ТЕОРИЯ КРИСТАЛЛИЧЕСКИХ СТРУКТУР

УДК 548.736

Посвящается памяти А.В. Шубникова КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ САМОСБОРКИ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ ЦЕОЛИТА Na₃₈₄[Al₃₈₄Si₃₈₄O₁₅₃₆] (H₂O)₄₂₂ (LTN, cF4080) ИЗ СУПРАПОЛИЭДРИЧЕСКИХ НАНОКЛАСТЕРОВ-ПРЕКУРСОРОВ *АВ*₂ (*A*-*K*₄₈ и *B*-*K*₂₄)

© 2012 г. В. А. Блатов, Г. Д. Илюшин*

Самарский государственный университет E-mail: blatov@ssu.samara.ru *Институт кристаллографии РАН, Москва Поступила в редакцию 11.05.2010 г.

Компьютерными методами (пакет программ TOPOS) осуществлен комбинаторно-топологический анализ и моделирование самоборки кристаллической структуры цеолита $Na_{384}Al_{384}Si_{384}O_{1536}$. · 422H₂O (LTN, пр. гр. *Fd*3). В кубической ячейке с параметрами *a* = 36.95 Å, *V* = 50 449 Å³ содержится 768 каркасобразующих AlO₄- и SiO₄-тетраэдров (*T*-тетраэдров). Методом полного разложения 3*D*-фактор-графа на *кластерные непересекающиеся подструктуры* в тетраэдрическом *T*-каркасе выявлены нанокластеры-прекурсоры: *A* из 48 *T*-тетраэдров (A-K₄₈) и *B* из 24 *T*-тетраэдров (B-K₂₄). Нанокластеры-прекурсоры: *A* из 48 *T*-тетраэдров (A-K₄₈) и *B* из 24 *T*-тетраэдров (B-K₂₄). Чанокластеры-прекурсоры *A* и *B* соответствуют полиэдрическим *T*-кластерам (тайлам) 48*T-grc* и 24*T-toc* и участвуют в матричной самосборке кристаллической структуры в составе супракластера *AB*₂. Центры кластеров *A* и *B* занимают позиции атомов Mg и Cu в сетке Лавеса *AB*₂ = MgCu₂, т.е. структура цеолита является супраполиэдрическим аналогом интерметаллида. Полностью реконструирован код самосборки 3*D*-структуры из комплементарно связанных нанокластеров-прекурсоров в виде: супракластер \rightarrow первичная цепь \rightarrow микрослой \rightarrow микрокаркас \rightarrow ...каркас. Установлена локализация катионов-темплатов Na⁺ в 6*T*- и 8*T*-кольцах нанокластеров-прекурсоров *A* и *B* и катионов-спейсеров Na⁺ внутри тайла 28*T-ltn* с образованием тетраэдрической конфигурации и в центре 6-кольца, возникающего при связывании двух нанокластеров *B*.

ВВЕДЕНИЕ

Среди неорганических соединений одними из самых сложных являются кристаллические структуры цеолитов — минерала паулингита (Na₁₃Ca₃₆K₆₈Ba_{1.5})[Al₁₅₂Si₅₂₀O₁₃₄₄] · wH₂O (**PAU**) с a = 35.093 Å, V = 43 217 Å³, пр. гр. $Im\overline{3}m$ [1–7] и синтетической фазы Na₃₈₄[Al₃₈₄Si₃₈₄O₁₅₃₆]·422H₂O (**LTN**) с a = 36.95 Å, V = 50 449 Å³, пр. гр. $Fd\overline{3}$) [6–10]. Цеолиты обладают каркасной структурой из связанных по вершинам AlO₄- и SiO₄-тетраэдров (*T*-тетраэдров) и элементарные ячейки PAU [2– 4] и LTN [7, 8] содержат 672 и 768 *T*-тетраэдров.

