Е КРИСТАЛЛОГРАФИЧЕСКАЯ СИММЕТРИЯ

УДК 548.1

ПОЛНАЯ СХЕМА ЧЕТЫРЕХМЕРНЫХ КРИСТАЛЛОГРАФИЧЕСКИХ ГРУПП СИММЕТРИИ

© 2012 г. А. Ф. Палистрант

Молдавский государственный университет, Кишинёв E-mail: mepalistrant@yandex.ru
Поступила в редакцию 07.02.2011 г.

Освещена одна из основных задач четырехмерной геометрической кристаллографии, т.е. приведена полная схема четырехмерных кристаллографических групп симметрии и для каждой из 12-ти различных категорий, входящих в эту схему, указано количество групп симметрии, которыми эти категории характеризуются.

ВВЕДЕНИЕ И ПОСТАНОВКА ЗАДАЧИ

Термин "симметрия" (дословно соразмерность) древнегреческие философы понимали как частный случай гармонии — согласование частей в рамках целого. Недаром симметрия так тесно связана с представлениями о красоте и так велико ее значение в искусстве, естествознании и технике [1]. Ясно, что такое представление о симметрии не позволяет описать симметрию всех встречающихся фигур. Для решения этой задачи нужно использовать не определение самой симметрии данной фигуры, а точное математическое определение преобразования симметрии рассматриваемой фигуры.

Преобразованием симметрии данной фигуры Fназовем ее изометрическое отображение на себя. Другими словами преобразование симметрии s фигуры F определяется условиями: a) для любой точки $M \in F$ ее s-образ s $(M) = M' \in F$ (т.е. s отображает F в себя: $s(F) \subseteq F$; б) для любой точки $M' \in F$ существует такая точка $M \in F$, что M' == s(M) (т.е. *s* отображает *F* на себя: s(F) = F); в) для любых точек M и $N \in F$ всегда MN = M'N' при M = s(M) и N' = s(N) (т.е. s сохраняет расстояние между точками). Совокупность всех преобразований симметрии данной фигуры F по отношению к операции умножения этих преобразований (последовательных их действий) образует группу S, которую назовем мультипликативной группой симметрии этой фигуры [1, 2]. Такая группа симметрии S называется дискрентной, если орбита любой точки преобразуемой ею фигуры F является дискрентной, т. е. любая точка фигуры F изолирована в классе S-эквивалентных ей точек. Группу симметрии каждой фигуры можно считать подгруппой группы всех движений пространства (или плоскости, если фигуру можно рассматривать как плоскую).

В трехмерном евклидовом пространстве преобразования симметрии исчерпываются следую-

щими видами: тождественным преобразованием (e); переносом t на вектор \mathbf{a} (сокращенно $t \sim \mathbf{a}$); поворотом (вращением) v на угол ϕ вокруг данной прямой u, называемой осью ($v \sim u$, ϕ в краткой записи); отражением c от прямой u, называемой осью ($c \sim u$), отражением m от плоскости ω ($m \sim \omega$); скользящим отражением m_t с плоскостью ω и вектором скольжения \mathbf{a} ($m_t \sim \omega$, \mathbf{a} в краткой записи); винтовым движением v_t с осью u (винтовой осью), углом поворота ϕ и ходом винта \mathbf{a} (сокращенно $v_t \sim u$, ϕ , \mathbf{a}); скользящим отражением c_t с осью u и вектором скольжения \mathbf{a} ($c_t \sim u$, \mathbf{a}); зеркальным поворотом v_m с осью u, углом поворота ϕ и плоскостью отражения ω (короче $v_m \sim u$, ϕ , ω); отражением C от точки O (сокращенно $C \sim O$).

Зеркальный поворот с углом π является инверсией (отражением от точки), а всякий зеркальный поворот с углом ϕ можно толковать как инверсионный с углом $\phi \pm \pi$. Вспомогательные геометрические обзоры (поворотные, зеркально-поворотные и винтовые оси, векторы переносов, плоскости отражений и скользящих отражений), характеризующие циклические группы симметрии, называются элементами симметрии. Определения перечисленных преобразований симметрии, характеристика символов элементов симметрии и соответствующих им групп содержатся в [3].

Хорошо известно, что группы симметрии в трехмерном пространстве были полностью получены в 1890—1891 гг. русским кристаллографом Е.С. Фёдоровым [4, 5] и немецким математиком А. Шёнфлисом [6]. В это же время Е.С. Фёдоровым были получены аналогичные группы в двумерном пространстве [7]. Эти исследования послужили основой науки о кристаллах и еще при жизни авторов дискрентных пространственных групп симметрии блестяще подтверждены экспериментально [2].

