_ СТРУКТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.736

СИНТЕЗ И РЕНТГЕНОСТРУКТУРНОЕ ИССЛЕДОВАНИЕ $[UO_2(NO_3)_2(H_2O)_2] \cdot 2C_{12}H_{18}O$

© 2012 г. Л. Б. Сережкина, А. В. Вологжанина^{*}, Е. С. Клынин, А. А. Корлюков^{*}, И. К. Моисеев^{**}, В. Н. Сережкин

Самарский государственный университет E-mail: Lserezh@ssu.samara.ru

* Институт элементоорганических соединений РАН, Москва ** Самарский государственный технический университет Поступила в редакцию 05.04. 2011 г.

Осуществлен синтез и проведено ИК-спектроскопическое и рентгеноструктурное исследование кристаллов $[UO_2(NO_3)_2(H_2O)_2] \cdot 2C_{12}H_{18}O$. Структура образована нейтральными островными группировками $[UO_2(NO_3)_2(H_2O)_2]$, относящимися к кристаллохимической группе $AB^{01}_2M_2^1$ ($A = UO_2^{2+}$, $B^{01} = NO_3^-$, $M^1 = H_2O$) комплексов уранила, и молекулами 1-адамантилметилкетона. С помощью полиэдров Вороного–Дирихле рассмотрены особенности объединения комплексов $[UO_2(NO_3)_2(H_2O)_2]$ и молекул 1-адамантилметилкетона в структуре кристаллов за счет системы водородных связей.

Сведения о строении комплексов уранила с производными адамантана, сохраняющими углеродный каркас C_{10} , ограничены данными о двух соединениях: $[UO_2(C_{12}H_{14}O_4)(H_2O)] \cdot H_2O$ ($C_{12}H_{14}O_4 - 1,3$ -дикарбоксилатоадамантан) [1] и $[UO_2(C_{15}H_{13}O_2)_2(C_{12}H_{19}NO)] \cdot CH_3OH$ ($C_{12}H_{19}NO - N$ -адамантилацетамид) [2].

При изучении взаимодействия нитрата уранила и 1-адамантилметилкетона (Admc) в водном растворе синтезировано новое соединение состава $UO_2(NO_3)_2 \cdot 2H_2O \cdot 2C_{12}H_{18}O$ (I), результаты ИК-спектроскопического и рентгеноструктурного исследования которого представлены в настоящей работе.

Синтез. 0.502 г (1 ммоль) $UO_2(NO_3)_2 \cdot 6H_2O$ и 0.355 г (2 ммоль) Admc ($C_{12}H_{18}O$) растворили в 20 мл этанола. Из полученного раствора через 2– 3 ч выделилось бесцветное вещество, которое представляло собой исходный Admc. Медленная кристаллизация на воздухе при комнатной температуре маточного раствора привела через четыре– пять дней к формированию желтых пластинчатых кристаллов состава $UO_2(NO_3)_2 \cdot 2H_2O \cdot 2C_{12}H_{18}O$. Тот факт, что образованию соединения I при исходном стехиометрическом соотношении реагентов предшествует выделение некоторого количества одного из исходных реагентов, свидетельствует об инконгруэнтной растворимости I.

ИК-спектр I измерен при комнатной температуре в диапазоне 400-4000 см⁻¹ на фурье-спектрометре Spectrum 100. Образцы готовили прессованием таблеток с KBr. Отнесение полос погло-

щения проведено с учетом [3, 4] и представлено в табл. 1. Кристаллографические характеристики, параметры рентгеноструктурного эксперимента и окончательные значения факторов недостоверности приведены в табл. 2. Экспериментальный набор 7446 отражений получен на дифрактометре Bruker APEX II [5]. При обработке исходного массива экспериментальных интенсивностей использовали программу SADABS [6]. Структура решена прямым методом, все неводородные атомы локализованы в разностных синтезах электронной плотности и уточнены по F_{hkl}^2 в изотропном приближении, за исключением атома урана по причине высокой разупорядоченности соединения. Атомы водорода найдены геометрически и уточнены в изотропном приближении в модели жесткого тела с $U_{iso}(H) = 1.5 U_{eq}(X_i)$ для метильных групп и молекулы воды и $U_{iso}(H) = 1.2U_{eq}(X_{ii})$ для остальных атомов углерода, где $U_{ea}(X)$ – эквивалентные тепловые параметры атома, с которым связан атом водорода. Все расчеты проведены по комплексу программ SHELXTL ver. 5.10 [7]. Основные длины связей и величины валентных углов представлены в табл. 3. Координаты атомов и величины тепловых параметров депонированы в