Для PAU в [11] методом полного разложения 3D-фактор-графа на кластерные непересекающиеся подструктуры в тетраэдрическом *T*-каркасе выявлены три типа нанокластеров-прекурсоров K_6 , K_{16} и K_{20} (состоящих из 6, 16 и 20 *T*-тетраэдров), участвующих в матричной самосборке кристаллической структуры. Под нанокластерами-прекурсорами кристаллической структуры понимаются основные типы нанокластеров, которые при связывании друг с другом образуют первичную цепь кристаллической структуры и определяют значения модулей векторов трансляций [11–16]. Топологический тип тетраэдрического каркаса LTN определен в [7]. Полная модель кристаллической структуры, включающая в себя позиции внекаркасных катионов Na и молекул H_2O , установлена в [8].

Известны две модели строения каркаса LTN: Баура—Фишера [10] и Конигсвельда [7], в которых авторами были выделены различные кластерные подструктуры (типа содалита **SOD**, **LTA**, канкринита **CAN** и **D6R**), однако без указания критерия их выделения.

В [10] каркас LTN представлен в виде двух подструктур: первая — из кластеров типа SOD и вторая — из кластеров типа LTA.

В [7] приведена модель сборки каркаса на основе двух структурных единиц: ВU1 из 120 *Т*-тетраэдров (в виде ансамбля из четырех кластеров типа CAN и сдвоенных колец D6R) и BU2 из 72 *Т*-тетраэдров (в виде ансамбля из четырех кластеров типа CAN).

Принципиальное различие моделей [7, 10] заключается в использовании в [10] взаимопересекающихся кластеров типа SOD, которые имеют общие шестиугольные грани. В связи с этим объединение таких кластеров требует удаления *T*-тетраэдров, образующих общие грани. Модель [7] описывает структуру LTN как ансамбль из кластеров типа CAN и сдвоенных колец D6R, не имеющих общих *T*-тетраэдров, т.е. образующих упаковку. Соответственно при объединении таких кластеров не происходит удаления *T*-тетраэдров.

Модель образования кластеров типа SOD (K_{24} из 24 *T*-тетраэдров) в виде самосвертывающихся сеток на основе 6*T*-колец и различные типы упаковок супраполиэдрических кластеров K_{24} были рассмотрены ранее при моделировании самосборки структур Na-содержащих цеолитов типа FAU и LTA [12].

В настоящей работе проведено компьютерное моделирование самосборки кристаллической структуры $Na_{384}[Al_{384}Si_{384}O_{1536}] \cdot 422H_2O$ из кластеров-прекурсоров, которые выделяются в автоматическом режиме обработки данных с использованием разработанного ранее [11] алгоритма отбора комбинаций из непересекающихся нанокластеров-прекурсоров. При кластерном моделировании макроструктуры использован принцип максимального заполнения пространства и соответственно требование максимальной степени комплементарного связывания нанокластеров-прекурсоров при самосборке кристаллических структур с последовательным формированием первичной цепи-микрослоя-микрокаркаса [12].

Работа продолжает исследования [11–16] в области геометрико-топологического анализа строения кристаллических фаз, моделирования процессов самоорганизации химических систем и включает применение современных компьютерных методов анализа кристаллических структур [17, 18].

Основные определения. Как отмечалось выше, нанокластеры-прекурсоры кристаллической структуры — это основные типы нанокластеров, которые при связывании друг с другом образуют первичную цепь кристаллической структуры и определяют значения модулей векторов трансляций.

Возможен простой и наиболее распространенный для цеолитов случай, когда структура образуется из нанокластеров одного типа [12, 13], и второй, более сложный, когда структура образуется из нанокластеров двух и более типов [11]. При этом в обоих случаях возможен вариант, когда нанокластеры образуют **супракластеры** — ансамбли из нескольких связанных нанокластеров (одного или двух типов), и уже именно супракластеры определяют значения модулей векторов трансляций периодической структуры.

