КРИСТАЛЛОГРАФИЯ, 2012, том 57, № 3, с. 436-442

УДК 548.736.6

СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Посвящается памяти А.В. Шубникова КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА НОВОГО СИНТЕТИЧЕСКОГО Са, Na-КАРБОНАТОБОРАТА Са₂Na(Na_xCa_{0.5 - x})[$B_3^t B_2^\Delta O_8(OH)(O_{1 - x}OH_x)$](CO₃)

© 2012 г. Н.А. Ямнова, Е.Ю. Боровикова, О.А. Гурбанова, О. В. Димитрова, Н. В. Зубкова

Московский государственный университет им. М.В. Ломоносова E-mail: natalia-yamnova@yandex.ru Поступила в редакцию 05.12.2011 г.

Кристаллическая структура синтезированного гидротермальным методом в системе Ca(OH)₂-H₃BO₃-Na₂CO₃-NaCl при $t = 250^{\circ}$ C и P = 70-80 атм нового карбонатобората Ca и Na Ca₂Na(Na_xCa_{0.5-x})

 $[B'_{3}B^{\Delta}_{2}O_{8}(OH)(O_{1-x}OH_{x})](CO_{3})$ ($x \sim 0.4$), a = 11.1848(3), b = 6.4727(2), c = 25.8181(7) Å, $\beta = 96.364(3)^{\circ}$, V = 1857.60(9) Å³, пр. гр. C2/c, Z = 8, $\rho_{BbIY} = 2.801$ г/см³ (автодифрактометр Xcalibur S (CCD), 2663 рефлекса с $I > 2\sigma$ (I) решена прямым методом и уточнена МНК в анизотропном приближении тепловых колебаний атомов (локализованы атомы H, $R_{1} = 0.0387$). Основу структуры составляют борокислородные слои из пентаборатных радикалов 5(2 Δ + 3T). Между слоями расположены полиэдры Са и Na, а также CO₃-треугольники. Кристаллохимический анализ нового Ca, Na-карбонатобората установил его близость с природными Na,Ca-пентаборатами гейдорнитом, тузлаитом и синтетическим Na,Ba-декаборатом.

введение

Постоянный интерес к синтезу и исследованию новых боратных соединений связан с возможностью использования их в полупроводниковой и оптической технике, производстве керамик и стекол, а также в медицинской промышленности. Разнообразие структурных мотивов боратов, связанное с двоякой координацией атомов бора, стимулирует развитие исследований, направленных на решение основной проблемы сравнительной кристаллохимии: выявлению взаимосвязи генезис-составструктура-свойство. Несмотря на довольно широкую распространенность боратов в природе, соединения со смешанным катионным составом, содержащие помимо борокислородных дополнительные анионные радикалы, составляют небольшие группы. В частности, структурно исследованы природные кальциевые карбонатобораты, в состав которых кроме Са-катионов входят Мп- или Мg-катионы: годефруаит $Ca_4Mn_{2-3}[(BO_3)_3](CO_3)(O,OH)_3[1],$ сахаит Ca₁₂Mg₄[BO₃]₇(CO₃)₄(OH,Cl)₂[2], карбоборит Ca₂Mg[B(OH)₄]₂(CO₃)₂ · 4H₂O [3] и боркарит Ca₄Mg[B₄O₆(OH)₆](CO₃)₂ [4], а карбонатоборатные минералы с одновременным вхождением Са и Na пока неизвестны.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

При моделировании процессов минералообразования в гидротермальных условиях в системе $Ca(OH)_2-H_3BO_3-Na_2CO_3-NaCl$ при $t = 250^{\circ}C$ и P = 70-80 атм и соотношении исходных компонентов 1 : 1 получены бесцветные, прозрачные, тонкие пластинчатые кристаллы псевдогексагональной формы размером до 0.3–0.5 мм по удлинению. Сравнение дифрактограммы порошка синтезированных кристаллов с имеющимися данными ICDD аналогов не выявило. Качественный рентгеноспектральный анализ, проведенный на растровом микроскопе CamScan 4DV с энергодисперсионной приставкой фирмы "Link" (аналитик Е.В. Гусева), показал присутствие в исследуемых образцах атомов Ca и Na.