В ИК-спектре I присутствуют характеристические полосы поглощения ионов UO_2^{2+} , координированной нитратогруппы, молекул воды и *Admc*. Отнесение полос поглощения в ИК-спектре (табл. 1) находится в полном соответствии с со-

Кембриджском банке структурных данных

(CCDC № 811971).

Волновые числа, см $^{-1}$	Отнесение
3399 ср.) v(H O)
3124 ср.	$\int V(\Pi_2 O)$
2924 пл.	
2910 c.	$V(C-H) B CH_2$
2853 c.	n engipyman
1694 c.	ν(C=O)
1647 сл.	δ(H ₂ O)
1508 cp.	$v_{as}(NO_2)$
1452 cp.	$v_{as}(NO_2), \delta(HCH)$
1404 cp.	
1384 c.	$V_{as}(1,0_2)$
1326 о.сл.	ν (C–C), ω (CH ₂)
1285 cp.	$\left(\right)$ γ (NO)
1252 сл.	$\int V_{s}(1 \vee O_{2})$
1183 о.сл.	$\delta_r(CH_3)$
1104 cp.	δ(HCC)
1085 cp.	ρ(CH ₃)
936 cp.	$v_{as}(UO_2)$
806 о.сл.	$\delta(NO_2)_{BHEIIJOCK}, \nu(C-C)$
744 о.сл.	δ(NO ₂)
670 cp.	δ(CCC)
530 cp.	?

Таблица 1. Волновые числа и отнесение колебаний в ИК-спектре [UO₂(NO₃)₂(H₂O)₂] · 2C₁₂H₁₈O

Таблиі	1a 2.	Кристаллог	рафи	ческие	данные,	, парамет-
ры	эксг	іеримента	И	уточн	ения	структуры
$[UO_2($	NO_3)	$(H_2O)_2] \cdot 20$	$C_{12}H_1$	O_8		

550 c p.	•	
Примечание. О.с. – очень с няя, сл. – слабая.	ильная, с	– сильная, ср. – сред-

ставом и приведенными ниже результатами рентгеноструктурного анализа (РСА) монокристаллов. Число полос, генетически связанных с колебаниями нитратогруппы, и их положение на шкале волновых чисел (табл. 1) практически совпадают с таковыми в спектре гексагидрата нитрата уранила [3] и говорят о ее бидентатно-циклической координации ионом уранила в структуре I. Незначительное понижение частоты высокохарактеристического колебания v(C=O) 1-адамантилметилкетона до 1694 см⁻¹ (по сравнению с поглощением при 1700 см⁻¹ в ИК-спектре свободного Admc [4]) указывает на то, что Admc играют в структуре I роль внешнесферных молекул. Слабый сдвиг (на 6 см⁻¹) частоты колебаний карбонильных групп в низкочастотную область обусловлен, видимо, участием атомов кислорода карбонильных групп (по данным РСА атомы О11 и О12) в образовании водородных связей. Валентное антисимметричное колебание (v₃) группы

 UO_2^{2+} проявляется при 936 см⁻¹.

Координационными полиэдрами атомов урана являются незначительно искаженные гексаго-

