]O ₂ 16.450(16), 12.492(7), 9.995(8) 115.32(6), 1857(2) <i>Cc</i> , 4 3.23	Магнезионептунит KNa ₂ Li(Ti ₂ Mg _{1.1} Fe _{0.9})[Si ₈ O ₂₂]O ₂ 16.3271(7), 12.4788(4), 9.9666(4) 115.651(5), 1830.5(1) <i>C</i> 2/ <i>c</i> , 2 3.15
Характеристики Идеализированная формула <i>a, b, c,</i> Å β, град, <i>V</i> , Å ³ Пр. гр., <i>Z</i> Р _{выч} <i>M</i> 1 (<i>M</i> 1')	Ватацумит KNa ₂ Li(Mn _{1.6} Mg _{0.4})(V _{1.7} Ti _{0.3})[Si ₈ O ₂₂]O ₂ 16.450(16), 12.492(7), 9.995(8) 115.32(6), 1857(2) <i>Cc</i> , 4 3.23 (V _{0.83} Ti _{0.17}) (Mn _{0.72} Mg _{0.28})	Магнезионептунит KNa ₂ Li(Ti ₂ Mg _{1.1} Fe _{0.9})[Si ₈ O ₂₂]O ₂ 16.3271(7), 12.4788(4), 9.9666(4) 115.651(5), 1830.5(1) <i>C</i> 2/ <i>c</i> , 2 3.15 Ti _{0.39} Mg _{0.34} Fe _{0.27}
Характеристики Идеализированная формула <i>a, b, c,</i> Å β, град, <i>V</i> , Å ³ Пр. гр., <i>Z</i> Р _{выч} <i>M</i> 1 (<i>M</i> 1') <i>M</i> 2 (<i>M</i> 2')	Ватацумит KNa ₂ Li(Mn _{1.6} Mg _{0.4})(V _{1.7} Ti _{0.3})[Si ₈ O ₂₂]O ₂ 16.450(16), 12.492(7), 9.995(8) 115.32(6), 1857(2) <i>Cc</i> , 4 3.23 (V _{0.83} Ti _{0.17}) (Mn _{0.72} Mg _{0.28}) (V _{0.83} Ti _{0.17}) (Mn _{0.85} Mg _{0.15})	Магнезионептунит KNa ₂ Li(Ti ₂ Mg _{1.1} Fe _{0.9})[Si ₈ O ₂₂]O ₂ 16.3271(7), 12.4788(4), 9.9666(4) 115.651(5), 1830.5(1) <i>C</i> 2/ <i>c</i> , 2 3.15 Ti _{0.39} Mg _{0.34} Fe _{0.27} Ti _{0.59} Mg _{0.22} Fe _{0.19}
Характеристики Идеализированная формула <i>a, b, c,</i> Å β, град, <i>V</i> , Å ³ Пр. гр., <i>Z</i> Р _{выч} <i>M</i> 1 (<i>M</i> 1') <i>M</i> 2 (<i>M</i> 2') <i>M</i> 1–O	Ватацумит KNa ₂ Li(Mn _{1.6} Mg _{0.4})(V _{1.7} Ti _{0.3})[Si ₈ O ₂₂]O ₂ 16.450(16), 12.492(7), 9.995(8) 115.32(6), 1857(2) <i>Cc</i> , 4 3.23 (V _{0.83} Ti _{0.17}) (Mn _{0.72} Mg _{0.28}) (V _{0.83} Ti _{0.17}) (Mn _{0.85} Mg _{0.15}) 1.690(4)-2.166(6)	Магнезионептунит KNa ₂ Li(Ti ₂ Mg _{1.1} Fe _{0.9})[Si ₈ O ₂₂]O ₂ 16.3271(7), 12.4788(4), 9.9666(4) 115.651(5), 1830.5(1) <i>C</i> 2/ <i>c</i> , 2 3.15 Ti _{0.39} Mg _{0.34} Fe _{0.27} Ti _{0.59} Mg _{0.22} Fe _{0.19} 1.962(1)-2.180(1)
Характеристики Идеализированная формула <i>a, b, c,</i> Å β, град, <i>V</i> , Å ³ Пр. гр., <i>Z</i> Р _{выч} <i>M</i> 1 (<i>M</i> 1') <i>M</i> 2 (<i>M</i> 2') <i>M</i> 1–O <i>M</i> 1'–O	Ватацумит KNa ₂ Li(Mn _{1.6} Mg _{0.4})(V _{1.7} Ti _{0.3})[Si ₈ O ₂₂]O ₂ 16.450(16), 12.492(7), 9.995(8) 115.32(6), 1857(2) <i>Cc</i> , 4 3.23 (V _{0.83} Ti _{0.17}) (Mn _{0.72} Mg _{0.28}) (V _{0.83} Ti _{0.17}) (Mn _{0.85} Mg _{0.15}) 1.690(4)-2.166(6) 1.998(7)-2.175(8)	Магнезионептунит KNa ₂ Li(Ti ₂ Mg _{1.1} Fe _{0.9})[Si ₈ O ₂₂]O ₂ 16.3271(7), 12.4788(4), 9.9666(4) 115.651(5), 1830.5(1) <i>C</i> 2/ <i>c</i> , 2 3.15 Ti _{0.39} Mg _{0.34} Fe _{0.27} Ti _{0.59} Mg _{0.22} Fe _{0.19} 1.962(1)-2.180(1)