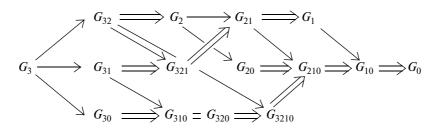


Рис. 1. Схема соподчинения трехмерных кристаллографических групп симметрии. Одинарная стрелка указывает на включение групп последующей категории в группы предыдущей категории в качестве подгрупп, а двойная — включение последующей категории в предыдущую.

Создание в начале XX в. рентгеноструктурного анализа вызвало повышенный интерес швейцарско-немецких кристаллографов к теории симметрии, завершившийся, как об этом подробно описано в [2], нахождением всех групп симметрии на плоскости и всевозможных новых подгрупп пространственных фёдоровских групп G_3 , характеризуемых наличием особенных элементов: точек, прямых, плоскостей и их сочетаний, инвариантных относительно преобразований этих групп.

Далее приведена полная схема классических кристаллографических групп симметрии в символике Бома [8, 9], в которой отражена проанализированная в [2] предложенная Холзером [10] и А.В. Шубниковым [11] классификация кристаллографических групп симметрии по наборам особенных элементов, т.е. вложенных друг в друга подпространств разных размерностей, инвариантных относительно преобразований рассматриваемых групп.

Полная схема кристаллографических групп симметрии в нуль-, одно-, двух- и трехмерном пространствах с указанием количества различных (в том числе и неизоморфных) групп в виде коэффициента перед символом категории в настоящее время выглядит следующим образом.

Трехмерные группы симметрии: 230 (219) G_3 (пространственные фёдоровские группы); 80 (34) G_{32} (слоевые); 75 (36) G_{31} (стержневые); 32(18) G_{30} (пространственные точечные или кристаллические классы); 31(6) G_{321} (ленточные); 31(14) G_{320} (= G_{310}) (точечные подгруппы слоевых и стержневых групп); 16(4) G_{3210} (точечные подгруппы ленточных групп или группы симметрии конечных лент).

Двумерные: 17(17) G_2 (плоские фёдоровские группы); 7(4) G_{21} (бордюрные); 10(9) G_{20} (двумерные точечные или розеточные группы); 5(3) G_{210} (точечные подгруппы бордюрных групп).

Одномерные: 2(2) G_1 (одномерные линейные фёдоровские группы), 2(2) (одномерные линейные точечные группы).

Нульмерные: 1 G_0 (группа, порожденная тождественным преобразованием e).

Списки всех категорий отмеченных классических групп симметрии в разных символах образующих их элементов приведены в [1-3]. Между отмеченными классическими группами симметрии разных размерностей имеются определенные соподчинения. Для их выявления заметим, что всякую r-мерную группу симметрии, согласно [11], можно рассматривать как (r + 1)-мерную с односторонним особенным *r*-мерным пространством (следовательно, с инвариантным (r + 1)-мерным полупространством). С этой точки зрения нульмерные группы относятся к одномерным (с особенной односторонней точкой, т.е. с инвариантным лучом на ней), одномерные – к двумерным (с особенной односторонней прямой на плоскости или с инвариантной полуплоскостью), двумерные — к трехмерным (с особенной односторонней плоскостью — с инвариантным полупространством). Таким образом, все кристаллографические классические группы истолковываются как трехмерные и являются подгруппами пространственных фёдоровских групп с определенным набором особенных элементов. Следовательно, категории низших размерностей можно считать подкатегориями высших. Схему такого соподчинения трехмерных классических групп симметрии можно проследить на рис. 1, копирующем соответствующий рис. 2 монографии [2].

ХАРАКТЕРИСТИКА ПРЕДВАРИТЕЛЬНЫХ ЗАДАЧ, СВЯЗАННЫХ С ИЗУЧЕНИЕМ ЧЕТЫРЕХМЕРНЫХ ГРУПП СИММЕТРИИ

В 70-е гг. двадцатого столетия ученые разных стран проявили интерес к дискретным многомерным группам симметрии [12, 13], т.е. к n-мерным фёдоровским группам G_n и их всевозможным подгруппам. Отметим, что еще в начале XX в. Бибертах и Фробениус [14, 15] доказали конечность числа различных (неизоморфных) фёдоровских групп G_n в евклидовом пространстве любой размерности, что придало уверенности ученым в успешном решении такой задачи. Ясно, что в указанное время актуальной была задача вывода групп G_4 , ввиду того что трехмерные группы G_3 и

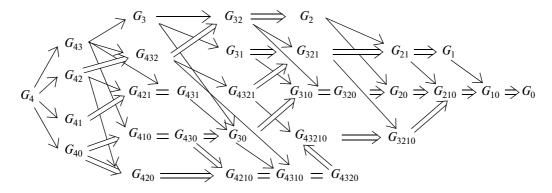


Рис. 2. Схема соподчинения четырехмерных кристаллографических групп симметрии. Одинарная стрелка указывает на включение групп последующей категории в качестве подгрупп, а двойная — включение последующей категории в предыдущую.