Сингония, пр. гр., Z	Моноклинная, С2, 2
<i>a</i> , <i>b</i> , <i>c</i> , Å	10.3481(5), 26.2652(15), 6.5607(3)
β, град	128.773(1)
<i>V</i> , Å ³	1390.2(1)
D_x , г/см ³	1.879
Излучение, λ, Å	MoK_{α} , 0.71073
μ , mm ⁻¹	5.903
<i>Т</i> , К	100(2)
Размеры кристалла, мм	$0.18 \times 0.12 \times 0.07$
Дифрактометр	Bruker APEX II [3]
Тип сканирования	ω-сканирование
Учет поглощения, T_{\min}, T_{\max}	Полуэмпирический, 0.249, 0.497
θ_{max} , град	27.49
Пределы h, k, l	$-13 \le h \le 13, -33 \le k \le 34, \\ -8 \le l \le 8$
Число отражений: измеренных/независимых $(N_1), R_{int}/c I > 2\sigma(I) (N_2)$	7446/3212, 0.0362/3209
Метод уточнения	МНК по <i>F</i> ²
Число параметров	160
Весовая схема	$1/[\sigma^2(F_o^2) + (0.0030P)^2 +$
	$+0.0000P$], $P = (F_o^2 + 2F_c^2)/3$
Факторы недостоверности:	
<i>wR</i> ₂ по <i>N</i> ₁	0.0399
<i>R</i> ₁ по <i>N</i> ₂	0.0224
S	0.993
$\Delta \rho_{max} / \Delta \rho_{min}$, $3 / Å^3$	1.355 /-1.173
Программы	SADABS [6], SHELXTL ver. 5.10 [7]

нальные бипирамиды UO₈, на главной оси которых находятся атомы кислорода ионов уранила. Уранильная группа близка к линейной (угол O=U=O составляет 177.4°), но существенно не равноплечна: длины связей U=O составляют 1.72 и 1.79 Å. В экваториальной плоскости каждой группы UO_2^{2+} размещаются два нитрат-иона и две молекулы воды, выступающие в роли соответственно бидентатно-циклических (B⁰¹) и монодентатных концевых (*M*¹) лигандов. Обозначения типов координации лигандов даны в соответствии с [8]. В электронейтральных одноядерных комплексах [UO₂(NO₃)₂(H₂O)₂] молекулы воды располагаются в транс-положении друг относительно друга в экваториальной плоскости бипирамиды UO₈ (рис. 1). Объем полиэдра ВороногоДирихле (ВД) атома урана (9.4 $Å^3$), имеющего форму гексагональной призмы, согласуется со средним значением 9.2(3) Å³, установленным для атомов U(VI) в окружении атомов кислорода [9]. Телесные углы, соответствующие восьми граням полиэдра ВД, общим для атома урана и координированных атомов кислорода, указаны в табл. 3. Нитрат-ион имеет плоское строение, выступая в качестве бидентатно-циклического лиганда (тип координации **В**⁰¹). Основной структурной единицей кристалла I являются моноядерные нейтральные комплексы $[UO_2(NO_3)_2(H_2O)_2]$, между которыми размещаются внешнесферные молекулы Admc. Связывание комплексов $[UO_2(NO_3)_2(H_2O)_2]$ и молекул Аdmc в каркас осуществляется за счет системы водородных связей, в образовании которых участвуют атомы кислорода и водорода молекул воды и Admc, а также атомы кислорода нитратионов и атомы водорода Аdmc. Характеристики важнейших водородных связей указаны в табл. 4. Отметим, что в структуре I как комплексы $[UO_2(NO_3)_2(H_2O)_2]$, так и обе кристаллографически разные молекулы Admc (одна включает атомы О11, С1-С12 и Н5-Н22, а другая О12, С13-С24 и Н23-Н40) равновероятно разупорядочены по двум позициям (две ориентации комплекса $[UO_2(NO_3)_2(H_2O)_2]$ показаны на рис 1). Геометрические характеристики молекул Admc хорошо согласуются с установленными для них в работе [10] (код {PUSDEM} в Кембриджской базе данных [11]) и в статье не приводятся.

Габлица З.	Основные	геометрические	параметры
труктуры	$[UO_2(NO_3)_2($	$[H_2O)_2] \cdot 2C_{12}H_{18}O$	

Связь	d, Å	$\Omega,\%^*$	Угол	ω, град
Γ	ексагональн	ные бипир	амиды UO ₂	D ₆
U-01	1.724(12)	22.52	O1U1O2	177.4(9)
U-02	1.793(13)	21.48	O6U1O8	51.0(4)
U-03	2.510(4)	8.60	O10U1O8	65.0(4)
U-05	2.503(3)	8.92	O10U1O3	64.0(4)
U-06	2.504(12)	8.81	O3U1O5	51.0(4)
U-08	2.508(14)	8.57	O5U1O9	65.0(4)
U-09	2.438(14)	10.48	O9U1O6	65.0(4)
U-010	2.425(13)	10.62		
	Hı	итратогру	ппы	
N1-06	1.254(17)	29.50	O6N1O7	127.6(15)
N1-07	1.190(17)	27.88	O7N1O8	118.7(13)
N1-08	1.323(19)	24.22	O6N1O8	113.7(13)
N2-O3	1.300(17)	28.38	O3N2O4	117.5(13)
N2-O4	1.252(18)	25.26	O4N2O5	126.1(14)
N2-O5	1.238(19)	25.90	O3N2O5	116.2(14)