Кроме того, при моделировании образования сложных по химическому составу каркасных структур цеолитов необходимо учитывать эффект катионного темплатирования. В такой модели катионы выполняют две типичные структурные функции — темплатов, стабилизирующих локаль-

ную структуру нанокластеров-прекурсоров, и **спейсеров**, заполняющих пустоты в каркасе между нанокластерами-прекурсорами.

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрико-топологический анализ цеолитов осуществляли с помощью комплекса программ TOPOS [17], позволяющего проводить многоцелевое исследование кристаллической структуры в автоматическом режиме, используя представление структур в виде "свернутых графов" (факторграфов).

Алгоритм автоматизированного геометрического и топологического анализа с использованием пакета программ TOPOS включал следующие стадии:

 – расчет матрицы смежности и выделение простейших полиэдрических структурных единиц с помощью программы AutoCN;

— расчет координационных последовательностей $\{N_k\}$ для всех независимых атомов с помощью программы IsoTest;

 представление тетраэдрического каркаса в виде трехмерных 4-связных сеток из *T*-атомов (Al, Si) с удаленными атомами кислорода.

В результате трехмерные структуры представлены в виде трехмерного неориентированного графа, в котором атомы отождествляются с вершинами графа, а межатомные связи — с его ребрами.

В дальнейшем использовался новый метод компьютерного анализа цеолитов любой сложности, основанный на полном разложении трехмерного графа структуры (3*D*-фактор-графа) на кластерные подструктуры в соответствии с принципами, изложенными в [11]. Алгоритм реализован в комплексе программ TOPOS [17].

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ

Методом тайлингов в каркасе были выделены пять топологических типов кластеров (рис. 1): 48T-grc (8b, $\overline{4}3m$), 28T-ltn (48f, mm2), 24T-toc (16c, $\overline{3}m$ и 8a, $\overline{4}3m$), 18T-can (32e, 3m), 12T-hpr (16d, $\overline{3}m$). При этом использовалась топологическая модель 4-связанной 3D-T-сетки LTN с четырьмя кристаллографически независимыми T-узлами (табл. 1), соответствующая его максимальной симметрии, описываемой пр. гр. $Fd\overline{3}m$, порядок которой равен 192.

В комбинаторно-топологическом анализе *Т*-каркаса участвовали не пять, а шесть геометрически различных кластеров с числом тетраэдров от 12 до 48, поскольку в структуре имеются два кристаллографически независимых кластера 24*T-toc* (табл. 1). КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ САМОСБОРКИ

Рис. 1. Топологические типы и характеристики тайлов, выделенных в тетраэдрическом каркасе PAU. Значения В, Р, Г равны числу вершин, ребер и граней в тайле.

Было установлено, что каркас структуры LTN может быть построен в результате самосборки из минимального набора, состоящего из двух непересекающихся нанокластеров, и только двумя способами.

В первой модели кластерам соответствуют тайлы 18*T*-*can* (32*e*, 3*m*) и 12*T*-*hpr* (16*d*, $\overline{3}m$) в соотношении 2:1, которые образованы с участием узлов *T*1-3 и *T*4 соответственно. Распределение 768 *T*тетраэдров по этим кластерам имеет вид 18*T* × 32 + + 12*T* × 16 = 576*T* + 192*T*.

Во второй модели кластерам соответствуют тайлы 48T-grc и 24T-toc (16c) в соотношении 1:2. Каждый T-кластер образован с участием двух кристаллографически независимых T-атомов (T3, T4, T1, T2 соответственно). Распределение 768 T-тетраэдров по этим кластерам имеет вид $48T \times 8 + 24T \times 16 = 384T + 384T$.

В обеих моделях не участвуют в процессе самосборки структуры кластеры, соответствующие тайлам 28T-*ltn* (48f, *mm*2) и 24T-*toc* (8a, $\overline{4}3m$). Отметим, что, согласно статистическим данным, приведенным в [19], тайл 28T-*ltn* встречается только в каркасе LTN, тогда как остальные четыре типа тайлов (12T-*hpr*, 18T-*can*, 24T-*toc*, 48T-*grc*) встречаются соответственно в 26, 18, 10 и 8 структурных типах цеолитов.