все их нетривиальные подгруппы были уже изучены, как отмечалось ранее.

При $n \ge 4$ выводить группы G_n таким же путем, как это делалось в трехмерном пространстве в [16] (после предварительного полного вывода точечных "кристаллографических" групп G_{n0} и всех типов n-мерных решеток Бравэ), является довольно трудоемкой задачей при n=4 [17] и невыполнимой при $n \ge 5$. Алгоритм изучения групп G_n (как расширений своих трансляционных подгрупп T_n при помощи точечных групп G_{n0}) впервые разработан Цассенхаузом [18]. Таким образом, чтобы использовать при n=4 универсальный алгоритм Цассенхауза при выводе 4-мерных дискрентных групп G_4 , нужно найти все точечные кристаллографические группы G_{40} и типы 4-мерных решеток Бравэ.

Для n=4 эта задача полностью решена. Список четырехмерных точечных кристаллографических групп симметрии, восходящий к [19], уточнялся в [20] и в настоящее время включает в себя 271 группу G_{40} [21]. Далее составленный в [22] каталог четырехмерных решеток Бравэ уточнялся в [23, 24] и в настоящее время содержит 74 решетки Бравэ [25, 21]. Отмеченный в [25] результат по четырехмерным решеткам Бравэ является абсолютно точным, так как он получен вручную, без использования ЭВМ, методами геометрической теории чисел, развитыми в [26].

КЛАССИФИКАЦИЯ МНОГОМЕРНЫХ ГРУПП СИММЕТРИИ

Для изучения многомерных фёдоровских групп G_n и их всевозможных подгрупп нужно знать не только список всех различных кристаллографических точечных групп G_{n0} и n-мерных решеток Бравэ, но и располагать полной классификацией таких групп. Распространяя на многомерный случай использованную для записи классических групп симметрии символику Бома, обо-

значим через G_n n-мерные фёдоровские группы (n-пространственные), через G_{nm} (где n > m) — их подгруппы с особенной m-мерной плоскостью, бесконечные в m-измерениях (m-плоские), через $G_{nm...k}$ (где n > m > ... > k) — их подгруппы с особенными m-мерной, ..., κ -мерной плоскостями, последовательно вложенными друг в друга (прямую рассматриваем как одномерную плоскость, а точку — как нульмерную [12, 13].

Полное перечисление всех категорий n-мерных групп симметрии при n=3, 4 и 5 легко осуществляется по формулам (1)—(3), взятым из [13]. Поясним их смысл. Из n-мерной евклидовой геометрии следует, если группа симметрии G в пространстве E_n обладает m-мерной особенной плоскостью E_m и вложенной в нее особенной l-мерной плоскостью E_l , то преобразования группы G сохраняют также (n-m+l)-мерную плоскость E_{n-m+l} , пересекающую E_m по E_l и перпендикулярную E_m . Отсюда для категорий вытекает следующее основное тождество:

$$G_{nml} = G_{n(n-m+l)l}. (1)$$

Последовательное применение формулы (1) в качестве G_{nmlk} приводит к тождественности шести символов:

$$G_{umlk}^{n} = \begin{cases} G_{nm(m-l+k)l} = G_{n(n-l+k)(m-l+k)k} \\ G_{n(n-m+l)lk} = G_{n(n-m+l)(n-m+k)k} \end{cases} =$$

$$= G_{n(n-l+k)(n-m+k)k}.$$
(2)

Аналогичным образом для категорий G_{nmlj} выписывается тождественность 24-х символов:

$$G_{nmlkj} = G_{nml(l-k+j)j} = G_{nm(m-k+j)(l-k+j)j} =$$

$$= G_{n(n-k+j)(m-k+j)(l-k+j)j} = \dots =$$

$$= G_{n(n-k+j)(n-m+l-k+j)(n-m+j)j}.$$
(3)

Опираясь на (1)—(3), легко привести полный список всех различных категорий четырехмерных групп симметрии. Перечень четырехмерных

групп симметрии содержится в [12, 13]. Ниже он воспроизводится снова и с учетом нетривиальных тождеств выглядит так: G_4 ; G_{40} , G_{41} , G_{42} , G_{43} ; $G_{410} = G_{430}$, G_{420} , $G_{421} = G_{431}$, G_{432} ; $G_{4210} = G_{4310} = G_{4320}$, G_{4321} ; G_{43210} .