* Ω — телесный угол (выражен в процентах от 4 π ср), под которым общая грань полиэдров ВД соседних атомов видна из ядра любого из них.

На основе полученных результатов координационную формулу I следует представить в виде $[UO_2(NO_3)_2(H_2O)_2] \cdot 2C_{12}H_{18}O$, а кристаллохими-

Рис. 1. Две независимые молекулы 1-адамантилметилкетона (слева) и комплекс $[UO_2(NO_3)_2(H_2O)_2]$ (справа), которые равновероятно разупорядочены в структуре I по двум положениям (для комплекса одна из ориентаций показана пунктиром). Номера атомов C и H не указаны.

КРИСТАЛЛОГРАФИЯ том 57 № 2 2012

Таблица 4.	Параметры водородных	с связей в структуре I	Ĺ
------------	----------------------	-------------------------------	---

Контакт D–Н…А*	Расстояние D…A, Å	Расстояние Н…А, Å	Угол D—Н…А, град
O9–H1…O12 a	2.14(2)	1.94	168
O9-H2…O12 b	2.77(2)	1.69	111
O10–H3…O11c	2.14(2)	1.91	160
O10-H4…O11b	2.72(2)	1.72	108
C15-H25…O7 d	3.20(2)	2.25	161
C2-H5O5	2.32(2)	1.80	109
С2-Н6…О5	2.32(2)	2.05	93
C21-H34···O8	2.31(2)	1.82	107
C21-H35…O8	2.31(2)	2.01	94

* Коды симметрии: **a** – *x* + 1, *y*, *z* + 1; **b** – –*x*, *y*, –*z*; **c** – *x* – 1, *y*, *z* – 1; **d** – *x*, *y*, *z* + 1.

ческую формулу комплекса как $AB_2^{01}M_2^1$ ($A = UO_2^{2+}$, $B^{01} = NO_3^-$, $M^1 = H_2O$).

Изученный кристалл I является представителем группы кристаллических сольватов состава $[UO_2(NO_3)_2(H_2O)_2] \cdot nL$, в структуре которых роль внешнесферных электронейтральных лигандов L могут играть как молекулы воды, так и органические молекулы, в частности циклические спирты или краун-эфиры (табл. 5). Заметим, что известна и структура $[UO_2(NO_3)_2(H_2O)_2]$, не содержащая внешнесферных лигандов L. Стабильность одноядерных комплексов $[UO_2(NO_3)_2(H_2O)_2]$, конгруэнтно кристаллизующихся в многочисленных изученных водно-солевых системах $R^{z+}-UO_2^{2+} NO_{3}^{-}-H_{2}O-L$, которые различаются природой катионов R и/или молекул L [13], объяснена с позиций правила 18-ти электронов в соединениях уранила [14]. Обычно в структуре комплексов $[UO_2(NO_3)_2(H_2O)_2]$ нитрат-ионы (или молекулы воды) находятся в *транс*-положении друг к другу в экваториальной плоскости иона уранила с

Рис. 2. Строение комплексов [UO₂(NO₃)₂(H₂O)₂] с *транс-* (а) и *цис-* (б) размещением нитрат-ионов (или молекул воды). Атомы кислорода линейного иона

UO₂²⁺ (совпадают в проекции с атомом урана) и атомы водорода молекул воды не указаны.

гексагонально-бипирамидальной координацией атома U(VI) (рис. 2а). Двумя известными исключениями являются структуры IV и XVI (табл. 5), в которых химически однаковые лиганды располагаются в *цис*-, а не *транс*-положении (рис. 2б). Независимо от симметрии кристаллов и природы молекул L геометрические характеристики урансодержащих комплексов в известных структурах [UO₂(NO₃)₂(H₂O)₂]·*nL* практически совпадают (табл. 5).