Характеристики Идеализированная формула <i>a, b, c,</i> Å β, град, <i>V</i> , Å ³ Пр. гр., <i>Z</i> Р _{выч} <i>M</i> 1 (<i>M</i> 1') <i>M</i> 2 (<i>M</i> 2') <i>M</i> 1–O <i>M</i> 1'–O <i>M</i> 2–O	Ватацумит KNa ₂ Li(Mn _{1.6} Mg _{0.4})(V _{1.7} Ti _{0.3})[Si ₈ O ₂₂]O ₂ 16.450(16), 12.492(7), 9.995(8) 115.32(6), 1857(2) <i>Cc</i> , 4 3.23 (V _{0.83} Ti _{0.17}) (Mn _{0.72} Mg _{0.28}) (V _{0.83} Ti _{0.17}) (Mn _{0.85} Mg _{0.15}) 1.690(4)–2.166(6) 1.998(7)–2.175(8) 1.887(5)–2.175(7)	Магнезионептунит KNa ₂ Li(Ti ₂ Mg _{1.1} Fe _{0.9})[Si ₈ O ₂₂]O ₂ 16.3271(7), 12.4788(4), 9.9666(4) 115.651(5), 1830.5(1) <i>C</i> 2/ <i>c</i> , 2 3.15 Ti _{0.39} Mg _{0.34} Fe _{0.27} Ti _{0.59} Mg _{0.22} Fe _{0.19} 1.962(1)-2.180(1) 1.883(2)-2.245(1)
Характеристики Идеализированная формула <i>a, b, c,</i> Å β, град, <i>V</i> , Å ³ Пр. гр., <i>Z</i> Р _{выч} <i>M</i> 1 (<i>M</i> 1') <i>M</i> 2 (<i>M</i> 2') <i>M</i> 1–O <i>M</i> 1'–O <i>M</i> 2–O <i>M</i> 2'–O	Ватацумит KNa ₂ Li(Mn _{1.6} Mg _{0.4})(V _{1.7} Ti _{0.3})[Si ₈ O ₂₂]O ₂ 16.450(16), 12.492(7), 9.995(8) 115.32(6), 1857(2) <i>Cc</i> , 4 3.23 (V _{0.83} Ti _{0.17}) (Mn _{0.72} Mg _{0.28}) (V _{0.83} Ti _{0.17}) (Mn _{0.85} Mg _{0.15}) 1.690(4)–2.166(6) 1.998(7)–2.175(8) 1.887(5)–2.175(7) 2.014(7)–2.321(4)	Магнезионептунит KNa ₂ Li(Ti ₂ Mg _{1.1} Fe _{0.9})[Si ₈ O ₂₂]O ₂ 16.3271(7), 12.4788(4), 9.9666(4) 115.651(5), 1830.5(1) <i>C</i> 2/ <i>c</i> , 2 3.15 Ti _{0.39} Mg _{0.34} Fe _{0.27} Ti _{0.59} Mg _{0.22} Fe _{0.19} 1.962(1)-2.180(1) 1.883(2)-2.245(1)
Характеристики Идеализированная формула <i>a, b, c,</i> Å β, град, <i>V</i> , Å ³ Пр. гр., <i>Z</i> Р _{выч} <i>M</i> 1 (<i>M</i> 1') <i>M</i> 2 (<i>M</i> 2') <i>M</i> 1–O <i>M</i> 1′–O <i>M</i> 2–O <i>M</i> 2′–O Фактор недостоверности, <i>R</i>	Ватацумит KNa ₂ Li(Mn _{1.6} Mg _{0.4})(V _{1.7} Ti _{0.3})[Si ₈ O ₂₂]O ₂ 16.450(16), 12.492(7), 9.995(8) 115.32(6), 1857(2) <i>Cc</i> , 4 3.23 (V _{0.83} Ti _{0.17}) (Mn _{0.72} Mg _{0.28}) (V _{0.83} Ti _{0.17}) (Mn _{0.85} Mg _{0.15}) 1.690(4)-2.166(6) 1.998(7)-2.175(8) 1.887(5)-2.175(7) 2.014(7)-2.321(4) 0.033	Магнезионептунит KNa ₂ Li(Ti ₂ Mg _{1.1} Fe _{0.9})[Si ₈ O ₂₂]O ₂ 16.3271(7), 12.4788(4), 9.9666(4) 115.651(5), 1830.5(1) <i>C</i> 2/ <i>c</i> , 2 3.15 Ti _{0.39} Mg _{0.34} Fe _{0.27} Ti _{0.59} Mg _{0.22} Fe _{0.19} 1.962(1)-2.180(1) 1.883(2)-2.245(1) 0.024