НЕКОТОРЫЕ ПОЛОЖЕНИЯ ОБЩЕЙ ТЕОРИИ *P*-СИММЕТРИИ

Вывод многомерных групп симметрии диктуется не только задачами *п*-мерной дискретной геометрии [26], но и потребностями современной физики [12]. Наряду с универсальными методами геометрической теории чисел, развитыми московской школой Б.Н. Делоне в [26], важную роль в совершенствовании принципиального решения задачи *п*-мерной геометрической кристаллографии имеют разработанные кишиневскими геометрами методы применения одно-, двух- и трехмерных групп *P*-симметрии для подсчета и моделирования субпериодических *п*-мерных групп симметрии [12, 13].

Напомним сущность заморзаевской P-симметрии и некоторые факты, связанные с возможностью использования одно-, двух- и трехмерных групп P-симметрии для исследования многомерных субпериодических групп симметрии. Приписывая каждой точке фигуры хотя бы один индекс i=1,2,...,p и фиксируя некоторую группу P-подстановок этих индексов, называем преобразованием P-симметрии взятой фигуры с индексами ее изометрическое преобразование, переводящее каждую точку с индексом i в точку с индексом k_i

так, что подстановка
$$\varepsilon = \begin{pmatrix} 1 & 2 & \dots & p \\ k_1 & k_2 & \dots & k_p \end{pmatrix} \in P$$
. Вся-

кое преобразование P-симметрии g есть коммутативное произведение преобразования симметрии s и подстановки индексов ε . Преобразования P-симметрии фигуры составляют группу G, входящие в них в качестве компонент преобразования симметрии s — ее порождающую группу S, а подстановки индексов ε — группу P_1 . При $P_1 = P$ называем G группой полной P-симметрии, при $e \subset P_1 \subset P$ — неполной, а при $P_1 = eG = S$. Если G-группа полной P-симметрии, то $H = G \cap S$ — ее подгруппа симметрии, а $Q = G \cap P$ — ее подгруппа подстановок индексов (P—тождественных преобразований). Группу G называем старшей при Q = P (тогда G изоморфна S) и средней (Q-средней) при $e \subset Q \subset P$.

Всякую группу G полной P-симметрии можно вывести из ее порождающей S нахождением в S и P таких нормальных делителей H и Q, для которых существует изоморфизм фактор-группы S/H на P/Q, попарным перемножением соответствующих по изоморфизму смежных классов и объеди-

нением полученных произведений (основная теорема А.М. Заморзаева о *P*-симметрии [12, 13].

Благодаря отмеченным свойствам *P*-симметрии, сущность которой состоит (в отличие от шубниковской антисимметрии [1, 2]) в произвольности числа *p* качеств, приписываемых точкам фигуры, и (в отличие от беловской цветной симметрии, получившей в [12] наименование *p*-симметрии) в произвольности группы подстановок качеств при изометрических преобразованиях фигуры, ею охватывается антисимметрия и все ее расширения, в которых закон изменения качеств, приписанных точкам фигуры, комбинируется прямо с изометрическим преобразованием, действующим только на точки преобразующей фигуры, и не связан с выбором ее частей.

В схеме P-симметрии шубниковская антисимметрия является 2-симметрией и характеризуется группой $P = \{(1,2)\}$ (или $\underline{1}$ -симметрией), задаваемой группой $P = \{(+,-)\}$; заморзаевская антисимметрия различного рода (l-кратная) выступает как (2,...,2)-симметрия (где цифра 2 повторяется l раз); беловская p-цветная симметрия соответствует циклической группе $P = \{(1,2,...,p)\}$, а полиева цветная антисимметрия, получившая широкую известность как (p')-симметрия, задается группой $P = \{(1,...,p), (\overline{p},...,\overline{1}), (1,\overline{1})...(p,\overline{p})\}$ с 2p преобразуемыми качествами: p — "положительными" \overline{l} и p "отрицательными" \overline{l} [12,13].

Синтез идей p- и (p')-симметрии с антисимметрией различного рода привели авторов [27] к понятию цветной антисимметрии (или (p, 2)-симметрии), а кишиневских геометров — к понятиям цветной антисимметрии различного рода (или (p, 2, ..., 2)- симметрии), а также к (p')-антисимметрии как простой (или (p', 2)-симметрии), так и кратной (или (p', 2, ..., 2))- симметрии) [12, 13].