С точки зрения классической кристаллохимии $[UO_{2}(NO_{3})_{2}(H_{2}O)_{2}].nL$ структуру кристаллов можно рассматривать как упаковку молекул $[UO_2(NO_3)_2(H_2O)_2]$ и *L*. Для количественного анализа специфики реализующихся упаковок с помощью комплекса программ TOPOS по методике [15] рассчитаны некоторые параметры ПВД атомов в подрешетках структуры кристаллов I-XIX (табл. 5), содержащих только атомы урана. В качестве таких параметров учитывали: N_f – число граней полиэдров ВД, которое указывает число соседних атомов U, окружающих центральный в U-подрешетке; $d_{\rm UU}$ – диапазон межатомных расстояний U-U, отвечающих всем таким атомам урана, и $V_{\rm UU}$ – объем полиэдров ВД атомов урана в U-подрешетке. Согласно полученным данным (табл. 5), в обсуждаемых кристаллах соседние атомы урана друг относительно друга располагаются на расстояниях от 5.5 до 22.8 Å. Значения $V_{\rm UU}$, которые одновременно характеризуют и объем одной формульной единицы состава $[UO_2(NO_3)_2(H_2O)_2] \cdot nL$, изменяются в широком диапазоне от ~200 до 2500 Å³. Число граней полиэдров ВД атомов урана в U-подрешетках равнялось 12, 14 или 16.

Анализ комбинаторно-топологического типа полиэдров ВД (огранка четырех обнаруженных типов изображена на рис. 3 с помощью проекций Шлегеля [16]) показал, что при $N_f = 12$, которое реализуется только в трех структурах (XVII-XIX в табл. 5), полиэдры имеют восемь четырехугольных и четыре шестиугольных грани (тип 4⁸6⁴, рис. За) и являются "вытянутыми ромбододекаэдрами", представляющими собой один из пяти параллелоэдров Федорова [17]. Наиболее сложный полиэдр ВД с $N_f = 16$, который имеет грани с тремя, четырьмя, пятью, шестью и восемью вершинами (тип 3⁴4²5⁴6²8⁴, рис. 36), реализуется в единственной структуре - моноклинной модификации $[UO_2(NO_3)_2(H_2O)_2] \cdot H_2O$. В остальных соединениях независимо от $V_{\rm UU}, d_{\rm UU}$ и симметрии кристаллов (триклинной, моноклинной или ромбической) в подрешетках из атомов урана $N_f = 14$. Чаще всего (67% выборки) такие полиэдры ВД представляют собой искаженные федоровские кубооктаэдры, которые имеют по шесть четырехугольных и восемь шестиугольных граней (тип