Экспериментальный материал для рентгеноструктурного исследования синтезированного кристалла получен на автоматическом монокристальном дифрактометре Xcalibur S CCD (λ Mo K_{α}). Основные кристаллографические данные, характеристики эксперимента и уточнения структуры приведены в табл. 1, основные межатомные расстояния – табл. 2. Заключительным координатам атомов соответствует кристаллохимическая формула соединения $Ca_2Na(Na_{0.41}Ca_{0.09})[B_3'B_2^{\Delta}O_8(OH)(O_{0.6}OH_{0.4})](CO_3)$ $(Z = 8, d_{выч} = 2.801 \text{ г/см}^3)$. На совместное заселение катионами Na⁺ и Ca²⁺ одной из Na-позиций (Na1) указывало заниженное значение изотропной тепловой поправки ($U_{\mu_{30}} = 0.004(1)$ Å²). Уточнение заселенности данной позиции показало, что она заполнена статистически: на ~80% Na и ~20% Са. Разделение анионной части структуры на ионы О²⁻ и группы ОН⁻ выполнено на основе расчета [6] локального баланса валентных усилий с учетом расстояний катион-кислород (табл. 3), согласно которому одна из позиций атомов О (О8) замещена полностью на группы ОН, а другая — (O9) частично. Корреляция между количеством атомов Са в позиции Na1 и числом атомов O, замещенных на группы OH в позиции O9 — апикальной вершине B1-треугольника, — позволяет представить формулу синтезированного соединения в общем виде: Ca₂Na(Na_xCa_{0.5-x})[B₃'B₂^ΔO₈(OH)(O_{1-x}OH_x)](CO₃) ($x \le 0.5$). Присутствие в составе исследованного кристалла изолированных групп (CO₃)²⁻ предположено на основании сравнительного анализа средних значений расстояний катион-кислород (табл. 3) в BO₃-треугольниках: для одного из них это значение оказалось существенно меньше (1.281 Å) по сравнению с двумя другими, равными 1.375 и 1.360 Å.

Наличие в кристаллах исследованного Ca, Naкарбонатобората групп CO_3^{2-} и OH^- подтверждено методом ИК-спектроскопии. Инфракрасный спектр снят на фурье-спектрометре ФСП 1201 методом тонкодисперсной пленки на подложке KBr и представлен на рис. 1. Полосы в области 1590-1410 см⁻¹ по аналогии с ИК-спектрами минералов артинита $Mg_2(CO_3)(OH)_2 \cdot 2H_2O$ и несквегонита MgCO3 · 3H2O [7] отнесены к асимметричным валентным колебаниям v3 изолированных групп СО3²⁻. Эти группы имеют в структуре позиционную симметрию С₁. В пр. гр. С2/с кристалла (фактор-группа C_{2h}) фактор-групповой анализ предсказывает для этих ионов наличие четырех полос асимметричных валентных колебаний. В ИКспектре минерала тузлаита NaCa $[B_3^t B_2^{\Delta} O_8(OH)_2]$ · · 3H₂O [8], имеющем подобие в борокислородном мотиве структуры с исследованным Са, Na-карбонатоборатом, полосы ВО3³⁻-треугольников находятся в области ~1400–1330 см⁻¹. Это подтверждает предположение, что высокочастотные полосы 1590-1410 см⁻¹, отсутствующие в спектре тузлаита, соответствуют колебаниям CO_3^{2-} -групп. Колебаниям BO₃³⁻-ионов в спектре исследованного карбонатобората отвечают полосы 1365-1263 см⁻¹, а колебаниям ионов BO_4^{5-} полосы 1090-880 см⁻¹. Большая интенсивность полос ионов CO₃²⁻ 1435-1410 см⁻¹, возможно, связана с некоторым смешиванием колебаний CO₃²⁻- и BO₃³⁻-групп. Более низкочастотные полосы отвечают деформационным колебаниям CO_3^{2-} -, BO_3^{3-} - и BO_4^{5-} -ионов. Полоса 3471 см^{-1} с плечом на ее фоне 3413 см^{-1} относится к валентным колебаниям ионов ОН-, а полоса 1197 см⁻¹ – к деформационным колебаниям связей В-ОН. Таким образом, представленный ИК-спектр подтверждает наличие в структуре помимо борокислородного радикала изолированных ионов CO₃²⁻ в общем положении и групп OH⁻.

