= СТРУКТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ =

УДК 548.737:546.733

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ПЕНТАГИДРАТА ДИ[БИС(ИМИНОДИАЦЕТАТО)КОБАЛЬТАТА(III)] СТРОНЦИЯ, Sr[uuc(N)-Co(Ida)₂]₂ · 5H₂O

© 2012 г. И. Н. Полякова, А. Л. Позняк*, В. С. Сергиенко

Институт общей и неорганической химии РАН, Москва, Россия E-mail: polyakova@igic.ras.ru * Институт физики НАН Беларуси, Минск

Поступила в редакцию 16.06.2011 г.

Проведен синтез и определена кристаллическая структура $Sr[uuc(N)-Co(Ida)_2]_2 \cdot 5H_2O(I)$. Кристаллы построены из комплексных анионов $[Co(Ida)_2]^-$, гидратированных катионов $[Sr(H_2O)_3]^{2+}$ и молекул кристаллизационной воды. Два независимых аниона расположены на поворотной оси 2 и близки по строению. Искаженную октаэдрическую координацию атомов Co^{3+} образуют два атома N и четыре атома O двух лигандов Ida^{2-} (Co–N 1.932(3) и 1.940(3), Co–O 1.879–1.899(3) Å). Катионы $[Sr(H_2O)_3]^{2+}$ неупорядоченно занимают половину позиций вблизи центров инверсии. В окружение атома Sr^{2+} помимо трех молекул воды входят пять атомов O пяти лигандов Ida^{2-} (Sr–O 2.487(3)–2.889(5) Å). Из-за разупорядочения катионов $[Sr(H_2O)_3]^{2+}$ функция лигандов Ida^{2-} в структуре изменяется от тридентатно-хелатной до пентадентатной хелатно-мостиковой. Связи Sr–O и водородные связи объединяют структурные элементы в трехмерный каркас. Проведено сравнение строения I и родственного соединения Sr[Co*Edta*]₂ · 9H₂O (II). Показано, что важную роль в различии упаковок I и II играют H-связи N–H···O в I, соединяющие комплексные анионы $[Co(Ida)_2]^-$ в плотные цепочки.

ВВЕДЕНИЕ

Моноаминополикарбоновые кислоты (иминодиуксусная H_2Ida , нитрилотриуксусная и их производные с удлиненными карбоксилатными цепочками) образуют октаэдрические комплексы состава $[ML_2]^{n-}$, в которых в координацию металла входят по одному атому N и по два атома O двух молекул L. Для таких комплексов возможна геометрическая изомерия, однако только простейший из лигандов – H₂Ida – образует устойчивые комплексы как mpahc(N)-, так и uuc(N)-типа. В литературе описаны структуры примерно полутора десятков соединений, содержащих комплексы $uc - [M(Ida)_2]^{n-}$ с разными металлами-комплексообразователями [1]. Эти комплексы близки по строению, но их сочетание с разными внешнесферными катионами приводит к широкому разнообразию архитектуры кристаллов. Близкими структурными аналогами *цис*-комплексов $[M(Ida)_2]^{n-}$ являются этилендиаминтетраацетаты [MEdta]ⁿ⁻, в которых цис-расположение иминодиацетатных фрагментов фиксировано этиленовым мостиком между атомами азота. В настоящей работе определена кристаллическая структура Sr[*цис*- $Co(Ida)_2]_2 \cdot 5H_2O$ (I). Структура родственного соединения Sr[Co*Edta*] $_2 \cdot 9H_2O$ (II) изучена ранее [2].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Комплексные анионы $[Co^{III}(Ida)_2]^-$ получены по известной методике [3, 4] окислением двухвалентного кобальта в водном растворе, содержащем CoCl₂ и H₂Ida, и выделены ионообменной хроматографией на колонке DEAE A-25 (Cl⁻) с помощью раствора SrCl₂ (0.1 моль/л) без разделения геометрических изомеров. При испарении элюата получена смесь пурпурных и темно-розовых кристаллов, содержащих *цис*(N)- и *mpaнc*(N)комплексы соответственно. Розовые кристаллы быстро выветрились на воздухе. Строение пурпурных кристаллов изучено методом рентгеноструктурного анализа.

Кристаллографические данные, характеристики эксперимента и оценки уточнения I приведены в табл. 1.