	4 A A	· · ·	4 , ,							
Соеди- нение	Состав соединения	Код соединения в базах [11, 12]	$d(U=O), \hat{A}$	$d(U-O_N),$	$d(U-O_W),$	ω(OUO), град	N_{f}	$d_{\mathrm{UU}}, \mathrm{\AA}$	$V_{\mathrm{UU}}, \mathrm{\AA}^3$	KTT
Ι	$[UO_2(NO_3)_2(H_2O)_2] \cdot 2C_{12}H_{18}O$	Данная работа	1.76	2.51	2.43	177.5	14	6.56-14.13	695.2	4668
II	$[UO_2(NO_3)_2(H_2O)_2]$	26242	1.75	2.51	2.46	180.0	14	5.49-8.28	199.0	$4^{6}6^{8}$
			1.76	2.49	2.45	180.0	14	5.49-8.28	199.0	$4^{6}6^{8}$
III	$[UO_2(NO_3)_2(H_2O)_2] \cdot H_2O$	281214	1.74	2.49	2.45	180.0	14	5.75-8.37	224.8	$4^{6}6^{8}$
			1.75	2.51	2.44	180.0	14	5.75-8.37	224.8	4 ⁶ 6 ⁸
IV	$[UO_2(NO_3)_2(H_2O)_2] \cdot H_2O$	281553	1.76	2.50	2.47	178.6	16	5.53-9.3	226.8	$3^4 4^2 5^4 6^2 8^4$
^	$[\mathrm{UO}_2(\mathrm{NO}_3)_2(\mathrm{H}_2\mathrm{O})_2]\cdot 4\mathrm{H}_2\mathrm{O}$	23825	1.76	2.53	2.40	179.0	14	6.10-8.95	304.0	4 ⁶ 6 ⁸
Ν	$[{\rm UO}_2({\rm NO}_3)_2({\rm H}_2{\rm O})_2]\cdot {\rm C}_8{\rm H}_{20}{\rm O}_4$	TXDCUN11	1.77	2.50	2.42	180.0	14	6.77-11.62	434.2	$4^{6}6^{8}$
IIV	$[UO_2(NO_3)_2(H_2O)_2]\cdot C_{10}H_{20}O_5$	KAPFOW	1.69	2.49	2.43	178.8	14	7.95-11.86	523.0	$4^{6}6^{8}$
VIII	$[{\rm UO}_2({\rm NO}_3)_2({\rm H}_2{\rm O})_2]\cdot {\rm C}_{12}{\rm H}_{24}{\rm O}_6$	ODOAUN10	1.75	2.49	2.44	180.0	14	8.32-12.17	579.4	4 ⁶ 6 ⁸
XI	$[UO_2(NO_3)_2(H_2O)_2]\cdot C_{12}H_{24}O_6\cdot 2H_2O$	HOCXUR	1.69	2.48	2.43	180.0	14	7.53-12.97	627.9	4 ⁶ 6 ⁸
X	$[UO_2(NO_3)_2(H_2O)_2]\cdot C_{12}H_{24}O_6\cdot 2H_2O$	HOCXUR10	1.70	2.50	2.49	180.0	14	7.57-13.14	639.6	$4^{6}6^{8}$
XI	$[{\rm UO}_2({\rm NO}_3)_2({\rm H}_2{\rm O})_2]\cdot 2{\rm C}_8{\rm H}_{18}{\rm O}_2$	AZOTAK	1.75	2.50	2.41	179.9	14	8.59-12.65	658.2	$4^{6}6^{8}$
XII	$[UO_2(NO_3)_2(H_2O)_2]\cdot 2C_{15}H_{24}O_6\cdot 2H_2O$	KESQAB	1.75	2.51	2.41	180.0	14	8.86-16.95	1021.2	$4^{6}6^{8}$
XIII	$[UO_2(NO_3)_2(H_2O)_2]\cdot 4,5C_{20}H_{42}O_2$	AZOTEO	1.75	2.52	2.41	179.8	14	11.42-22.79	2501.5	4 ⁶ 6 ⁸
XIV	$[UO_2(NO_3)_2(H_2O)_2] \cdot C_{14}H_{20}O_5$	JEXYOA	1.74	2.49	2.41	178.1	14	7.84-13.00	561.7	$4^{4}5^{4}6^{6}$
XV	$[UO_2(NO_3)_2(H_2O)_2] \cdot C_{14}H_{20}O_5$	JEXYOA	1.77	2.51	2.43	177.5	14	7.85–13.04	564.6	$4^{4}5^{4}6^{6}$
ΙΛΧ	$[UO_2(NO_3)_2(H_2O)_2]\cdot C_{36}H_{36}N_{24}O_{12}\cdot 7H_2O$	TORWUT	1.76	2.53	2.43	178.9	14	10.33-17.59	1350.4	$4^{4}5^{4}6^{6}$
IIVX	$[UO_2(NO_3)_2(H_2O)_2]\cdot 2C_{14}H_{20}O_5$	VUGGEJ	1.76	2.51	2.44	180.0	12	8.32-12.88	920.2	$4^{8}6^{4}$
IIIAX	$[UO_2(NO_3)_2(H_2O)_2]\cdot 2C_{14}H_{20}O_5$	VUGGEJ01	1.75	2.50	2.43	180.0	12	8.31-12.89	920.9	$4^{8}6^{4}$
XIX	$[UO_2(NO_3)_2(H_2O)_2]\cdot 2C_{20}H_{24}O_6$	SIDYOT	1.76	2.51	2.45	180.0	12	8.58-14.16	1132.5	$4^{8}6^{4}$
* При на d(U-O _N)	аличии в структуре кристаллографически разн) и d(U-O _w) – среднее расстояние от урана до	іых комплексов [U атома кислорода со	O ₂ (NO ₃) ₂ ()	H ₂ O) ₂] (соел нно иона vpa	(инения II <i>v</i> нила. нитра	г III) указан т иона и мо	ны хара лекулы	ктеристики ка) волы. @(OUO)	кдого из н – vroл О=	их. d(U=O), -U=О в ионе