Ниже рассмотрена вторая модель, которая объясняет наблюдаемую локализацию внекаркасных катионов, выступающих в роли темплатов при формировании нанокластеров-прекурсоров *A* и *B*, соответствующих тайлам 48*T-grc* и 24*T-toc* (16*c*).

ИЕРАРХИЧЕСКАЯ СТРУКТУРА 3D-СЕТКИ АВ₂

При определении иерархической структуры каркаса LTN использовали упрощенное представление каркаса в виде 3D-сетки, узлы которой соответствуют центрам кластеров A и B (рис. 2). Такая упрощенная сетка имеет состав AB_2 .

Таблица 1. Координаты и локальная симметрия *T*-узлов и центров тайлов для топологической модели 4-связанной 3*D*-*T*-сетки каркаса LTN с пространственной группой, соответствующей максимальной (топологической) симметрии *Fd*3*m*

Структурные единицы	Кристаллографиче- ские позиции	Координаты		
		x	у	z
T1	192 <i>i</i>	0.18620	0.12500	0.24770
<i>T</i> 2	192 <i>i</i>	0.30950	0.12310	0.24710
<i>T</i> 3	192 <i>i</i>	0.26470	0.20350	0.32820
T4	192 <i>i</i>	0.41460	0.21440	0.27460
t-toc	8 <i>a</i>	1/8	1/8	1/8
t-ltn	48 <i>f</i>	1/8	1/8	0.37014
t-can	32e	0.22611	0.22611	0.22611
t-toc	16c	1/4	0	1/4
t-grc	8 <i>b</i>	3/8	3/8	3/8
t-hpr	16 <i>d</i>	1/2	1/4	1/4

Рис. 2. Общий вид 3*D*-сетки *AB*₂, узлы которой соответствуют центрам кластеров *A* и *B* (а), различные проекции 2*D*-сетки (б, в) и проекция на плоскость с выделением 3-узловых кластеров *AB*₂. Узлы *A* – серые шарики, узлы *B* – черные.

Сетка N1 **3** 6 3 6 + N2 **3** 3 6 6 или (3636)(3366)₂

Рис. 3. Первичная цепь на основе 3-узловых кластеров (а) и микрослой из трех первичных цепей (б).

В 3*D*-сетке AB_2 можно выделить четыре чередующиеся эквивалентные 2D-сетки состава AB_2 , перпендикулярные [010] и повернутые на 90° друг относительно друга. Графы, характеризующие топологию строения выделенных сеток, являются планарными (они не содержат пересекающихся ребер). На рис. 26, 2в приведены различные проекции 2*D*-сетки AB_2 с узлами *A* (серые шары) и *B* (черные шары). На рис. 2г в сетке выделены 3-узловые кластеры AB_2 .

Приведенная на рис. 26-2г бинодальная сетка $(3636)(3366)_2$ была получена при кластерном моделировании серии сеток в [15]. Сетка обладает иерархической структурой — представляет упаковку 3-узловых кластеров циклического типа AB_2 . Первичная цепь сетки и микрослой из трех первичных цепей показаны на рис. 3.

Центры кластеров A и B в 3D-сетке AB_2 (рис. 2) находятся в позициях атомов Mg и Cu кубической сетки Лавеса $AB_2 = MgCu_2$, т.е. структура цеолита является супраполиэдрическим аналогом указанного интерметаллида.

Рис. 4. Стадии самосборки кристаллической структуры LTN: а – супракластер в виде графа (слева) и после восстановления оболочек нанокластеров *A* и *B* из 48 и 24 узлов (справа); б – первичная цепь из двух супракластеров в виде графа (слева) и после восстановления оболочек нанокластеров (справа); в – микрослой из двух первичных цепей в виде графа (слева) и после восстановления оболочек нанокластеров (справа).