Структура расшифрована прямым методом в центросимметричной пр. гр. C2/c. Два независимых атома Со локализованы в частных позициях на поворотных осях второго порядка. Атом Sr наполовину заселяет общую позицию вблизи центра инверсии. Переход к нецентросимметричной группе Cc не выявил упорядочения в расположении атомов Sr, так что вычисления продолжены в группе C2/c. Три из четырех молекул воды (O2w, O3w и O4w) имеют заселенность позиции 0.5. Анизотропное уточнение неводородных атомов показало, что эллипсоиды тепловых колебаний

Таблица 1. Основные кристаллографические данные, параметры эксперимента и уточнения структуры $Sr[uuc-Co(Ida)_2]_2 \cdot 5H_2O$

Брутто-формула	$C_{16}H_{15}Co_2N_4O_{21}Sr$		
М	409.96		
Сингония, пр. гр., Z	Моноклинная, С2/с, 4		
<i>a</i> , <i>b</i> , <i>c</i> , Å	18.244(4), 10.034(2), 15.326(3)		
β, град	98.46(3)		
V, Å ³	2775.1(10)		
D_x , г/см ³	1.962		
Излучение; λ, Å	$MoK_{\alpha}; 0.71073$		
μ, мм ⁻¹	3.198		
<i>Т</i> , К	296(2)		
Размер образца, мм	0.24 imes 0.24 imes 0.08		
Дифрактометр	CAD4		
Тип сканирования	ω		
Учет поглощения; T_{\min}, T_{\max}	Не учитывалось		
θ_{max} , град	30		
Пределы h, k, l	$0 \le h \le 25, 0 \le k \le 14, -21 \le l \le 21$		
Число отражений: измеренных/незави- симых N_1), R_{int} /с $I > 2\sigma(I)$ (N_2)	4162 4047, 0.0562 2049		
Метод уточнения	МНК по F^2		
Весовая схема	$1/[\sigma^2(F_o^2) + (0.0694P)^2 + 2.1249P],$		
	$P = (F_o^2 + 2F_c^2)/3$		
Число параметров	226		
<i>R</i> 1/ <i>wR</i> 2 по <i>N</i> ₁	0.1357/0.1316		
<i>R</i> 1, <i>wR</i> 2 по <i>N</i> ₂	0.0405/0.1054		
S	1.015		
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im / Å^3$	-0.566/0.727		
Программы	CAD4 Express[5]; XCAD4 [6]; SHELXS86 и SHELXL97 [7]; XP [8]		

карбонильных атомов кислорода существенно вытянуты по сравнению с эллипсоидами других атомов. Попытка разделить позиции атомов O4 и O6, у которых длинная ось эллипсоида превышает короткую в ~11–12 раз, на две с одинаковой заселенностью привела к искаженной геометрии карбоксильных групп. Атомы O4 и O6 возвращены в начальные позиции, а растяжение эллипсоидов находит объяснение в структурной разупорядоченности. Атомы водорода локализованы в разностных синтезах Фурье. Все неводородные атомы уточнены в анизотропном приближении. Атомы H1N и H2N уточнены в изотропном приближении независимо, остальные атомы H – по модели наездника в идеализированных позициях

Таблица 2. Некоторые длины связей d (Å) и валентные углы ω (град) в структуре **I**

Связь/угол	d/ω	Связь/угол	d/ω
Sr1–O2 ⁽¹⁾	2.487(3)	Sr1–O2w	2.665(8)
Sr1–O4w	2.527(8)	Sr1-O8 ⁽³⁾	2.673(3)
Sr1–O3w	2.548(6)	Sr1–O6	2.873(6)
$Sr1-O2^{(2)}$	2.607(3)	Sr1–O4	2.889(5)
Co1-O1	1.884(3)	Co2–O5	1.899(3)
Co1-O3	1.882(3)	Co2–O7	1.879(3)
Co1–N1	1.932(3)	Co2-N2	1.940(3)
01–Co1–N1	85.47(13)	O5-Co2-N2	85.14(12)
O3-Co1-N1	86.78(14)	O7-Co2-N2	86.94(13)
O1–Co1–O3	92.05(13)	O5-Co2-O7	92.96(12)
O1–Co1–O1 ⁽⁴⁾	88.83(18)	O5-Co2-O5 ⁽⁴⁾	90.94(17)
O3–Co1–O3 ⁽⁴⁾	178.65(18)	O7–Co2–O7 ⁽⁴⁾	178.40(18)
N1-Co1-N1 ⁽⁴⁾	100.6(2)	N2-Co2-N2 ⁽⁴⁾	99.2(2)
$01 - Co1 - N1^{(4)}$	172.73(14)	O5-Co2-N2 ⁽⁴⁾	173.56(13)
O3–Co1–N1 ⁽⁴⁾	92.36(14)	O7-Co2-N2 ⁽⁴⁾	92.02(13)
	•	-	

Примечание. Симметрические преобразования: -x + 1, -y, -z (1); x + 1/2, y + 1/2, z (2); -x + 1, -y + 1, -z (3); -x + 1, y, -z + 1/2 (4).