Таблица 5. Некоторые характеристики структуры сольватов [UO₂(NO₃)₂(H₂O)₂] $\cdot nL^*$

8 КРИСТАЛЛОГРАФИЯ том 57 № 2 2012

уранила. *N_f* – число граней полиэдра ВД атома урана в подрешетке из атомов урана, $d_{\rm UU}$ – диапазон межатомных расстояний U–U, отвечающих атомам урана, по-лиэдры ВД которых имеют общие грани, $V_{\rm UU}$ – объем полиэдра ВД атома урана в U-подрешетке, КТТ – комбинаторно-топологический тип полиэдра ВД атома ура-на в U-подрешетке.

Рис. 3. Проекции Шлегеля полиэдров Вороного–Дирихле с комбинаторно-топологическим типом $4^{8}6^{4}$ (a), $3^{4}4^{2}5^{4}6^{2}8^{4}$ (б), $4^{6}6^{8}$ (в) и $4^{4}5^{4}6^{6}$ (г).

 $4^{6}6^{8}$, рис. 3в), а в трех случаях являются 14-гранниками типа $4^{4}5^{4}6^{6}$ (рис. 3г). Повышенная частота реализации полиэдров ВД с 14-ю гранями в подрешетках из атомов урана хорошо согласуется с моделью структуры кристалла как редчайшего покрытия пространства "мягкими" (способными легко деформироваться или взаимопроникать) сферами фиксированного объема [15]. Однако выявить факторы, обусловливающие в некоторых случаях образование подрешеток с N_f = 12 или 16, к сожалению, пока не удается.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (проект 02.740.11.0275).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Rusanova J.A., Rusanov E.B., Domasevitch K.V.* // Acta Cryst. C. 2010. V. 66. № 8. P. m207.
- Umeda K., Zukerman-Schpector J., Isolani P.C. // Polyhedron. 2006. V. 25. № 12. P. 2447.
- Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. 536 с.
- 4. Багрий Е.И. Адамантаны: получение, свойства, применение. М.: Наука, 1989. 264 с.
- 5. Bruker APEX2 software package, Bruker AXS Inc., 5465, East Cheryl Parkway, Madison, WI 5317. 2005.
- 6. *Sheldrick G.M.* SADABS v.2.01, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, Wisconsin, USA, 1998.
- 7. *Sheldrick G.M.* // Acta Cryst. A. 2008. V. 64. № 1. P. 112.
- Serezhkin V.N., Vologzhanina A.V., Serezhkina L.B. et al. // Acta Cryst. B. 2009. V. 65. № 1. P. 45.
- 9. Сережкин В.Н., Блатов В.А., Шевченко А.П. // Координац. химия. 1995. Т. 21. № 3. С. 163.
- Homan H., Herreros M., Notario R. et al. // J. Org. Chem. 1997. V. 62. № 24. P. 8503.
- 11. Cambridge structural database system. Version 5.30. Cambridge Crystallographic Data Centre. 2009.
- 12. Inorganic crystal structure database. FIZ Karlsruhe & NIST Gaithersburg. 2009.
- Комплексные соединения урана / Под ред. Черняева И.И. М: Наука, 1969. 491 с.
- 14. *Сережкина Л.Б., Сережкин В.Н.* // Журн. неорган. химии. 1996. Т.41. № 3. С. 438.
- Сережкин В.Н., Веревкин А.Г., Пушкин Д.В., Сережкина Л.Б. // Координац. химия. 2008. Т. 34. № 3. С. 230.
- Hoppe R., K
 óhler J. // Z. Kristallogr. 1988. B. 183. № 1. S. 77.
- 17. *Вайнштейн Б.К.* // Современная кристаллография. В 4-х томах. М.: Наука, 1979. Т. 1. С. 162.