КРИСТАЛЛОГРАФИЯ, 2012, том 57, № 2, с. 295-300

= СТРУКТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ =

УДК 548.737

РЕНТГЕНОСТРУКТУРНОЕ ИССЛЕДОВАНИЕ КРИСТАЛЛОВ ОРГАНИЧЕСКОГО ЛЮМИНОФОРА "ОРЛЮМ БЕЛЫЙ 520T"

© 2012 г. Б. М. Болотин, Я. А. Михлина, С. А. Архипова, Л. Г. Кузьмина*

Научно-исследовательский институт химических реактивов и особо чистых химических веществ, Москва E-mail: bolotin70@yandex.ru

*Институт общей и неорганической химии РАН, Москва E-mail: kuzmina@igic.ras.ru Поступила в редакцию 17.12.2010 г.

Определена кристаллическая и молекулярная структура двух кристаллических форм (светло-желтой 1 и желтой 2) N-(2-(4-оксо-4H-бензо[d][1,3]оксазин-2-ил)фенил)нафталин-2-сульфонамида (Орлюм белый 520Т), представляющего органический люминофор с аномально большим сдвигом Стокса. Кристалл 2 является сольватом с *пара*-ксилолом, кристалл 1 представляет несольватированную форму. Геометрия молекулы в 1 и 2 различается только ориентацией SO₂Ar-заместителя. Распределение длин связей в плоском фрагменте молекулы в кристаллах 1 и 2 практически совпадает, но отмечается тенденция к систематическому удлинению связей в бензольном цикле, несущем NH–SO₂Ar, в кристалле 1 по сравнению с соответствующими связями в кристалле 2, что может быть объяснено особенностями кристаллической упаковки. В 2 молекулы образуют стопочный димер с π -стэкинг-взаимодействием двух плоских сопряженных трициклических систем. Перенос заряда в такой системе объясняет углубление окраски в этих кристаллах и наблюдаемое различие оптических свойств 1 и 2.

ВВЕДЕНИЕ

N-(2-(4-оксо-4H-бензо[*d*][1,3]оксазин-2-ил)фенил)нафталин-2-сульфон-амид — органический люминофор с аномально большим сдвигом Стокса, известный как Орлюм белый 520Т. Обнаружено, что при кристаллизации из полярного растворителя (уксусная кислота) он образует светложелтые кристаллы с зеленой флуоресценцией (кристаллы 1, λ_{max} 520 нм), а из неполярного растворителя (*п*-ксилол) — желтые кристаллы с желтой флуоресценцией (кристаллы 2, λ_{max} 540 нм).

Спектры флуоресценции этих форм приведены на рис. 1.

Предположим, что, поскольку молекула этого соединения является потенциально конформерной, причиной цветовых и люминесцентных различий кристаллов 1 и 2 может быть существование двух конформерных форм. Априори можно допустить следующие два варианта конформерных перехода.

Вариант 1 — внутримолекулярная водородная связь N–H…N или N–H…O

Вариант 2 – бензоидно-хиноидное равновесие

Рис. 1. Спектры флуоресценции кристаллов 1 и 2.

С целью проверки этого предположения проведено рентгеноструктурное исследование кристаллов 1 и 2.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Характеристики рентгеноструктурного эксперимента, кристаллографи-ческие параметры и результаты уточнения структуры приведены в табл. 1.

Обе структуры расшифрованы прямыми методами, и неводородные атомы уточнены в анизотропном приближении. Атомы водорода найдены в разностном синтезе Фурье. В структуре 1 все атомы водорода уточняли в изотропном приближении. В структуре 2 в изотропном приближении уточняли позиционные и температурный параметры только атома Н1А, связанного с атомом азота, а остальные атомы Н основной молекулы – по модели "наездника". В кристаллах 2 обнаружена неупорядоченная сольватная молекула пара-ксилола, занимающая центросимметричную позицию. Неупорядоченность носит ротационный характер: одна компонента неупорядоченной системы получается при повороте молекулы в своей плоскости на угол ~60°. Положения атомов водорода сольватной молекулы были рассчитаны геометрически, они включены в окончательное уточнение в фиксированных позициях с фиксированными значениями температурных параметров.

Координаты атомов и другие экспериментальные данные депонированы в Кембриджском банке структурных данных (ССDС № 812266 (1) и 812267 (2)).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Строение молекулы в кристалле **1** показано на рис. 2. Молекула является таутомером 2a, в котором "подвижный" протон локализован при атоме азота N2, связанном с электроноакцепторным SO₂Ar-заместителем. Атом водорода H(1A) объективно выявлен из разностного ряда электронной плотности. Оксазиноновый гетероцикл ориентирован таким образом, что внутримолекулярная водородная связь образуется с атомом N1. Параметры этой водородной связи следующие: рассто-

Рис. 2. Строение молекулы кристалла 1.