с $U_{_{\rm H3O}} = 1.2 U_{_{\rm ЭКВ}}$ соответствующего неводородного атома.

Основные длины связей и валентные углы в соединении I приведены в табл. 2. Кристаллографические данные депонированы в Кембриджском банке структурных данных (ССDC № 828079).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Кристаллы I построены из комплексных анионов $[Co(Ida)_2]^-$, гидратированных катионов $[Sr(H_2O)_3]^{2+}$ и молекул кристаллизационной воды. Фрагмент структуры показан на рис. 1. Кристаллографически независимые комплексы, образованные атомами Col и Co2, имеют одинаковое строение: оба являются *цис*(N)-изомерами симметрии C_2 . Геометрические характеристики координационных октаэдров Col и Co2 фактически совпадают (табл. 2). Тридентатно-хелатные (относительно атомов Co) лиганды Ida^{2-} замыкают по два глицинатных металлоцикла. Цикл, расположенный приблизительно в координационной плоскости NCoN, имеет конформацию конверта с атомом Co в "уголке", а второй цикл уплощен.

В кристаллах *Edta*-аналога II комплексные анионы [Co*Edta*]⁻ занимают общую позицию, но их псевдосимметрия близка к C_2 . Как и в I, в II глицинатные циклы, средние плоскости которых лежат приблизительно в плоскости NCoN (так называемые *G*-циклы), сильно гофрированы, а перпендикулярные им циклы (*R*) уплощены.

Рис. 1. Фрагмент структуры **I**. Эллипсоиды тепловых колебаний показаны с вероятностью 30%. Симметрические преобразования (1)–(3) – табл. 2.

Длины связей Co-O в I и II близки, однако при переходе от $[CoEdta]^-$ к $[Co(Ida)_2]^-$ исчезает характерное для комплексов *Edta* удлинение связи в G-цикле по сравнению с R-циклом [9], интервал длин связей сужается от 1.885-1.927(4) до 1.880-1.900(2) Å. Отметим небольшое укорочение связей Со–N в II (1.920–1.928(4) Å) по сравнению с I (1.933(2) и 1.940(3) Å), которое можно объяснить увеличением электронной плотности на атомах N лиганда *Edta*⁴⁻ по сравнению с *Ida*²⁻ под воздействием положительного индуктивного эффекта этиленовой группы. Наибольшее различие в валентных углах Со-октаэдров в соединениях I и II связано с этиленовой группой лиганда *Edta*⁴⁻, которая стягивает атомы N в этилендиаминовом цикле: углы NCoN в двух независимых комплексах II составляют 90.3(2)° и 91.4(2)°, в I – 100.6(2)° и 99.2(2)°.

В кристалле I комплексные анионы $[Co(Ida)_2]^$ образуют кладку, подобную простой кубической. Комплексы с атомами Col и Co2 упаковываются раздельно в ряды, параллельные оси *c*, но чередуются в рядах *a* и *b*. Фрагмент анионного слоя, параллельного плоскости *bc*, показан на рис. 2. Каждый комплекс имеет шесть ближайших соседей — два симметрически связанных и четыре не связанных с ним. Комплексы Со1 и Со2, расположенные на одной оси 2, объединены H-связями N-H…O в цепочки (табл. 3).

Катионы Sr²⁺ и молекулы воды располагаются между анионными слоями bc. В окружение атома Sr1 входят восемь атомов кислорода, в том числе пять карбонильных атомов О пяти лигандов *Ida*²⁻ и три атома О молекул воды. Полиэдр атома Sr1 – искаженная архимедова антипризма с четырехугольными гранями О4О6О2⁽²⁾О4*w* И O8⁽³⁾O2wO3wO2⁽¹⁾. Атомы Sr1 и связанные с ними молекулы воды разупорядочены вокруг центров инверсии с координатами 1/4 1/4 1/2, 3/4 1/4 0, 3/4 3/4 1/2 и 1/4 3/4 0, занимая одну из двух позиций у каждого центра. Вблизи позиций, не занятых атомом Sr1, расположены молекулы воды ОЗw и О4w. Вероятно, замещение атомов Sr1 в половине позиций структуры на молекулы воды является причиной интенсивных тепловых колебаний карбонильных атомов кислорода, особенно O4 и O6, которые либо входят в окружение Sr1,

Рис. 2. Строение анионного слоя, параллельного плоскости *bc*. Атомы водорода не показаны. Штриховые линии – Н-связи N–H…O.

либо участвуют в Н-связях с молекулами воды (табл. 3).

Из-за разупорядочения атомов Sr1 в структуре лиганды Ida^{2-} могут образовывать от нуля до трех (комплекс Co1) или двух (комплекс Co2) связей Sr1–O. В целом функция лигандов изменяется соответственно от тридентатно-хелатной до пентадентатной хелатно-мостиковой. В совокупности связи Sr1–O и H-связи формируют трехмерный каркас.