Таблица 1. Кристаллографические характеристики, данные эксперимента и уточнения структуры кристалла $Ca_{2.09}Na_{1.41}B_5H_{1.4}C_1O_{13}$

Сингония, пр. гр., Z	Моноклинная, С2/с, 8
a, b, c, Å	11.1848(3), 6.4727(2), 25.8181(7)
β, град	96.364(3)
$V, Å^3$	1857.60(9)
D_x , г/см ³	2.801
μ, мм ⁻¹	1.433
<i>Т</i> , К	293(2)
Размер образца, мм	$0.050 \times 0.075 \times 0.150$
Дифрактометр	Xcalibur S (CCD)
θ _{max} , град	32.74
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-16 \le h \le 16, -9 \le k \le 9, -38 \le l \le 38$
Число отражений: измеренных/независимых (<i>N</i> ₁), <i>R_{int}</i> /с <i>I</i> > 2σ(<i>I</i>) (<i>N</i> ₂)	24675/3277, 0.0451/2663
Метод уточнения	МНК по F^2
Число уточняемых параметров	210
Весовая схема	$1/[\sigma^2(Fo^2) + (0.0480P)^2 + 5.5244P], P = (Fo^2 + 2Fc^2)/3$
<i>R</i> ₁ , <i>wR</i> ₂ по <i>N</i> ₁	0.0529, 0.1000
${\it R}_1$, w ${\it R}_2$ по N_2	0.0387, 0.0960
S	1.036
$\Delta \rho_{max} / \Delta \rho_{min}$, $3 / Å^3$	1.150/-1.014
Программы	SHELX97 [5]

Таблица 2. Межатомные расстояния в структуре кристалла

Координационный полиэдр	Пределы расстояний катион–анион, Å	Среднее значение, Å
Са1-девятивершинник	2.366(2)-2.807(2)	2.552
Са2-восьмивершинник	2.301(2)-2.653(2)	2.461
Na1-шестивершинник	2.319(2)-2.571(2)	2.423
Na2-семивершинник	2.365(2)-2.676(2)	2.509
В1-треугольник	1.358(3)-1.386(3)	1.375
В2-тетраэдр	1.460(3)-1.479(3)	1.472
В3-треугольник	1.357(3)-1.362(3)	1.360
В4-тетраэдр	1.442(3)-1.510(3)	1.474
В5-тетраэдр	1.438(3)-1.515(3)	1.476
С1-треугольник	1.271(3)-1.289(3)	1.281

Полученные заключительные координаты базисных атомов, химический состав и картина ИК-спектра подтвердили оригинальность синте-

Позиции	Cal	Ca2	Na1	Na2	B1	B2	B3	B4	B5	C1	ΣV_{ij}
01	0.340	0.262		0.217						1.314	2.133
O2	0.228					0.747	1.025				2.000
O3	0.236		0.137					0.825	0.806		2.004
O4	0.103		0.230				1.025		0.709		2.067
05	0.140	0.226				0.757			0.834		1.957
O6	0.184		0.272			0.786		0.784			2.026
O 7		0.311		0.185	0.976				0.678		2.150
(OH)8	0.290					0.753					1.043
(O,OH)9		0.270		0.206	1.036						1.512
O10	0.238			0.094			1.039	0.737			2.108
011		0.284		0.096	0.960			0.687			2.027
O12		0.562		0.127						1.379	2.068
O13	0.195	0.257		0.157						1.332	1.941

Таблица 3. Локальный баланс валентностей на анионах в структуре кристалла

зированного карбонатобората. Кристаллографическая информация по исследованной структуре депонирована в банке данных неорганических структур ICSD (депонент № 423938).

ОПИСАНИЕ СТРУКТУРЫ

Основу кристаллической структуры нового Са, Na-карбонатобората составляют параллельные (001) ажурные гофрированные борокислородные слои (рис. 2a), строительными единицами которых являются пентагруппы [$B'_3B^2_2O_8(OH)(O,OH)$], образованные двумя независимыми В-треугольниками и тремя В-тетраэдрами. В данной пентагруппе можно выделить два тройных боратных кольца из двух В-тетраэдров и одного В-треугольника ($\langle \Delta 2 \Box - \Delta 2 \Box \rangle$ по [9]). Первое кольцо образовано парой одинаково ориентированных В-тетраэдров с атомами В в независимых позициях В4 и В5, на апикальные вершины которых замыкается В1-треугольник, перпендикулярный плоскости борокислородного слоя. Параллельно данной плоскости расположен В3-треугольник, участвующий вместе с В4-тетраэдром первого кольца и В2тетраэдром, ориентированным вовне слоя, в образовании второго боратного кольца. Противоположно ориентированные апикальные О-вершины пентаборатного радикала замещены полностью (В2тетраэдр) и частично (В1-треугольник) на группы ОН⁻. Размножаясь горизонтальными трансляциями, пентагруппы формируют девятичленные кольца треугольной конфигурации, в центрах которых в плоскости борокислородного слоя расположены атомы Ca1, полиэдры вокруг которых – девятивершинники, прочно связанные по общим ребрам с двумя В-тетраэдрами и одним В-треугольни-

Рис. 1. ИК-спектр исследованного Са, Na-карбонатобората.

