КРИСТАЛЛОГРАФИЯ, 2012, том 57, № 2, с. 284–289

СТРУКТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.736:541.49:546.562

КРИСТАЛЛИЧЕСКИЕ СТРУКТУРЫ НИТРАТО-4-БРОМ-2-[(2-ГИДРОКСИЭТИЛИМИНО)МЕТИЛ]ФЕНОЛЯТО-ИМИДАЗОЛМЕДИ И НИТРАТО-4-ХЛОР-2-[(2-ГИДРОКСИЭТИЛИМИНО)МЕТИЛ]-ФЕНОЛЯТО-ИМИДАЗОЛМЕДИ

© 2012 г. Ю. М. Чумаков, В. И. Цапков¹, Б. Я. Антосяк, Л. Г. Поповски¹, Г. Бочелли², А. П. Гуля¹, С. А. Паломарес-Санчес³

Институт прикладной физики АН Молдавии, Кишинев ¹Молдавский государственный университет, Кишинев E-mail: vtsapkov@gmail.com ²Институт материалов для электроники и магнетизма, Парма, Италия ³Автономный университет Сан Луис Потоси, Мексика

Поступила в редакцию 24.09.2010 г.

Синтезированы и исследованы методом РСА нитрато-4-бром-2-[(2-гидроксиэтилимино)метил]фенолято-имидазолмедь и нитрато-4-хлор-2-[(2-гидроксиэтилимино)метил]фенолято-имидазолмедь. Кристаллы изоструктурны. Координационным многогранником атома меди является искаженная тетрагональная пирамида, в основании которой находятся атомы фенольного и спиртового кислорода и атом азота монодепротонированной тридентатной молекулы азометина, а также атом азота имидазола. Апикальная вершина меди занята атомом кислорода нитрато-группы. Водородными связями с участием нитрато-групп комплексы объединены в трехмерный каркас.

ВВЕДЕНИЕ

Известно [1], что нитрат меди образует с имидазолом и 2-[2-(гидроксиэтилимино)метил]фенолом смешанно-лигандный двуядерный комплекс, обладающий противогрибковыми свойствами. В продолжение этой работы представляло интерес выяснить, как повлияет на состав и строение комплекса введение в салицилиденовый фрагмент указанного выше азометина галогенсодержащих заместителей. В связи с этим были синтезированы и изучены методом рентгеноструктурного анализа (РСА) структурные особенности строения нитрато-4-бром-2-[(2-гидроксиэтилимино)метил]фенолято-имидазолмеди [Cu(Im) $L^1(NO_3)$] (I) и нитрато-4-хлор-2-[(2-гидроксиэтилимино)метил]фенолято-имидазолмеди [Cu(Im) $L^2(NO_3]$ (II), гле

$$Im = N \qquad NH;$$

$$HL^{1-2} = OH \qquad OH \qquad OH \qquad R = Br (HL^1), Cl (HL^2).$$

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Соединение I получено по следующей методике: к 40 мл горячего (50–55°С) этанольного раствора, содержащего 10 ммоль 5-бромсалицилового альдегида, 10 ммоль моноэтаноламина и 10 ммоль имидазола, прибавляют раствор 10 ммоль тригидрата нитрата меди (2+) в 10 мл этилового спирта. Полученную реакционную смесь нагревают с обратным холодильником при непрерывном перемешивании на магнитной мешалке в течение 30–40 мин. При этом образуется зеленый раствор, из которого при остывании выпадает темно-зеленое мелкокристаллическое вещество (выход 78%), которое отфильтровывают на стеклянном фильтре, промывают этанолом, эфиром и сушат на воздухе. Его состав определен на основании данных элементного анализа.

Найдено, % : C – 32.91; H – 2.80; Br – 18.90; Cu – 14.27; N – 12.59.

Для C₁₂H₁₃BrCuN₄O₅ вычислено, %: C – 33.00; H – 3.00; Br – 18.30; Cu – 14.55; N – 12.83.

