УДК 548.736

= СТРУКТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

РЕНТГЕНОСТРУКТУРНОЕ ИССЛЕДОВАНИЕ $R_2[UO_2(C_3H_2O_4)_2] \cdot H_2O$ (R = K или Rb)

© 2012 г. Л. Б. Сережкина, М. С. Григорьев*, И. С. Кузьменко, В. Н. Сережкин

Самарский государственный университет E-mail: Lserezh@ssu.samara.ru * Институт физической химии и электрохимии РАН, Москва Поступила в редакцию 03.02.2011 г.

Осуществлен синтез и проведено рентгеноструктурное исследование $K_2[UO_2(C_3H_2O_4)_2] \cdot H_2O$ (I) и $Rb_2[UO_2(C_3H_2O_4)_2] \cdot H_2O$ (II), кристаллизующихся в моноклинной сингонии: a = 7.1700(2), b = 12.3061(3), c = 14.3080(4) Å, $\beta = 95.831(2)^\circ$, пр. гр. $P2_1/n$, Z = 4, R = 0.0275 (I); a = 7.1197(2), b = 12.6433(4), c = 14.6729(6) Å, $\beta = 96.353(2)^\circ$, пр. гр. $P2_1/n$, Z = 4, R = 0.0328 (II). Установлена изоструктурность I и II. Основными структурными единицами кристаллов являются цепочки $[UO_2(C_3H_2O_4)_2]^{2-}$, относящиеся к кристаллохимической группе $AT^{11}B^{01}$ ($A = UO_2^{2+}$, T^{11} и $B^{01} = C_3H_2O_4^{2-}$) комплексов уранила. Цепочки объединены электростатическими взаимодействиями с ионами щелочных металлов R (R = K или Rb) и водородными связями. Обсуждены некоторые особенности строения комплексных группировок $[UO_2(C_3H_2O_4)_2]^{2-}$.

ВВЕДЕНИЕ

К настоящему времени изучено строение более ста оксалатсодержащих соединений уранила, тогда как сведения о структуре комплексов U(VI) с малонат-ионом — анионом второго члена гомологического ряда двухосновных карбоновых кислот — ограничены семью соединениями (включая тригидрат малоната уранила). Взаимодействием малоната уранила и малоната калия (или рубидия) синтезированы $K_2UO_2(C_3H_2O_4)_2 \cdot H_2O$ и $Rb_2UO_2(C_3H_2O_4)_2 \cdot H_2O$, результаты рентгеноструктурного исследования которых представлены в настоящей работе.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез. Тригидрат малоната уранила в количестве 1.0 г (2.35 ммоль) растворяли при комнатной температуре в 20 мл воды и добавляли водный раствор, содержащий 1.5 г (7.00 ммоль) дигидрата малоната калия. Мольное соотношение реагентов составляло 1:3. Прозрачный раствор оставляли для медленной кристаллизации на воздухе. Через 3-4 дня из раствора выделялись крупные желтые кристаллы призматической формы состава $K_2UO_2(C_3H_2O_4)_2 \cdot H_2O$ (I). Заменой малоната калия малонато рубидия при аналогичных условиях был получен $Rb_2UO_2(C_3H_2O_4)_2 \cdot H_2O$ (II).

Рентгенодифракционный эксперимент проведен на автоматическом четырехкружном дифрактометре с двумерным детектором Bruker KAPPA APEX II [1]. Параметры элементарной ячейки уточнены по всему массиву данных [2]. Структура расшифрована прямым методом и уточнена в анизотропном приближении для неводородных атомов. Атомы Н групп СН2 размещены в геометрически вычисленных позициях и уточнены с изотропными температурными параметрами, равными 1.2 $U_{_{3\rm KB}}$ атома С, с которым они связаны. Атомы Н молекулы кристаллизационной воды локализованы из разностного синтеза электронной плотности и уточнены с изотропными температурными параметрами, равными 1.5 U_{экв} атома О, с которым они связаны. При этом накладывались условия стремления расстояний О-Н к величине 0.85(2) Å и расстояния Н…Н к 1.35(2) Å. Параметры эксперимента и окончательные значения факторов недостоверности приведены в табл. 1, основные геометрические параметры – в табл. 2. Данные о стуктрах депонированы в Кембриджском банке структурных данных (ССDС № 804979 и 804978 соответственно для I и II).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Соединения I и II изоструктурны. Координационным полиэдром атомов урана в них является пентагональная бипирамида UO_2O_5 с атомами кислорода ионов уранила в аксиальных позициях (на рис. 1 изображено окружение атомов урана в II). Уранильная группировка имеет симметричное и почти линейное строение (угол O=U=O равен 178.05(12)° (I) и 178.88(15)° (II)). Объем полиэдра Вороного–Дирихле (ПВД) атома урана, имеющего форму пентагональной призмы, равен