Рис. 2. Структура исследованного Ca, Na-карбонатобората: борокислородный слой с Ca1-девятивершинниками в проекции *xy* (a); архитектура катионных построек в проекции *xz* из Ca-полиэдров (б) и Na-полиэдров (в). Черные изолированные треугольники – группы CO₃.

ком слоя, а также с изолированным СО₃треугольником (рис. 2а, 2б). Кроме того, в координацию Са1-девятивершинника входит апикальная вершина В2-тетраэдра соседнего по оси с борокислородного слоя. Смещенные из плоскости данного слоя атомы Са2 центрируют восьмивершинники, которые связаны с Cal-полиэдрами по общим вершинам и ребру с образованием вытянутых вдоль оси b элементарной ячейки зигзагообразных колонок, "прошивающих" борокислородные слои. Вдоль оси а соседние Са-колонки связаны через В-полиэдры слоя, а вдоль оси *с* – через апикальные В1-треугольники и параллельные им С-треугольники. В образующихся пустотах расположены атомы Na (рис. 2б, 2в), центрирующие изолированные полиэдры: для частной Nal-позиции (4е) на оси второго порядка это искаженные тригональные призмы, а для Na2-позиции в общем положении – семивершинники. Тригональные призмы, в центрах которых часть атомов Na замещена Са, связаны по общим О-вершинам с В-полиэдрами борокислородного слоя, а Na2-семивершинники помимо связи через апикальные В1треугольники слоя объединены CO₃-треугольниками, каждый из которых является общим для трех Na2-полиэдров. Дополнительную прочность постройке придают водородные связи (табл. 4), реализованные с участием свободных вершин апикальных B-тетраэдра и B-треугольника пентаборатных слоев.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

По типу борокислородного радикала исследованный карбонатоборат сопоставим с синтезированным гидротермальным методом декаборатом Na₂Ba₂[B₁₀O₁₇(OH)₂] (a = 11.455, b = 6.675, c == 9.360 Å, $\beta = 93.68^{\circ}$, пр. гр. C2, Z = 2) [10], а также природными пентаборатами: Na- и Ca-гейдорнитом Na₂Ca₃[B₅O₈(OH)₂](SO₄)₂Cl (a = 10.21, b == 7.84, c = 18.79 Å, $\beta = 93.5^{\circ}$, пр. гр. C 2/c, Z = 4) [11] и тузлаитом NaCa[B₅O₈(OH)₂] · 3H₂O (a == 6.506, b = 13.28, c = 11.462 Å, $\beta = 92.97^{\circ}$, пр. гр. P2₁/c, Z = 4) [8], отнесенными по классификации Штрунца [12] к разделу 6.ЕС.15 – филло-пентаборатам с блоком 5(2 Δ + 3T). В изолированном

<i>D</i> –H···A	<i>D</i> –H, Å	H… <i>A</i> , Å	<i>D–A</i> , Å	Угол <i>D</i> НА, град
O8-H1…O2	0.68(5)	2.06(5)	2.671(3)	148.5(2)
O8-H1…O8 ^{#1}	0.68(5)	2.65(5)	3.251(3)	147.0(2)
O9–H2···O9 ^{#2}	0.87(6)	1.70(6)	2.529(4)	158.1(3)
O9-H2…O11	0.87(6)	2.64(6)	3.084(4)	113.0(3)

Таблица 4. Геометрические характеристики водородных связей в структуре кристалла

Примечание. ^{#1} -x + 1/2, y - 1/2, -z + 1/2, ^{#2} -x + 1, -y + 1, -z + 1.

КРИСТАЛЛОГРАФИЯ том 57 № 3 2012

Рис. 3. Борокислородные слои в структурах гейдорнита (а), тузлаита (б), Na, Ba-бората (в) и исследованного Ca, Na-карбонатобората (г).