МЕХАНИЗМ САМОСБОРКИ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ LTN

При моделировании кристаллической структуры необходимо определить иерархическую последовательность ее самосборки в кристаллографическом пространстве [11, 12]. Для этого, вопервых, устанавливают механизм формирования из нанокластеров нулевого уровня (соответствующего темплатной стадии химической эволюции системы) первичной цепи структуры (первый уровень самоорганизации системы), далее — механизм самосборки из цепи микрослоя (второй уровень) и из микрослоя — трехмерного микрокаркаса структуры (третий уровень).

Супракластер. Для 3-узловых кластеров, выделенных в плоской сетке (рис. 4a, слева), проведе-

Рис. 5. Микрокаркас в виде графа из двух микрослоев.

но восстановление оболочек нанокластеров A и B из 48 (**A-K**₄₈) и 24 (**B-K**₂₄) узлов (рис. 4а, справа). Отметим, что число кристаллографически независимых T-узлов в алюмосиликате (с пр. гр. $Fd\overline{3}$) по сравнению с топологической моделью 3D-T-

Таблица 2. Позиции внекаркасных катионов Na^+ и атомов О молекул H_2O по [9]

Атом	Кристаллографи-	Заселенность позиции	
		nooniginii	
Nal	32e	1	
Na2	32 <i>e</i>	0.56	
Na3	32e	0.26	
Na4	32e	0.77	
Na5	32e	0.53	
Na6	32 <i>e</i>	0.21	
Na7	32 <i>e</i>	0.09	
Na8	96g	0.46	
Na9	96g	0.24	
Na10	96g	0.23	
Na11	96g	1	
Na12	96g	0.6	
Na13	96g	0.25	
Na14	96g	0.15	
017	32 <i>e</i>	0.89	
O18	96g	0.17	
019	96g	0.63	
O20	96g	0.2	
O21	32 <i>e</i>	0.4	
O22	48 <i>f</i>	0.86	
O23	96g	0.6	
O24	96g	0.36	
O25	96g	0.38	
O26	96g	0.61	
O27	96g	0.29	

Примечание. Жирным шрифтом выделены атомы, соответствующие упорядоченной модели строения.

сетки каркаса LTN (с пр. гр. $Fd\overline{3}m$) возросло вдвое (с четырех до восьми).

Комплементарное связывание кластера A с парой кластеров B при образовании супракластера AB_2 (рис. 4a, справа) осуществляется по локальным участкам, которыми являются вершины четырех тетраэдров кластера A (узлы Al3–Si3–Al3–Si3) и двух пар тетраэдров кластеров B (узлы Al2–Si2).

Полученный супракластер обладает симметрией 1; центр кластера в элементарной ячейке находится в позиции 96g. Потеря плоскости симметрии связана с упорядоченным расположением атомов Si и Al, при котором отсутствуют связанные пары узлов Al с Al или Si с Si (рис. 4a, справа).

Самосборка первичных цепей происходит в направлении диагонали $\mathbf{a} + \mathbf{c}$ в плоскости (010). Граф, характеризующий связанность супракластеров AB_2 при сборке первичной цепи, приведен на рис. 46, слева. При этом два кластера *B* одного супракластера AB_2 , сформировавшие впадину (небольшое углубление), связываются *A*-кластером другого супракластера AB_2 по механизму "ключ в замке" (рис. 46, справа). Расстояние между центрами супракластеров соответствует половине диагонали элементарной ячейки, т.е. их линейный размер определяет модуль вектора трансляции **a** ($\mathbf{d}^2 = 2\mathbf{a}^2$).

Самосборка микрослоя осуществляется связыванием параллельно расположенных коротких цепей в направлении другой диагонали $\mathbf{a}-\mathbf{c}$ в плоскости (010). Показаны две первичные цепи, состоящие из двух супракластеров (рис. 4в, справа). Кластерное координационное число супракластера, полностью интегрированного в слой, равно 4 (рис. 3).