	I			
Химическая формула	$K_2[UO_2(C_3H_2O_4)_2] \cdot H_2O$	$Rb_2[UO_2(C_3H_2O_4)_2] \cdot H_2O$		
Сингония, пр. гр., <i>Z</i>	моноклинная, <i>Р</i> 2 ₁ / <i>n</i> , 4	моноклинная $P2_1/n$, 4		
<i>a</i> , <i>b</i> , <i>c</i> , Å	7.1700(2), 12.3061(3), 14.3080(4)	7.1197(2), 12.6433(4), 14.6729(6)		
β, град	95.831(2)	96.353(2)		
V, Å ³	1255.93(6)	1312.69(8)		
<i>D_x</i> , г/см ³	3.016	3.355		
Излучение, λ, Å	$MoK_{\alpha}, 0.71073$	$MoK_{\alpha}, 0.71073$		
μ, мм ⁻¹	13.641	19.785		
<i>Т</i> , К	100(2)	100(2)		
Размеры кристалла, мм	$0.22\times0.12\times0.10$	$0.22\times0.18\times0.16$		
Учет поглощения, T_{\min} , T_{\max}	полуэмпирический, по эквивален- там, 0.1533, 0.3424	полуэмпирический, по эквивален- там, 0.0976, 0.1439		
$ \theta_{\text{max}},$ град	35.00	35.00		
Пределы h, k, l	$-11 \le h \le 11; -19 \le k \le 19; -23 \le l \le 22$	$-11 \le h \le 11; -20 \le k \le 20; -23 \le l \le 20$		
Число отражений: измеренных/неза- висимых (N_1), R_{int} /с $I > 1.96\sigma(I)$ (N_2)	21602/5491, 0.0427/4468	24272/5742, 0.0511/4601		
Метод уточнения	МНК по <i>F</i> ²	МНК по <i>F</i> ²		
Число уточняемых параметров	187	187		
Весовая схема	$w = 1/[\sigma^2(F_o^2) + (0.0298P)^2 + 0.0000P],$ $P = (F_o^2 + 2F_c^2)/3$	$w = 1/[\sigma^2(F_o^2) + (0.0335P)^2 + 0.0000P],$ $P = (F_o^2 + 2F_c^2)/3$		
<i>wR</i> ₂ по <i>N</i> ₁	0.0606	0.0706		
<i>R</i> ₁ по <i>N</i> ₂	0.0275	0.0328		
S	1.008	1.020		
$\Delta \rho_{max} / \Delta \rho_{min}$, $\Im / Å^3$	3.238/-1.482	2.758/-1.970		
Программы	SADABS [3], SHELX97 [4]	SADABS [3], SHELX97 [4]		

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структуры І и ІІ

9.1 (I) и 9.0 (II) Å³ и согласуется со средним значением 9.3(4) Å³, установленным для атомов U (VI) в составе координационных полиэдров UO_n (n = 5, 6, 7 или 8) [5, 6]. Все пять атомов кислорода, находящихся в экваториальной плоскости координационного полиэдра урана, принадлежат малонат-ионам. Один из двух малонат-ионов является тридентатным (тип координации T^{11}) и координирован одним атомом урана бидентатноциклически с образованием шестичленного цикла, а другим — монодентатно. Второй малонатион координирован атомом урана бидентатноциклически (тип координации B^{01}). Типы координации лигандов записаны по методике [7].

Определение координационного числа атомов калия и рубидия проводили с помощью метода [8]. Два кристаллографически независимых атома щелочных металлов (R) в структуре проявляют

координационные числа 7 и 9, длины связей К—О и Rb—О лежат соответственно в диапазонах 2.60— 3.17 и 2.80—3.23 Å. Полиэдр $R1O_7$ содержит четыре атома О малонат-ионов, атом О молекулы воды и два атома О уранильных групп, в то время как координационный полиэдр $R2O_9$ образован только атомами кислорода малонат-ионов и внешнесферных молекул воды. Полиэдры $R1O_7$ и $R2O_9$ за счет мостиковых атомов кислорода образуют металлкислородный каркас.