РЕНТГЕНОСТРУКТУРНОЕ ИССЛЕДОВАНИЕ КРИСТАЛЛОВ

Таблица 1. Кристаллографические характеристики, данные эксперимента и уточнение структуры

Кристалл	1	2	
M	428.45 481.53		
Сингония, пр. гр., Z	моноклинная, <i>P</i> 2 ₁ , 2	триклинная, <i>P</i> 1, 2	
<i>a</i> , <i>b</i> , <i>c</i> , Å	8.778(4), 5.771(3), 19.308(9)	8.851(4), 9.952(4), 13.136(5)	
<i>α</i> , <i>β</i> , <i>γ</i> , град	90, 100.446(7), 90	78.192, 85.888(6), 85.795	
<i>V</i> , Å ³	962.0(8) 1127.6(8)		
D_x , г/см ³	1.479 1.418		
Излучение; λ, Å	Mo K_{α} (0.71073) Mo K_{α} (0.71073)		
μ, мм ⁻¹	0.205 0.184		
<i>Т</i> , К	173	173	
Размер образца, мм	$0.48 \times 0.10 \times 0.01$ $0.20 \times 0.20 \times 0.20$		
Дифрактометр	Bruker SMART-APEX-2	Bruker SMART-APEX-2	
Тип сканирования	ω	ω	
Учет поглощения; T_{\min} , T_{\max}	не учитывалось	не учитывалось	
θ _{max} , град	29.00	30.000	
Пределы <i>h, k, l</i>	$-11 \le h \le 11, -7 \le k \le 7, -26 \le l \le 26$	$-12 \le h \le 12, -14 \le k \le 14, -18 \le l \le 18$	
Число отражений: измеренных/не- зависимых (N_1), R_{int} /с $I > 2\sigma(I)$ (N_2)	9512/4956/0.0750/2691	12256/6368/0.0290/4267	
Метод уточнения	МНК по <i>F</i> ²	МНК по <i>F</i> ²	
Весовая схема	$\frac{1}{[\sigma^2(F^2) + (0.0265)^2 + 0.0000P]};$ $P = (F_o^2 + 2F_c^2)/3$	$\frac{1}{[\sigma^2(F^2) + (0.0945P)^2 + 0.00P]};$ $P = (F_o^2 + 2F_c^2)/3$	
Число параметров	344	316	
Заглавная экстинкция	не учитывалась	не учитывалась	
R_1/wR_2 по N_1	0.1122/0.1388	0.0996/0.1844	
R_1/wR_2 по N_2	0.0665/0.0973	0.0642/0.1706	
S	0.911	1.109	
$\Delta \rho_{min} / \Delta \rho_{max}$, \Im / \mathring{A}^3	-0.416/0.341	-0.424/0.629	
Программы	SAINT [1] SHELXTL-Plus [2]	SAINT [1] SHELXTL-Plus [2]	

яния N2-H1A 0.79(3) Å, N1···N2 2.664(3) Å, N1···H1A 2.03(3) Å, угол при атоме водорода 137(1)°.

Фрагмент упаковки молекул в кристалле 1 представлен на рис. 3. Короткий межмолекулярный контакт между одним из атомов кислорода SO_2 -группы одной молекулы и атомом азота N1 соседней молекулы, полученной из первой трансляцией вдоль оси *b* кристалла, и соответствует диполь-дипольному взаимодействию (расстояние O···N 2.932(4) Å). За счет этого взаимодействия в кристалле формируются бесконечные цепи вдоль оси *b*.

Строение формульных единиц кристалла 2 представлено на рис. 4. В молекуле основного со-

КРИСТАЛЛОГРАФИЯ том 57 № 2 2012

единения кристалла 2, как и в молекуле 1, найдена таутомерная форма 2a. И в этой структуре "активный" атом водорода выявлен при атоме азота N2. Параметры этой внутримолекулярной водородной связи следующие: расстояния N2–H1A 0.79(3) Å, N1···N2 2.684(4) Å, N1···H1A 2.08(3) Å, угол при атоме водорода $128(1)^\circ$.

Кристаллическая упаковка 2 существенно отличается от упаковки 1; в ней формируются центросимметричные стэкинговые димеры, представленные на рис. 5. Молекула с дополнительными символами *A* в номере атома проектируется на вторую молекулу димера с дополнительными символами *B*. Расстояния от атомов C12*A*, C13*A*, C14*A*, C3*A*, N1*A*, C4*A*, C5*A*, C6*A*, N2*A* до средней

Рис. 3. Фрагмент упаковки молекул в кристалле 1.

Рис. 4. Строение формульной единицы кристалла 2; сольватная молекула *n*-ксилола неупорядочена по двум ротационно-связанным положениям.