Самосборка микрокаркаса. Микрокаркас структуры формируется при упаковке со сдвигом двух микрослоев вдоль оси с. Граф, характеризующий связанность супракластеров в микрокаркасе, приведен на рис. 5. Микрокаркас образован восемью супракластерами $(4AB_2 + 4AB_2)$ и представляет собой гиперсупракластер.

В рамках модели матричной самосборки рост и образование 3*D*-макроструктуры кубического цеолита осуществляются по механизму высокоселективного комплементарного узнавания гиперсупракластеров.

РАСПОЛОЖЕНИЕ КАТИОНОВ-ТЕМПЛАТОВ И КАТИОНОВ-СПЕЙСЕРОВ

В [9] для алюмосиликата $Na_{384}Al_{384}Si_{384}O_{1536}$ · 422H₂O локализованы 25 внекаркасных позиций, из них 14 соответствовали атомам Na и 11 — молекулам воды (табл. 2). Отметим, что только две внекаркасные позиции (Na1 и Na11) заняты полностью. Все остальные внекаркасные позиции заселены статистически.

Анализ коротких межатомных расстояний Na-Na (табл. 3), H₂O-Na и H₂O-H₂O (табл. 4)

Атом	Соседний атом	Расстояние, Å
Na2	Na3	1.312
Na3	Na2	1.312
Na5	Na6	0.883
	Na7	2.432
Na6	Na5	0.883
	Na7	1.549
Na7	Na6	1.549
	Na5	2.432
Na8	Na9	0.785
	Na10	1.656
Na9	Na8	0.785
	Na10	0.879
Na10	Na9	0.879
	Na8	1.656
Na12	Na13	0.673
	Na14	1.527
Na13	Na12	0.673
	Na14	0.860
Na14	Na13	0.860
	Na12	1.527

Таблица 3. Короткие межатомные расстояния Na–Na

Таблица 4. Межатомные расстояния от атомов кислорода молекул H_2O до ближайших соседей — катионов Na и атомов кислорода молекул H_2O

показал, что локализация атомов в какой-либо позиции делает невозможным заселение соседних (одной или двух) позиций. В связи с этим дальнейшее выделение основных (наиболее заселенных) позиций с сохранением корректных длин связей для всей модели строения цеолита было проведено с использованием пакета программ TOPOS в автоматическом режиме. В результате были сохранены семь позиций для катионов Na и семь позиций для атомов O молекул воды, которые выделены жирным шрифтом в табл. 2.

Анализ локального окружения позиций атомов О молекул воды показал, что практически все они входят в координационную сферу одного или двух катионов Na. Исключением является позиция O26 с вероятностью заселения, равной 0.61. Эта позиция соответствует позиции щелочного катиона Na с вероятностью заселения 0.5 и эти новые позиции для катионов обозначены на рис. 6 как Na16.

Ниже рассмотрены особенности расположения катионов Na в оболочках нанокластеров *A* и *B* и в пустотах между этими кластерами. При этом следует отметить, что типичными местами локализации крупных катионов, таких как Na, предпочтительно являются 6*T*-кольца или 8*T*-кольца [11, 20, 21].

КРИСТАЛЛОГРАФИЯ том 57 № 3 2012

Атом	Соседний атом	Расстояние, Å
O17	Na3	2.227
	Na4	2.246
O18	O19	0.455
	O20	1.081
	Na14	2.013
	Na11	2.361
O19	O18	0.455
	O20	0.640
	Na11	2.346
	Na12	2.390
	Na14	2.442
O20	O19	0.640
	O18	1.081
	Na12	1.849
	Na13	2.464
	O23	2.488
O21	Na1	2.138
O23	O24	0.866
	Na8	2.391
	O26	2.473
	O20	2.488
O24	O23	0.866
	O24	2.125
	O26	2.354
O25	O26	0.800
	O25	1.885
	O26	2.339
O26	O25	0.800
	O25	2.339
	O24	2.354
	O23	2.473

Нанокластер А. Гранный символ нанокластера A [4¹².6⁸.8⁶] (рис. 1) указывает на то, что на поверхности кластера имеются четырнадцать 6-и 8-членных колец, которые могут быть заполнены катионами Na⁺. На стадии формирования нанокластера A эти катионы выполняли структурные функции темплатов, стабилизирующих его локальные области. Даже в случае полной нейтрализации нанокластера A, содержащего 24 атома Al, необходимы еще 10 катионов Na⁺, которые будут играть роль спейсеров.