В схеме P-симметрии (p,2)-симметрия задается группой подстановок $P = \{(1,2,...,p)\} \times \{(+,-)\} = \{(1+,2+,...,p+)(1-,2-,...,p-),(1+,1-)...$ $...(p+,p-)\}$, а (p',2)-симметрия — группой $P = \{(1,2,...,p)(\overline{p},...,\overline{2},\overline{1}),(1,\overline{1})...(p,\overline{p})\} \times \{(+,-)\} = \{(1+,2+,...,p+)\}(\overline{p}+,...,\overline{2}+,\overline{1}+)(1-,2-,...,p-)(\overline{p}-,...,\overline{2}-,\overline{1}-),(1+,\overline{1}+)...(p+,\overline{p}+)(1-,\overline{1})...$ $...(p-,\overline{p}-),(1+,\overline{1}+)...(p+,p-)(\overline{1}+,\overline{1}-)...(\overline{p}+,p-)\}.$

Отмеченные частные случаи P-симметрии имеют простую наглядно-геометрическую схему. Так, группы подстановок качеств P при 2-симметрии изображаются подстановками номеров вершин отрезка, а при (2,2)-симметрии — подстановками номеров вершин прямоугольника, при p-симметрии — подстановками номеров вершин ориентированного правильного p-угольника, при (p')-симметрии — подстановками номеров вершин равноугольного полуправильного 2p-угольника, при (p, 2)-симметрии — подстановками но-

меров вершин правильной призмы с одинаково ориентированными p-угольными основаниями, а при (p', 2)-симметрии — подстановками номеров вершин равноугольной полуправильной призмы с 2p-угольными основаниями при их преобразованиях симметрии.

Индексы и знаки, приписываемые точками фигуры при выявлении ее групп Р-симметрии, имеют внегеометрический смысл по отношению к пространству, в котором рассматривается фигура. В добавочных измерениях они могут толковатся геометрически, что позволило применить собранные в [2, 12, 13] одно-, двух- и трехмерные кристаллографические группы Р-симметрии к исследованию многомерных дискрентных групп симметрии G_{nm} (с ивариантной m-мерной плоскостью) и $G_{nm...k}$ (с инвариантной m-мерной, ... и κ мерной плоскостями, последовательно включающими друг друга). В [12, 13] показано, что, например, r-мерными группами l-кратной антисимметрии G_r^l при их полной классификации, согласно [2], полностью интерпретируются с точностью до строения все различные многомерные группы симметрии категории $G_{(r+l)(r+l-1)....r}$, сохраняющие в (r + l)-мерном евклидовом пространстве последовательно включающие друг в друга плоскости размерностей r+l-1, r+l-2, ..., r+1, r, а группами G_r^P десяти розеточных P-симметрий $P \simeq G_{20}$, исчерпывающихся p- и (p')-симметриями при $p=1,\,2,\,3,\,4,\,6,\,-$ группы симметрии категории $G_{(r+2)r}$. В свою очередь группами G_r^P таблеточных P-симметрий при $P \simeq G_{320}$, исчерпывающихся (p, 2)- и (p', 2)-симметриями, интерпретируются все различные группы симметрии категории $G_{(r+3)(r+2)r}$, а группами G_r^P гипертаблеточных P-симметрий 1-го порядка при $P \simeq G_{4320}$ не исчерпывающихся (p,2,2)- и (p',2,2)-симметриями — группы симметрии категории $G_{(r+4)(r+3)(r+2)r}$, а группами G_r^P гипертаблеточных P-симметрий 2-го порядка при $P \simeq G_{54320}$, исчерпывающихся (p,2,2,2) и (p',2,2,2)-симметриями — группы симметрии категории $G_{(r+5)(r+4)(r+3)(r+2)r}$ [13, 28].

Аналогичным образом группами G_r^P 32-х кристаллографических P-симметрий при $P\simeq G_{30}$ в геометрической классификации моделируются все различные (r+3)-мерные группы симметрии категории $G_{(r+3)r}$ [13]. Далее группами G_r^P 122 гиперкристаллографических P-симметрий первого порядка при $P\simeq G_{430}$ интерпретируются с точностью до строения все различные группы симметрии категории $G_{(r+4)(r+3)r}$, а группами G_r^P 624 гиперкристал-лографических P-симметрий 2-го порядка при $P\simeq G_{5430}$ — группы симметрии категории $G_{(r+5)(r+4)(r+3)r}$ [29, 30]. Наконец, группами G_r^P

бирозеточных P-симметрий, соответствующих группам подстановок $P \simeq G_{420}$, — все различные группы симметрии категории $G_{(r+4)(r+2)r}$ [31].