Основными структурными единицами кристаллов I и II являются цепочки состава $[UO_2(C_3H_2O_4)_2]^{2-}$, относящиеся к кристаллохимической группе (**КХГ**) $AT^{11}B^{01}$ ($A = UO_2^{2+}$) комплексов уранила (рис. 2а, 2б) и распространяющиеся вдоль направления [010]. Связывание цепочек в каркас осуществляется за счет системы электростатических взаимодействий с внешне-

Таблица 2. Основные длины связей и величины валентных углов в структурах $K_2[UO_2(C_3H_2O_4)_2] \cdot H_2O$ (I) и $Rb_2[UO_2(C_3H_2O_4)_2] \cdot H_2O$ (II)

Пентагональная бипирамида UO ₂ O ₅								
Связь*	$d, \mathrm{\AA}$		N 7 4		ω, град			
	Ι	II		Угол*			Ι	II
U1-01	1.781(3)	1.779(3	3)	O1U1O2		17	/8.05(12)	178.88(15)
U1-O2	1.786(3)	1.780(3	3)	O 7U	103		70.39(8)	70.00(10)
U1-09	2.313(2)	2.313(3	3)	O3U	105		69.80(8)	69.80(10)
U1-05	2.341(3)	2.338(3	3)	O 5U	104 <i>a</i>		72.01(9)	72.84(10)
U1-07	2.356(3)	2.316(3	3)	O4al	J1 O 9	76.06(9)		75.39(10)
U1-O3	2.416(2)	2.422(3	3)	O 9U	107		71.80(9)	71.95(11)
U1–O4 <i>a</i>	2.421(2)	2.419(3	3)					
		Малонат-анио	оны (т	ип коорді	инации <i>T</i> ¹	¹)		
Cogor *		d, Å		Vro z*		ω, град		
СВязьт	Ι	II		- Угол*			Ι	II
C1-C2	1.512(5)	1.506(6	5)	C1C	2C3	1	16.3(3)	117.9(4)
C2–C3	1.526(5)	1.530(6	5)	C2C	C2C1O4a		18.9(3)	118.8(4)
C1–O4a	1.257(4)	1.271(5	5)	C2C	C2C1O3		19.8(3)	120.8(4)
C1-O3	1.270(4)	1.272(5	5)	O3C	104 <i>a</i>	1	21.3(3)	120.3(4)
C3-O6	1.229(4)	1.228(6	5)	C2C	306	1	17.6(3)	117.2(4)
C3–O5	1.296(4)	1.292(5	5)	C2C	305	1	18.2(3)	118.7(4)
					5C3O6		24.1(3)	124.1(4)
		Малонат-анио	оны (т	ип коорді	инации <i>В</i> ⁰	1)		
		d, Å		Vaca		ω, град		
Связь	Ι	II		910Л			Ι	II
C4–C5	1.521(5)	1.523(6	5)	C4C	5C6	118.7(3)		117.4(4)
C5-C6	1.527(5)	1.511(7	')	C5C4O7		118.0(3)		117.1(4)
C4–O7	1.291(4)	1.294(5	5)	C5C	408	8 118.7(3)		119.7(4)
C4-O8	1.233(4)	1.230(5	5)	O7C4O8		123.2(3)		123.1(4)
C6-O9	1.297(4)	1.293(6	5)	C5C6O9		117.3(3)		117.2(4)
C6-O10	1.229(4)	1.235(5	5)	C5C6O10		119.6(3)		120.3(4)
				O9C6O10		123.0(3)		122.5(4)
		Парамет	ры вод	ородных	связей			
О-Н…О		Расстояния, Å		Угол О-		HO		
	00	O-H	1	H…O	град		$\Omega(0-H), \%^{**}$	Σ2(Π····Ο), %**
			Струн	стура I	1			
O1W–H1…O4a	2.861(4)	0.857(18)	2.0	156(3)		5) 32.4		19.4
O1W-H2…O8	2.937(4)	0.867(18)	2.0	073(18)	174(4)		32.3	21.4
	·		Струк	тура II				
O1W–H1…O4a	2.832(5)	0.856(19)	1.	99(3)	167(7	7)	32.6	20.4
O1W-H2…O6	3.158(6)	0.844(19)	2.	35(3)	(3) 160(6		33.4	15.1
* Incorporative curve true $a(0,5, x, 0,5, y, 1,5, z)$								

* Преобразование симметрии: *a* (0.5 - x, -0.5 + y, 1.5 - z).
 ** Ω - телесный угол (в процентах от 4π ср), под которым общая грань ПВД соседних атомов видна из ядра любого из них.

КРИСТАЛЛОГРАФИЯ том 57 № 2 2012

Рис. 1. Фрагмент структуры II (эллипсоиды 50%-ной вероятности).

сферными катионами калия (I) или рубидия (II) и водородных связей, в которых участвуют оба атома водорода молекулы воды и атомы кислорода малонат-ионов. В соответствии с методом пересекающих сфер [8], указанным в табл. 2, водородным связям отвечают пересечения типа П₁.