На рис. 6а показаны катионы-темплаты Na1 и Na2, заполняющие 6*T*-кольца, и катионы-тем-

Рис. 6. Позиции, занимаемые катионами-темплатами: Na1 и Na2 (заполняющими 6*T*-кольца) и Na 16 (заполняющие 8*T*-кольца) нанокластера *A* (а) и Na5 и Na8 (заполняющими 6*T*-кольца) нанокластера *B* (б).

платы Na16, заполняющие 8*T*-кольца нанокластера *A*. Подобное строение нанокластера-прекурсора *A* установлено при анализе цеолитов **RHO**: галлосиликата Na_{9.8}Cs_{8.8} (Ga_{21.42}Si_{26.58}O₉₆) [20] и алюмогерманата Na_{14.6} Cs_{8.17} (Al₂₄Ge₂₄O₉₆) [21], в которых 8*T*-кольца статистически заселены катионами Na⁺ (занимающими такую же расщепленную позицию) или катионами Cs⁺ (упорядоченно занимающими позицию в центре этого же 8*T*-кольца).

Рис. 7. Катионы-спейсеры Na4, Na11 и Na12, заполняющие позиции между нанокластерами *A* и *B* в супракластере *AB*₂.

Нанокластер В. На поверхности нанокластера В с гранным символом [$4^{6}.6^{8}$] имеются восемь 6-членных колец, которые могут быть заполнены катионами Na⁺. Кластер В содержит 12 атомов Al, поэтому требуются дополнительно четыре катиона-спейсера Na⁺, чтобы получить нейтральную частицу.

На рис. 6б показаны катионы-темплаты Na5 и Na8, заполняющие 6T-кольца нанокластера B. Аналогичное строение имеют нанокластеры B, образование и упаковки которых были рассмотрены при моделировании самосборки структур цеолитов FAU и LTA [12].

Катионы-спейсеры Na4, Na11 и Na12, заполняющие позиции между нанокластерами A и B в супракластере AB_2 , показаны на рис. 7. При этом катионы-спейсеры 2 Na11 и 2 Na12 оказываются локализованными внутри тайла 28T-*ltn* с образованием тетраэдрической конфигурации, а катионыспейсеры Na4 располагаются в центре 6-кольца, возникающего при связывании нанокластеров B.

ЗАКЛЮЧЕНИЕ

В кристаллохимии цеолитов долгое время считалось, что макроструктуры цеолитов образуются из *T*-кластеров одного типа. Характерным примером являются рассмотренные ранее модели сборки структур Na-содержащих цеолитов типа FAU и LTA на основе инвариантных супракластеров K_{24} типа SOD. Центры супракластеров K_{24} в 3*D*-структурах FAU и LTA соответствовали расположению атомов в однонодальных 3*D*-сетках алмаза с KЧ = 4 и простой кубической *P*-упаковке с KЧ = 6.

Компьютерное моделирование Na/Ca, K/Baсодержащего паулингита, проведенное в [11], показало наличие трех типов нанокластеров-прекурсоров K_6 , K_{16} и K_{20} , которые участвуют в матричной самосборке кристаллической структуры. Эти нанокластеры-прекурсоры с катионами-темплатами Na/Ca и K/Ba строят первичные (линейные) цепи, и расстояние между ними определяет значение вектор трансляций.