ХАРАКТЕРИСТИКА ВСЕХ ВЫПИСАННЫХ РАЗЛИЧНЫХ КАТЕГОРИЙ 4-МЕРНЫХ ГРУПП СИММЕТРИИ

Выводом четырехмерных дискрентных фёдоровских групп G_4 и их точечных подгрупп G_{40} занимались многие исследователи, как об этом сказано в [12], а завершающие результаты по решению этой проблемы впервые получили американские и германские ученые Браун, Бюлов, Нейбюзер, Вондрачек, Цассенхауз и опубликовали их в собственной монографии [21] 1978 г., посвященной выводу этих групп.

Опираясь на выявленные четырехмерные кристаллографические точечные группы G_{40} и 4-мерные решетки Бравэ, с помощью алгоритма Цассенхауза, конечных групп целочисленных матриц и расчетов на ЭВМ эти ученые получили с учетом энантиоморфизма 4895 групп симметрии категории G_4 , из которых 4783 неизоморфны. Группы распределяются по 271 (с учетом энантиоморфизма) "кристаллическому" классу G_{40} (из которых 118 неизоморфны) и 74 (с учетом энантиоморфизма) типам решеток Бравэ (из которых 64 различны без учета энантиоморфизма), характеризующих их подгруппы переносов. В свою очередь решетки Бравэ и "кристаллические" классы G_{40} распределяются по 33 сингониям (с учетом энантиоморфизма), среди которых 26 неизоморфных, точечным группам симметрии решеток [21]. Остальные 10 различных категорий 4-мерных групп симметрии из 12, представленных ниже, исследуются методами, прокомментированными далее.

Группы симметрии категории G_{41}. Количество групп этой категории выявлено в [32] с помощью 343 моделирующих их с точностью до строения одномерных линейных групп G_1^P кристаллографических P-симметрий ($P \simeq G_{30}$), из которых 2 порождающих, 62 старших, 30 младших, 249 средних. Заметим, что эти же группы симметрии категории G_{41} в точности интерпретируются 343 трехмерными кристаллографическими группами конформной симметрии, выписанными на стр. 262-267 монографии [12]. Таким же путем, с помощью одномерных точечных групп G_{10}^{P} кристаллографических Р-симметрий (2 порождающие, 62 старшие, 3 младшие, 55 средние) выявлены 122 группы симметрии категории G_{410} , совпадающие с группами симметрии категории G_{430} , моделируемые трехмерными точечными группами симметрии и антисимметрии G_{30}^1 (32 порождающих, 32 старших и 58 младших) [12, 13].

Далее с помощью двумерных групп G_2^P десяти розеточных P-симметрий ($P \simeq G_{20}$) (17 порождающих, 153 старших, 291 младшая, 630 средних, а если не различать правых и левых центров р-вращений на плоскости, то нужно рассматривать 17 порождающих, 153 старших, 281 младшую и 625 средних) в [13] выявлено, что категория G_{42} характеризуется 1091 различной с учетом энантиоморфизма группой симметрии и 1076 различными группами симметрии без учета энантиоморфизма. Аналогичным образом с помощью двумерных точечных групп G_{20}^{P} этих же десяти розеточных Р-симметрий (10 порождающих, 90 старших, 44 младших, 119 средних с учетом правых и левых р-поворотных центров и 10 порождающих, 90 старших, 36 младших, 115 средних с учетом р-поворотных центров только одной ориентации) найдены 263 различные с учетом энантиоморфизма и 251 различная без его учета группы симметрии категории G_{420} [13].

По такой же схеме с помощью бордюрных групп G_{21}^{P} (7 порождающих, 63 старших, 84 младших, 206 средних) и точечных групп конечных бордюров G_{210}^{P} (5 порождающих, 45 старших, 15 младших, 60 средних) розеточных P-симметрий выявлено, что моделируемые ими группы категорий G_{421} и G_{420} содержат 360 и 125 групп симметрии соответственно [12, 13].