Таблица 6. Кристаллографические и некоторые кристаллохимические характеристики минералов группы нептунита

O = 1.712(2) - 2.195(2) Å и Ti2-O = 1.709(2)-2.195(3) Å [5].

Поскольку данные элементного состава микропрбы магнезионептунита показали, что содержание атомов Ті и (Mg+Fe) в минерале отвечает соотношению 1:1, теоретически существует вероятность их упорядочения в структуре, как это происходит в кристаллических структурах других минеральных разновидностей данной группы. Для проверки этой гипотезы проведено уточнение структуры магнезионептунита в рамках пр. гр. Сс. Однако сильная корреляция уточняемых параметров атомов, связанных центром симметрии, существенно худшая точность их определения, как и точность расчета межатомных расстояний, "открытые" эллипсоиды тепловых колебаний у третьей части атомов, близкое к 0.5 значение параметра Флэка и, главное, отсутствие принципиально различной дисторсии октаэдров, характерной для полиэдров Ті, с одной стороны, и

КРИСТАЛЛОГРАФИЯ том 57 № 4 2012

(Mg, Fe), с другой, при несколько более низких значениях факторов недостоверности центросимметричной модели в сравнении с ацентричной (около 3%) однозначно свидетельствовали о наличии центра инверсии в структуре нового минерала.

Центросимметричный характер кристаллической структуры магнезионептунита, вероятно, является следствием условий его образования. Температура кристаллизации минералов группы нептунита в ксенолитах горы Лакарги оценивается не ниже 800°С, что заметно выше, чем температура образования минералов этой группы в большинстве известных проявлений [6]. Формированию высокомагнезиальных и магнийдоминантных титановых представителей (разновидностей) группы нептунита в ксенолитах горы Лакарги способствовали высокая фугитивность среды, приводящая к преобладанию во флюиде Fe³⁺ над Fe²⁺, и, вероятно, ничтожное содержание Mn [6]. Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 10-05-01068а) и Министерства образования (грант НШ-4034.2010.5).

СПИСОК ЛИТЕРАТУРЫ

- 1. Борисов С.В., Клевцова Р.Ф., Бакакин В.В., Белов Н.В. // Кристаллография. 1965. Т. 10. С. 815.
- Cannillo E., Mazzi F., Rossi G. // Acta Cryst. 1966. V. 22. P. 200.
- 3. Kunz M., Armbruster T., Lager G.A. et al. // Phys. Chem. Minerals. 1991. V. 18. P. 199.
- Matsubara S., Miyawaki R., Kurosawa M., Suzuki Y. // J. Mineral. Petrol. Sci. 2003. V. 98. P. 142.
- 5. Золотарёв А.А., Кривовичев С.В., Яковенчук В.Н. // Зап. Рос. минерал. о-ва. 2007. Ч. 136. С. 118.
- 6. Задов А.Е., Газеев В.М., Каримова О.В. и др. // Зап. Рос. минерал. о-ва. 2011. Ч. 140. С. 57.
- 7. Farrugia L.J. // J. Appl. Cryst. 1999. V. 32. P. 837.
- Sheldrick G.M. SHELXS97. Program for the Solution of Crystal Structures. Universität Göttingen, Germany, 1997.

- 9. *Sheldrick G.M.* SHELXL97. Program for the Refinement of Crystal Structures from Diffraction Data. Universität Göttingen, Germany, 1997.
- 10. *Prince E. Ed.* International Tables. 2004 p. 3rd edth. Tables 4.2.6.8 and 6.1.14.
- Пятенко Ю.А., Воронков А.А., Пудовкина З.В. Минералогическая кристаллохимия титана. М.: Наука, 1976. 156 с.
- Friedrich A., Lager G.A., Kunz M. et al. // Am. Mineral. 2001. V. 86. P. 981.
- Cannillo E., Mazzi F., Fang J.H. et al. // Am. Mineral. 1971. V. 56. P. 427.
- 14. *Redfern S.A.T., Artioli G., Rinaldi R. et al.* // Phys. Chem. Mineral. 2000. V. 27. P. 630.
- 15. Heuer M. // J. Appl. Cryst. 2001. V. 34. P. 271.
- 16. Якубович О.В., Киреев В.В., Мельников О.К. // Кристаллография. 2000. Т. 45. С. 635.
- 17. Breese N.E., O'Keeffe M. // Acta Cryst. B. 1991. V. 47. P. 192.
- Белов Н.В. Очерки по структурной минералогии. М.: Недра, 1976. 344 с.
- Merlino S., Pasero M., Artioli G., Khomyakov A.P. // Am. Mineral. 1994. V. 79. P. 1185.
- 20. Subbotin V.V., Merlino S., Pushcharovsky D.Yu. et al. // Am. Mineral. 2000. V. 85. P. 1516.