виде данный блок присутствует в структуре улексита NaCa[B₅O₆(OH)₆] · 5H₂O [13]; в структуре пробертита NaCa $[B_5O_7(OH)_4]$ · 3H₂O [14] улекситовые блоки связаны в цепочки, а в структурах типа хильгардита, например синтетическом Ва-борате $Ba_2[B_5O_9]Cl \cdot 0.5H_2O[15],$ в каркас. Степень конденсации улекситовых блоков зависит от числа групп ОН- в составе пентаборатного радикала. Пробертитовые цепочки, образованные из блоков 5(2Δ+3Т), являются основной составляющей ажурного борокислородного слоя в структуре Na, Ca-бората студеницита NaCa₂[$B_3^t B_2^\Delta O_8(OH)_2$][$B_2^t B_2^\Delta O_6(OH)_2$]. · 2H₂O [16], где конденсация цепочек в слой осуществляется через тетраборатные группы [B₄O₆(OH)₂]²⁻ из двух В-тетраэдров и двух В-треугольников.

Проведенный с позиций *OD*-теории [17] тополого-симметрийный анализ семейства пентаборатов показал, что разнообразие соединений, содержащих в качестве фундаментального строительного блока, в частности, улекситовые пентаборатные радикалы, связано со степенью и способом их конденсации в структуре. Борокислородные слои в структурах гейдорнита и тузлаита рассматриваются в [17] как результат объединения пробертитовых цепочек, образованных из улекситовых блоков, в которых по удлинению цепочки чередуются два В-тетраэдра и один В-треугольник, ориентированный параллельно плоскости слоя. В структурах гейдорнита (рис. 3а) и тузлаита (рис. 3б) в параллельных (001) борокислородных слоях выделены пробертитовые цепочки, направленные в первом случае вдоль диагонали грани *ab*, а во втором – вдоль ее короткой оси. В обоих случаях объединение в слой осуществляется через общую О-вершину В-треугольника и В-тетраэдра пентагрупп соседних цепочек. По аналогии с [17] в структурах синтетического Na, Ва-декабората $Na_2Ba_2[B_{10}O_{17}(OH)_2]$ и исследованного Са, Na-карбонатобората борокислородные слои также можно рассматривать как результат конденсации улекситовых радикалов, но способ их объединения отличается. В структуре Na, Ba-декабората (рис. 3в) вдоль направления [110] пентаборатные блоки конденсированы в цепочки пробертитового типа, а вдоль [110] хильгардитового типа, где по удлинению цепочки расположены три В-тетраэдра блока. В структуре исследованного Са, Na-карбонатобората (рис. 3г) пробертитовые цепочки направлены вдоль ко-

Рис. 4. "Боковые" проекции структур: гейдорнита (а), тузлаита (б), Na, Ba-бората (в) и исследованного Ca, Na-карбонатобората (г).

роткой оси *b*, а хильгардитовые — вдоль диагонали грани ab. Связь соседних хильгардитовых цепочек в слой в обеих структурах реализуется так же, как и в структурах гейдорнита и тузлаита, через общую О-вершину В-тетраэдра и В-треугольника пентагрупп соседних цепочек, тогда как пробертитовые цепочки связаны через общую Овершину двух В-тетраэдров. Различную конфигурацию борокислородных слоев иллюстрируют боковые проекции на рис. 4. В структурах гейдорнита (рис. 4а) и тузлаита (рис. 4б) В-треугольники лежат практически в плоскости борокислородного слоя, а апикальными (расположенными вовне слоя) являются два В-тетраэдра, свободные ОНвершины которых направлены в противоположные от слоя стороны. В структурах Na, Ва-декабората (рис. 4в) и исследованного Са, Na-карбона-

КРИСТАЛЛОГРАФИЯ том 57 № 3 2012

тобората (рис. 4г) параллельно плоскости борокислородного слоя расположен "связующий" соседние хильгардитовые цепочки В-треугольник, а апикальными (и разнонаправленными) являются В-треугольник и В-тетраэдр. Однако если в структуре исследованного Са, Na-карбонатобората связанные винтовой осью 2_1 апикальные ОН-вершины В-тетраэдров соседних по *с* борокислородных слоев смещены друг относительно друга на $1/2T_b$, то в структуре Na, Ba-декабората (рис. 4в) аналогичные слои объединены через общую апикальную вершину В-тетраэдров двух соседних слоев – атом O, расположенный в частной позиции на оси второго порядка.