Анализ имеющихся в [9] кристаллоструктурных данных показывает, что по отношению к атомам U(VI) анионы $C_3H_2O_4^{2-}$ могут реализовать три типа координации (B^{01} , T^{11} и K^{21}), которые схематически показаны на рис. 3. Два из них сосуществуют в структуре кристаллов шести известных (с учетом I и II) *бис*-малонатов уранила (табл. 3), принадлежащих к $KX\Gamma AT^{11}B^{01}$ ($A = UO_2^{2+}$). Несмотря на принадлежность к одной и той же кристаллохимической группе, вследствие геометрической изомерии комплексы $[UO_2(C_3H_2O_4)_2]^{2-}$ могут иметь разное строение. Так, в структурах I–V реализуются топологически идентичные комплексы с цепочечной структурой (рис. 2а–2г), в которой реальное число атомов урана (C_P), связанных мостиковыми лигандами с базисным атомом урана, совпадает с теоретически возможным (C_T), равным двум для группы

Струк- тура	Соединение	Размерность комплекса	V_1 , Å ³	t, Å	d _{UU} , Å	$d_{\rm UU}^{14}$, Å	Рефкод	Литература
Ι	$\mathrm{K}_{2}[\mathrm{UO}_{2}(\mathrm{C}_{3}\mathrm{H}_{2}\mathrm{O}_{4})_{2}]\cdot\mathrm{H}_{2}\mathrm{O}$	цепочка	314.0	12.31	6.73	6.73–11.04		Настоящая работа
Π	$Rb_2[UO_2(C_3H_2O_4)_2] \cdot H_2O$	цепочка	328.2	12.64	6.85	6.85-11.02		Настоящая работа
III	$(NH_4)_2[UO_2(C_3H_2O_4)_2] \cdot H_2O$	цепочка	331.6	7.22	5.93	5.93-10.58	URMALA	[10]
IV	$Sr[UO_2(C_3H_2O_4)_2] \cdot 3H_2O$	цепочка	332.9	6.85	5.81	5.81-11.27	URMASR10	[11]
V	$Ba[UO_2(C_3H_2O_4)_2] \cdot 3H_2O$	цепочка	345.1	6.86	5.80	5.80-11.51	URMABA10	[11]
VI	$(C_{10}H_{10}N_2)[UO_2(C_3H_2O_4)_2] \cdot 4H_2O$	димер	492.1		5.42	5.42-13.32	FIHRIY	[12]

Таблица 3. Некоторые характеристики комплексов $[UO_2(C_3H_2O_4)_2]^{2-}$ с КХФ $AT^{11}B^{01}$ ($A = UO_2^{2+}$) в структурах кристаллов*

* V_1 – объем ПВД атома урана в U-подрешетке; t – период повторяемости вдоль оси цепочки комплекса в I–V; $d_{\rm UU}$ – крат-

чайшее расстояние U…U в структуре комплекса; d_{UU}^{14} – диапазон расстояний U…U в ПВД атомов урана в U-подрешетке; Рефкод – код соединения в базе [9].

Рис. 2. Строение комплексов $[UO_2(C_3H_2O_4)_2]^{2-}$ в структурах кристаллов $Rb_2[UO_2(C_3H_2O_4)_2] \cdot H_2O$ (а, б), Ba $[UO_2(C_3H_2O_4)_2] \cdot 3H_2O$ (в, г) и $(C_{10}H_{10}N_2)[UO_2(C_3H_2O_4)_2] \cdot 4H_2O$ (д): *t* – период повторяемости вдоль оси цепочки. Для упрощения на всех рисунках не показаны атомы водорода, на рис. б и г – не показаны и атомы кислорода ионов уранила. Плоскости проекций на рис. а и б (или в и г) повернуты примерно на 90° друг относительно друга.

 $AT^{11}B^{01}$. В то же время в кристаллах VI аналогичные комплексы $[UO_2(C_3H_2O_4)_2]^{2-}$ имеют двухъядерную центросимметричную структуру, для которой $C_P = 1 < C_T = 2$ (рис. 2д). Эти данные пока-

зывают, что если объем элементарной ячейки, приходящийся на одну формульную единицу состава $R_x[UO_2(C_3H_2O_4)_2] \cdot nH_2O(V_1 \text{ в табл. 3})$, меньше 350 Å³, то комплексы $[UO_2(C_3H_2O_4)_2]^{2-1}$ имеют

КРИСТАЛЛОГРАФИЯ том 57 № 2 2012

Рис. 3. Схематическое изображение известных типов координации малонат-ионов ионами уранила: штриховые линии – координационные связи U–O, большие черные кружки – атомы U(VI), светлые – атомы кислорода ионов $C_3H_2O_4^{2-}$. Для упрощения рисунка атомы водорода малонат-ионов и атомы кислорода ионов уранила не показаны.