В структуре II упаковка комплексных анионов [Co*Edta*]⁻ напоминает простую гексагональную кладку, в которой комплекс имеет пять ближайших соседей. Независимые комплексы Co1 и Co2 чередуются в узлах псевдогексагональной сетки, где каждый из них граничит с тремя симметрически не эквивалентными ему соседями. В направлении, приблизительно перпендикулярном сеткам, тянутся ряды трансляционносвязанных комплексов. Атомы О лиганов $Edta^{4-}$ непосредственно не связаны с катионом Sr^{2+} . В окружение катиона Sr^{2+} входят восемь молекул воды. Гидратированные катионы $[Sr(H_2O)_8]^{2+}$ расположены в каналах анионной кладки между псевдогексагональными сетками. Посредством многочисленных H-связей структурные единицы объединены в трехмерный каркас.

Очевидно, важную роль в формировании упаковки I играют H-связи N–H···O между лигандами Ida^{2-} , обеспечивающие плотное расположение комплексов в направлении оси *b*. Расстояния между атомами Co1 и Co2 соседних по оси *b* ком-

D–H…A	Симметрическое преобра- зование атома А	H… <i>A</i> , Å	<i>D</i> … <i>A</i> , Å	Угол <i>D</i> -Н…А, град
N1-H1N…O5	-x + 1, y, -z + 1/2	2.12(5)	2.932(4)	165(5)
N2-H2N…O1	-x + 1, y + 1, -z + 1/2	1.96(4)	2.950(4)	175(4)
O1w–H11…O3	-x + 1, -y, -z	2.13	2.978(5)	176
O1w-H12…O6	x - 1/2, -y + 1/2, z - 1/2	2.15	2.955(8)	158
O2w-H21…O1w	x + 1/2, y + 1/2, z	2.30	3.009(10)	141
O2w-H22…O7	-x + 1, -y + 1, -z	2.37	2.958(8)	127
O3w-H31…O6	-x + 3/2, -y + 1/2, -z	1.71	2.554(8)	171
O3w-H32…O4	-x + 3/2, -y + 1/2, -z	1.91	2.452(8)	121
O3w-H32…O2	x + 1/2, y + 1/2, z	2.34	3.042(7)	140
O4w-H41…O1w	-x + 1, -y, -z	2.07	2.876(10)	158
O4w-H42…O7	x + 1/2, y - 1/2, z	2.54	3.288(8)	147
O4w-H42…O8	x + 1/2, y - 1/2, z	2.44	3.087(9)	133

Таблица 3. Геометрические характеристики водородных связей в структуре I

КРИСТАЛЛОГРАФИЯ том 57 № 2 2012

плексов составляют 4.99 и 5.05 Å. Вдоль оси *с* псевдокубическая сетка растянута до расстояния 7.66 Å между Со-узлами, а расстояние Co1…Co2 между сетками увеличено до 9.12 Å. В структуре II, где комплексные анионы [Co*Edta*][–] не могут образовать прямые H-связи между собой, их расположение более равномерно: расстояния Co1…Co2 в псевдогексагональной сетке составляют 6.78, 7.22 и 7.42 Å, расстояния Co…Co между сетками равны 6.51 Å.

СПИСОК ЛИТЕРАТУРЫ

1. *Allen F.H., Kennard O., Taylor R.* // Acc. Chem. Res. 1983. V. 16. № 5. P. 146.

- 2. Засурская Л.А., Полякова И.Н., Рыбаков В.Б. и др. // Кристаллография. 2006. Т. 51. № 3. С. 481.
- 3. *Mori M., Shibata M., Kuyno E., Maruyama F. //* Bull. Chem. Soc. Jpn. 1962. V. 35. № 1. P. 75.
- 4. *Hidaka J., Shimura Y., Tsuchida R.* // Bull. Chem. Soc. Jpn. 1962. V. 35. № 4. P. 7.
- 5. CAD4 Express Software. Enraf-Nonius. Delft. The Netherlands, 1994.
- 6. *Harms K., Wocaldo S.* XCAD4 Data Reduction. University of Marburg. Marburg. Germany, 1995.
- 7. *Sheldrick G.M.* //Acta Cryst. A. 2008. V. 64. № 1. P. 112.
- 8. *Bruker SHELXTL* (XP). Bruker AXS Inc., Madison, Wisconsin, USA, 2005.
- 9. Засурская Л.А., Позняк А.Л., Полынова Т.Н. и др. // Журн. неорган. химии. 1996. Т. 41. № 10. С. 1647.