Группы симметрии категории G_{43} (гиперслоевые) моделируются с точностью до строения 1651 шубниковской группой G_3^1 , подробно описанной в [2], но число различных групп, входящих в эту категорию, меньше 1651, так как гиперплоскость в четырехмерном пространстве может переводиться в себя путем поворота вокруг лежащей в ней двумерной плоскости, в результате чего устраняется различие между правыми и левыми винтовыми движениями вокруг двумерной плоскости, и, следовательно, различающимися между собой только за счет энантиоморфизма шубниковским группам G_3^1 сопоставляются одинаковые G_{43} [12, 13]. Исключая повторяющиеся с этой точки зрения шубниковские группы, получаем по 219 порождающих и старших (вместо 230), 1156 младших (вместо 1191) и, следовательно, 1594 G_{43} , а не 1598, как указано в [12, 13].

Аналогично при подсчете неодинаковых, без учета энантиоморфизма, стержневых групп антисимметрии G_{31}^1 нужно различать, как отмечено в [2], 67 порождающих и старших (вместо 75), 226 младших (вместо 244) и, следовательно, 360 (а не 394) различных стержневых групп G_{31}^1 , которыми интерпретируются все различные группы симметрии категории G_{431}^1 , совпадающие с группами симметрии категории G_{421}^1 , найденными выше с

помощью бордюрных групп G_{21}^1 розеточных P-симметрий [12, 13]. Отсюда следует, что неоднозначное представление некоторых категорий 4-мерных групп симметрии совокупностью их инвариантных подпространств дает возможность независимыми путями получить результаты подсчета количества групп симметрии, характеризующих исследуемую категорию.

Что касается оставшихся категорий трехмерных групп антисимметрии G^1_{3mk} , то они не обладают винтовыми осями и антиосями выше второго порядка, поэтому различными G^1_{3mk} моделируются различные G_{43mk} . Следовательно, 528 группами антисимметрии слоев G_{32}^1 (80 порождающими и старшими, а также 368 младшими) моделируются все различные группы симметрии категории G_{432} . Группы симметрии этой же категории G_{432} моделируются 528 двумерными группами G_2^2 двукратной антисимметрии, полученными в [2]. Далее одномерными группами G_3^1 трехкратной антисимметрии или бордюрными группами G_{21}^2 двукратной антисимметрии, или ленточными группами G_{321}^{1} антисимметрии, выявленными в [2], полностью интерпретируются все 179 групп симметрии категории G_{4321} . В свою очередь группами антисимметрии таблеток G^1_{320} или нульмерными группами G_0^3 трехкратной антисимметрии, или двумерными точечными группами G_{20}^2 двукратной антисимметрии, полученными в [2], полностью моделируются все различные группы симметрии категории G_{4320} . Наконец, 67 нульмерными группами G_0^4 четырехкратной антисимметрии, или одномерными точечными группами G_{10}^3 , трехкратной антисимметрии, или точечными группами G_{210}^2 двукратной антисимметрии конечных бордюров, или точечными группами антисимметрии G_{3210}^1 конечных лент, полученными в [2], полностью с точностью до строения моделируются все 67 различных четырехмерных точечных групп симметрии категории G_{43210} [13].

В итоге имеем, что перечень всех категорий четырехмерных групп симметрии полностью исчерпан и числовая схема различных групп, характеризующих эти категории, с учетом энантиоморфизма и без его учета для G_4 , G_{40} , G_{42} , и G_{420} выглядит следующим образом: 4895 (4783) G_4 ; 271 (227) G_{40} , 343 G_{41} , 1091 (1076) G_{42} , 1594 G_{43} ; 122 G_{410} (G_{430}); 263 (251) G_{420} , 360 $G_{421}(G_{431})$, 528 G_{432} ; 125 G_{4210} (G_{4310} , G_{4320}); 179 G_{4321} ; 67 G_{43210} [13].

Совместными исследованиями ученых разных стран полностью решена одна из основных задач четырехмерной геометрической кристаллогра-

фии — построена полная схема четырехмерных кристаллографических групп симметрии всех различных категорий евклидова пространства E_4 .