цепочечное строение, если $V_1 > 490 \text{ Å}^3$, то образуются димеры.

Анализ подрешеток, состоящих из одних атомов урана, с помощью ПВД показал, что каждый атом урана в структурах І-VІ окружен 14 соседними, расстояния до которых (d_{UU}^{14} в табл. 3) лежат в диапазоне от 5.4 до 13.4 Å. Самое короткое $d_{\rm UU} =$ = 5.42 Å отвечает атомам урана в структуре димера VI (рис. 2д). В цепочечных комплексах I-V кратчайшие расстояния $d_{\rm UU}$ до двух соседних атомов металла одной и той же цепочки (рис. 2а-2г) лежат в области 5.80-6.85 Å и во всех случаях отвечают наиболее коротким расстояниям U…U в структуре кристалла. Отметим, что, несмотря на одинаковую топологию цепей $[UO_2(C_3H_2O_4)_2]^{2-}$, период повторяемости вдоль оси цепочки (т на рис. 2a, 2в, табл. 3), который в I-V совпадает с одним из параметров элементарной ячейки, зависит от природы внешнесферных катионов R, сильно влияющих на степень гофрировки уранилмалонатных цепочек. Например, в структуре II при R = Rb из-за слабой гофрировки t = 12.64 Å и близко к 2 × $d_{\rm UU}$ = 2 × 6.85 = 13.7 Å (рис. 2a), тогда как из-за сильной гофрировки при R = Ba (структура **V**) t = 6.86 Å и сопоставимо уже с $d_{UU} = 5.80$ Å, а не с удвоенным значением d_{UU} .

Отметим, что единственным известным бисоксалатсодержащим комплексом уранила, принадлежащим группе $AT^{11}B^{01}$ ($A = UO_2^{2+}$), является (NH₄)₂[UO₂(C₂O₄)₂] (VII) [13]. В структуре VII с $V_1 \sim 261 \text{ Å}^3$ комплексы [UO₂(C₂O₄)₂]²⁻ имеют цепочечное строение, аналогичное для I–V, при этом в урановой подрешетке каждый атом урана также имеет 14 соседей с d_{UU}^{14} в области 5.93– 9.75 Å, но в отличие от I–V в структуре VII отсутствует гофрировка ураниланионных цепочек. Интересно, что в ПВД атома металла в U-подрешетке структуры VII кратчайшее расстояние U…U (5.93 Å) отвечает атомам урана двух соседних цепочек, тогда как период повторяемости вдоль оси цепочки t (6.31 Å) является только вторым по величине расстоянием.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (проект № 02.740.11.0275).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Bruker*. APEX2 softwarwe package, Bruker AXS Inc., 5465, East Cheryl Parkway, Madison, WI 5317. 2006.
- SAINT-Plus. Version 7.23. Bruker AXS Inc. Madison, WI, USA. 2007.
- 3. SADABS. Bruker AXS Inc. Madison, WI, USA. 2004.
- 4. *Sheldrick G.M.* // Acta Cryst. A. 2008. V. 64. № 1. P. 112.
- 5. Сережкин В.Н., Блатов В.А., Шевченко А.П. // Координац. химия. 1995. Т. 21. № 3. С. 163.
- Сережкин В.Н., Сережкина Л.Б. // Вестн. СамГУ. 2006. № 4(44). С. 129.
- 7. Serezhkin V.N., Vologzhanina A.V., Serezhkina L.B. et al. // Acta Cryst. B. 2009. V. 65. № 1. P. 45.
- Сережкин В.Н., Михайлов Ю.Н., Буслаев Ю.А. // Журн. неорган. химии. 1997. Т. 42. № 12. С. 2036.
- 9. Cambridge structural database system. Version 5.30. University of Cambridge, UK, 2009.
- 10. *Rojas R.M., Del Pra A., Bombieri G., Benetollo F. //* J. Inorg. Nucl.Chem. 1979. V. 41. № 4. P. 541.
- Bombieri G., Benetollo F., Forsellini E., Del Pra A. // J. Inorg. Nucl.Chem. 1980. V. 42. № 10. P. 1423.
- 12. Sheming L.U., Yanxiong K.E., Jianmin L.I. et al. // Cryst. Res. Technol. 2003. V. 38. № 11. P. 1004.
- Alcock N.W. // J. Chem. Soc. Dalton. Trans. 1973. № 16. P. 1614.