В рассмотренной структуре Na-содержащего цеолита LTN выявлены два типа нанокластеровпрекурсоров: *A* из 48 *T*-тетраэдров (*A*-*K*₄₈) и *B* из 24 *T*-тетраэдров (*B*-*K*₂₄), которые образуют супракластеры – ансамбли из связанных нанокластеров *AB*₂, и уже именно супракластеры определяют значения модулей векторов трансляций периодической структуры. Центры кластеров *A* и *B* занимают позиции атомов Mg и Cu в бинодальной сетке Лавеса *AB*₂ = MgCu₂, т.е. структура цеолита является супраполиэдрическим аналогом интерметаллида.

При моделировании самосборки цеолита LTN, как и ранее для паулингита, был учтен эффект катионного темплатирования. Для нанокластера *A* с

КРИСТАЛЛОГРАФИЯ том 57 № 3 2012

гранным символом $[4^{12}.6^8.8^6]$ установлена локализация 14 катионов-темплатов Na⁺ в 6*T*- и 8*T*кольцах. Для нанокластера *B* с гранным символом $[4^{6}.6^8]$, как и в структурах Na-содержащих цеолитов типа FAU и LTA, имеет место размещение восьми катионов-темплатов Na⁺ в 6*T*- кольцах. Катионы-спейсеры Na⁺ в цеолите LTN расположены внутри тайла 28*T-ltn* с образованием тетраэдрической конфигурации и в центре 6-кольца, возникающего при связывании двух нанокластеров *B*.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 09-02-01269).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Kamb W.B., Oke W.C.* // Am. Mineral. 1960. V. 45. P. 79.
- Gordon E.K., Samson S., Kamb W.B. // Science. 1966. V. 154. P. 1004.
- Bieniok A., Joswig W., Baur W.H. // N. Jb. Min. Mh. 1996. V. 171. P. 119
- 4. Lengauer C.L., Giester G., Tillmanns E. // Mineral. Mag. 1997. V. 61. P. 591.
- 5. Mackay A.L. // Nature. 1967. V. 216. P. 159.
- 6. *Fischer R.X., Baur W.H.* Microporous and other Framework Materials with Zeolite-Type Structures. V. 14D. Berlin: Springer, 2006.
- 7. *Van Königsveld H*. Compendium of Zeolite Framework Types. London: Elsevier, 2007.
- Fälth L., Andersson S. // Z. Kristallogr. 1982. B. 160 S. 313.
- 9. Шепелев Ю.Ф., Бутикова И.К., Смолин Ю.И., Тарасов В.И. // Докл. АН СССР. 1983. Т. 263. С. 1133.
- Baur W.H., Fischer R.X. // Acta Cryst. B. 2007. V. 63. P. 229.
- 11. Илюшин Г.Д., Блатов В.А. // Кристаллография. 2011. Т. 56. № 1. С. 80.
- Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. М.: Едиториал УРСС, 2003. 376 с.
- 13. Ilyushin G.D. // J. Mater. Sci. 2006. V. 41. P. 1563.
- Ilyushin G.D., Blatov V.A. // Acta Cryst. B. 2009. V. 65. P. 300
- 15. Илюшин Г.Д., Блатов В.А. // Кристаллография. 2009. Т. 54. С. 590.
- Blatov V.A., Ilyushin G.D., Proserpio D.M. // Inorg. Chem. 2010. V. 49. P. 1811.
- 17. *Blatov V.A.* // IUCr CompComm Newsl. 2006. V. 7. P. 4.
- Blatov V.A., Delgado-Friedrichs O., O'Keeffe M., Proserpio D.M. // Acta Cryst. A. 2007. V. 63. P. 418.
- Anurova N.A., Blatov V.A., Ilyushin G.D., Proserpio D.M. // J. Phys. Chem. C. 2010. V. 114. P. 10160.
- Newsam J.M., Vaughan D.E.W., Strohmaier K.G. // J. Phys. Chem. 1995. V. 99. P. 9924.
- Johnson G.M., Tripathi A., Parise J.B. // Micropor. Mesopor. Mat. 1999. V. 28. P. 139.