плоскости, проведенной через атомы С7*С*, С6*С*, С5*С*, С4*С*, N1*C*, С3*C*, С14*C*, С13*C*, С12*C*, составляют соответственно 3.49, 3.445, 3.39, 3.40, 3.38, 3.39, 3.42, 3.46, 3.45 Å. Эти расстояния указывают

на значительное π - π -стэкинг-взаимодействие в таком димере (согласно [3], межплоскостные расстояния в стопочных или параллельно димерных структурах могут изменяться в пределах 3.4–3.9 Å).

КРИСТАЛЛОГРАФИЯ том 57 № 2 2012

РЕНТГЕНОСТРУКТУРНОЕ ИССЛЕДОВАНИЕ КРИСТАЛЛОВ

Рис. 5. Центросимметричный стэкинговый димер в кристалле **2** в проекции на среднюю плоскость сопряженной системы молекулы с буквенными индексами *NA* (*N* – номер атома); бензольные кольца фрагментов SO₂*Ph* удалены.

В обеих структурах параметры водородной связи обычны для систем, в которых за счет такой связи замыкается шестичленный цикл.

Различия молекул видны на рис. 6, где дано наложение молекулярных скелетов кристаллов 1 и 2 по фрагменту N1–C4–C5–C6–N2. Очевидно, что наибольшее различие связано с ориентацией $ArSO_2$ -группы: в структуре 1 торсионный угол C7–C6–N2–S1 составляет 8.4°, тогда как в структуре 2 он равен 51.5°. Поскольку у атома серы отсутствуют неподеленные электронные пары, его влияние на систему связывания в кольце C5…C10 может быть только индуктивным, а потому одинаковым при двух разных ориентациях заместителя $ArSO_2$. Это означает, что распределение длин связей в сопряженной потенциально таутомерной системе молекулы в 1 и 2 должно быть примерно одинаковым.

В табл. 2 приведены наиболее важные геометрические параметры молекулы. Различия между соответствующими длинами связей минимальны и в основном находятся в пределах экспериментальной точности. В обеих молекулах связь N1– C4 формально двойная, что соответствует найденной таутомерной форме. Распределение длин связей в бензольном кольце C5...C10 не носит систематического характера. Однако можно проследить интересную тенденцию: в 2 связи C8–C9 и C9–C10, а также связь C10–C5 длиннее, чем в 1, что может свидетельствовать о пониженной ароматичности этого кольца в 2. Это должно привести к повышению основности азота N2 и повлечь за собой уменьшение протонной подвижности атома водорода и ослабление внутримолекулярной водородной связи. К сожалению, не очень высокое качество исследованных кристаллов не дает возможности увидеть различия в прочности водородной связи, хотя видно некоторое удлинение связи N2–C6 и внутримолекулярного расстояния N2…N1 в структуре 2 по сравнению с 1. Также это отчетливо проявляется в спектрах флуоресценции: кристаллы **1**, в молекулах которых

Таблица 2. Отдельные длины связей (Å) в молекулах кристаллов 1 и 2

Бледно-желтые кристаллы (1)		Желтые кристаллы (2)	
N1-H1A	2.03(3)	N1-H1A	2.06(3)
N1-C4	1.272(4)	N1-C4	1.278(3)
C4–C5	1.472(5)	C4–C5	1.467(3)
C5–C6	1.408(5)	C5-C6	1.419(3)
C6-N2	1.405(5)	C6-N2	1.413(3)
C6–C7	1.393(5)	C6–C7	1.392(3)
С7—С8	1.374(5)	C7–C8	1.374(4)
C8–C9	1.362(6)	C8–C9	1.382(4)
C9-C10	1.363(6)	C9-C10	1.378(4)
C10-C5	1.389(5)	C10-C5	1.401(3)
N2-H1A…N1	137(1)°	$N2-H1A\cdots N1$	128(1)°

Рис. 6. Наложение молекул 1 и 2 по фрагменту N1-C4-C5-C6-N2; штриховые линии – молекула кристалла 2, сплошные линии – кристалла 1.

внутримолекулярная водородная связь должна быть прочнее, флуоресцируют в более коротковолновой части спектра, чем кристаллы **2**. В то же время в отличие от кристаллов в растворе обе формы имеют одинаковые спектры люминесценции.

Сделанные на основании экспериментальных данных заключения открывают путь к целена-правленному способу регулирования флуорес-

центных свойств данного органического люминофора-пигмента.

СПИСОК ЛИТЕРАТУРЫ

- 1. SAINT. Version 6.02A. Bruker AXS Inc. Madison, Wisconsin, USA, 2001.
- SHELXTL-Plus. Version 5.10. Bruker AXS Inc. Madison, Wisconsin, USA, 1997.
- Janiak C. // J. Chem. Soc. Dalton Trans. 2000. V. 21. P. 3885.