ЗАКЛЮЧЕНИЕ

Всякую группу симметрии (n-1)-мерного пространства, согласно утверждению первого раздела настоящей статьи, можно толковать как группу симметрии n-мерного пространства с односторонней особенной гиперплоскостью (следовательно, с инвариантным n-мерным пространством), поэтому категории низших размерностей можно считать подкатегориями высших. Тогда к четырехмерным группам симметрии нужно отнести и все известные категории классических групп симметрии. Схему такого соподчинения четырехмерных групп симметрии можно проследить на рис. 2, построенном аналогично рис. 1.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Шубников А.В., Копцик В.А.* Симметрия в науке и искусстве М.: Наука, 1972. 339 с.
- 2. Заморзаев А.М. Теория простой и кратной антисимметрии. Кишинёв: Штиинца, 1976. 283 с.
- 3. Заморзаев А.М., Палистрант А.Ф. Теория дискретных групп симметрии. Кишинёв: Изд-во КГУ, 1977. 101 с.
- 4. Фёдоров Е.С. // Симметрия и структура кристаллов. М.: Изд-во АН СССР, 1949. С. 109. Оригинальная работа: Симметрия правильных систем фигур. Зап. минерал. о-ва. 1891.Сер. 2. Т. 28. С. 1.
- 5. *Фёдоров Е.С.* // Начала учения о фигурах. М.: Издво АН СССР, 1953. Оригинальная работа: Зап. минерал. о-ва. 1885. Сер. 2. Т. 21. С. 1.
- 6. *Schönflies A*. Kristallsysteme und Kristallstruktur. Leipzig, 1891. 622 s.
- 7. *Фёдоров Е.С.* // Зап. Минерал. о-ва. 1891. Сер. 2. Т. 28. С. 345.
- 8. *Bohm J.* // Neues Jahrb. Miner. Abh. 1963. B. 100. S. 113.
- Bohm J., Dornberger-Schiff K. // Acta Cryst. 1966.
 V. 21. P. 1004.
- 10. Holzer W.T. // Acta Cryst. 1961. V. 14. P. 1236.
- 11. *Шубников А.В.* // Кристаллография. 1962. Т. 7. Вып. 3. С. 490.

- 12. Заморзаев А.М., Галярский Э.И., Палистрант А.Ф. Цветная симметрия, ее обобщения и приложения. Кишинёв: Штиинца, 1978. 275 с.
- 13. Заморзаев А.М., Карпова Ю.С., Лунгу А.П., Палистрант А.Ф. Р-симметрия и ее дальнейшее развитие. Кишинёв: Штиинца, 1986. 156 с.
- 14. Bieberbach L. // Math. Ann. 1911. B. 70. S. 297.
- 15. *Frobenius G.* // Sitz. Preuss. Aкad. Wiss. Phys. Math. 1911. B. 10. S. 654.
- 16. Делоне Б., Падуров Н., Александров А. Математические основы структурного анализа кристаллов Л.; М.: ГТТИ, 1934. 328 с.
- 17. *Кунцевич Т.С., Белов Н.В.* // Кристаллография. 1971. Т. 16. Вып. 1. С. 5; Вып. 2. С. 268.
- Zassenhaus H. // Comment. Math. Helw. 1948. B. 21.
 S. 117.
- Hurley A.C. // Proc. Camb. Phil. Soc. 1951. V. 47. P. 650.
- 20. Harley A.C., Neubüser J., Wondratschek H. // Acta Cryst. 1967. V. 22. P. 605.
- 21. *Brown H., Bulow R., Neubuser J. et al.* Crystallografic groups of four-dimensional space. New York: John Wiley and Sons, 1978. 438 p.
- 22. *Mackay A.L.*, *Pawley G.S.* // Acta Cryst. 1963. V. 16. P 11
- 23. *Заморзаев А.М., Цекиновский Б.В.* // Кристаллография. 1968. Т. 13. Вып. 2. С. 211.
- 24. *Кунцевич Т.С., Белов Н.В.* // Acta Cryst. A. 1968. V. 24. P. 42.
- 25. Штогрин М.И. // Докл. АН СССР. 1974. Т. 218. № 3. С. 528.
- 26. *Делоне Б.Н.*, *Галиулин Р.В.*, *Штогрин М.И.* // Браве О. Избранные труды. Л.: Наука, 1974. С. 309.
- 27. *Неронова Н.Н., Белов Н.В.* // Кристаллография. 1961. Т. 6. Вып. 6. С. 831.
- 28. *Палистрант А.Ф.* // Кристаллография. 2000. Т. 45. № 6. С. 967.
- 29. *Заморзаев А.М., Палистрант А.Ф.* // Кристаллография. 1999. Т. 44. № 6. С. 976.
- 30. *Палистрант А.Ф., Заморзаев А.М.* // Кристаллография. 2000. Т. 45. № 1. С. 7.
- 31. *Палистрант А.Ф.* // Studia Universitatis. Revista Ştiintifică. Seria: Ştiinţe exacte şi economice (Matematică, Informatică, Economie). Chişinău: Universitatea de stat din Moldova. 2009. № 7 (27). Р. 12.
- 32. *Палистрант А.Ф., Заморзаев А.М.* // Пространственные группы симметрии: К столетию их открытия / Под ред. Вайнштейна Б.К. М.: Наука, 1992. С. 112.