Сходные черты имеет и архитектура катионных построек описанных структур. Так же, как и в структуре исследованного Са, Na-карбонатобората, вокруг атомов Са в гейдорните, тузлаите и Ва в Na, Ва-декаборате, расположенных в плоскости борокислородного слоя в центрах полостей с треугольным сечением или вне этой плоскости, формируются крупные полиэдры – семи-, восьми- и одиннадцативершинники соответственно. Объединенные по общим вершинам и ребрам между собой и менее объемными Na-полиэдрами (шести- и семивершинники) в изолированные кластеры (гейдорнит), колонки (тузлаит) и стенки (Na, Ba-декаборат) данные полиэдры заполняют межслоевое пространство. В структурах исследованного Са, Na-карбонатобората и гейдорнита связи между борокислородными слоями и катионными полиэдрами укрепляются дополнительными анионными группировками: СО3-треугольниками в первом случае и SO₄-тетраэдрами во втором. Внедрение их в межслоевое пространство в структурах приводит к увеличению перпендикулярного плоскости борокислородного слоя параметра с (25.8 Å в Са, Na-карбонатоборате и 18.8 Å в гейдорните). Из рассмотренных наиболее "плотной" является структура Na, Ba-декабората, а "рыхлой" - тузлаита с большим содержанием молекул воды, одна из которых замещает катион в плоскости борокислородного слоя в центре полости псевдоквадратного сечения (рис. 3б).

По типу борокислородного слоя исследованный Са, Na-карбонатоборат близок к синтетическому Na, Ba-декаборату, а по составу и условиям образования — к природному тузлаиту, обнаруженному в эвапоритовых месторождениях соляных руд Тузла (север Боснии и Герцеговины), в доломитовых жилах в ассоциации с галитом [8]. Кристаллизация исследованного Са, Na-карбонатобората проходила в гидротермальном растворе, обогащенном Na₂CO₃ и Ca(OH)₂, а тузлаита, по-видимому, в основном галитом NaCl. Близкий состав минералообразующей среды дает основание предполагать возможность находок в данном месторождении также карбонатоборатов, сопоставимых с исследованным в настоящей работе.

Работа выполнена при финансовой поддержке гранта Президента РФ (МК-143.2010.5).

СПИСОК ЛИТЕРАТУРЫ

- 1. Якубович О.В., Симонов М.А., Белов Н.В. // Кристаллография. 1975. Т. 20. Вып. 1. С. 152.
- 2. Якубович О.В., Егоров-Тисменко Ю.К., Симонов М.А. и др. // Докл. АН СССР. 1978. Т. 239. № 5. С. 1103.
- Ma Z., Shi N., Shen J. et al. // Bull. Mineral. 1981. V. 104. P. 578.
- 4. Ямнова Н.А., Симонов М.А., Казанская Е.В и др. // Докл. АН СССР. 1975. Т. 225. № 4. С. 823.
- 5. *Sheldrick G.M.* SHELX97. Program for the Solution and Refinement of Crystal Structures. University of Göttingen, Germany, 1997.
- Brese N.E., O'Keeffe M. // Acta Cryst. B. 1991. V. 47. P. 192.
- 7. *Farmer V.C.* Infrared spectra of minerals. London. Publ. Mineral. Soc. 1974. 538 p.
- Bermanec V., Armbruster T., Tibljaš D. et al. // Am. Mineral. 1994. V. 79. P. 562.
- Hawthorne F.C., Burns P.C., Grice J.D. // Rev. Mineral. 1996. V. 33. P. 41.
- 10. Виноградова С.А., Пущаровский Д.Ю., Аракчеева А.В. и др. // Кристаллография. 2002. Т. 47. № 1. С. 30.
- 11. Burzlaff H. // N. Jb. Miner. Mh. 1967. S. 157.
- 12. Strunz H. // Eur. J. Miner. 1997. V. 9. P. 225.
- Ghose S., Wan Ch., Clark J.R. // Am. Mineral. 1978. V. 63. P. 160.
- 14. Menchetti S., Sabelli C., Trosti-Ferroni R. // Acta. Cryst. B. 1982. V. 38. P. 3072.
- Ferro O., Merlino S., Vinogradova S.A. et al. // J. Alloys. Comp. 2000. V. 305. P. 63.
- Ямнова Н.А., Егоров-Тисменко Ю.К., Пущаровский Д.Ю. и др. // Кристаллография. 1993. Т. 38. Вып. 6. С. 71.
- 17. Белоконева Е.Л., Корчемкина Т.А., Димитрова О.В. // Журн. неорган. химии. 2000. Т. 45. № 11. С. 1838.