ИК-спектр I, см⁻¹: 3290–3270 – ν (OH)_{сп}, 1610 – ν (C=N), 1540 – ν (C–O)_{фенол}, 1050 – ν (C–O)_{сп}, 530 и 425 – ν (Cu–N), 475 – ν (Cu–O). Полосы поглощения внутрисферного нитратиона : 1290 – $\nu_1(A_1)$, 1035 – $\nu_2(A_1)$, 1530 – $\nu_4(B_1)$, 805 – $\nu_6(B_2)$.

При комнатной температуре (292 K) значение эффективного магнитного момента ($\mu_{эф}$) I составляет 1.95 μ_{5} .

Соединение II получено с выходом 73% от теоретически рассчитанного по описанной выше методике при взаимодействии этанольных раство-

КРИСТАЛЛИЧЕСКИЕ СТРУКТУРЫ

Соединение	Ι	II	
Химическая формула	C ₁₂ H ₁₃ BrCuN ₄ O ₅	C ₁₂ H ₁₃ ClCuN ₄ O ₅	
M	436.71	392.25	
Сингония, пр. гр., <i>Z</i>	Моноклинная, $P2_1/c$, 4	Моноклинная, <i>Р</i> 2 ₁ / <i>c</i> , 4	
<i>a</i> , <i>b</i> , <i>c</i> , Å	7.950(2), 10.612(2), 18.188(4)	7.860(3), 10.624(3), 18.176(2)	
α, β, γ, град	90, 97.58(3), 90	90, 98.47(1), 90	
<i>V</i> , Å ³	1521.0(5)	1501.3(7)	
D_x , г/см ³	1.907	1.735	
Излучение; λ, Å	$MoK_{\alpha}; 0.7107$	MoK_{α} ; 0.7107	
μ, см ⁻¹	4.094	1.664	
Т, К	293(2)	293(2)	
Размеры образца, мм	$0.10\times0.30\times0.35$	$0.25\times0.20\times0.15$	
Дифрактометр	Bruker P4/Smart	Bruker P4/Smart	
Тип сканирования	$\theta/2\theta$	θ/2θ	
θ _{max} , град	25.67	25.00	
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-9 \le h \le 9$ $0 \le k \le 12$ $0 \le l \le 22$	$ \begin{array}{c} -9 \le h \le 9 \\ -12 \le k \le 12 \\ -21 \le l \le 21 \end{array} $	
Число отражений: измеренных/не- зависимых (N_1), R_{int} /с $I > 2\sigma(I)$	2927/2844, 0.0497/2844	12104/2622, 0.0627/2622	
Метод уточнения	МНК	МНК	
Весовая схема*	$K_1 = 0.0908, K_2 = 1.23$	$K_1 = 0.0525, K_2 = 0.00$	
Число параметров	212	208	
$R_1/wR_2 N_1$	0.0485/0.1256	0.0717/0.0986	
$R_1/wR_2 N_2$	0.0511/0.1289	0.0413/0.0912	
S	1.046	0.972	
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}, \Im / A^3$	1.162, -0.708	0.610, -0.376	
Программы	SHELX97	SHELX97	

Таблица 1. Кристаллографические характеристики, данные эксперимента и уточнение структур I, II

*w = 1/[$\sigma^2(F_o^2) + (K_1P)^2 + K_2P$], где $P = (\max(F_o^2, 0) + 2F_c^2)/3$.

ров 5-хлорсалицилового альдегида с моноэтаноламином, имидазолом и тригидратом нитрата меди (II), взятых в молярном отношении 1 : 1 : 1 : 1.

Найдено, %: C – 36.85; H – 3.11; Cl – 8.89; Cu – 16.01, N – 14.03. Для $C_{12}H_{13} \cdot ClCuN_4O_5$ вычислено, %: C – 36.74; H – 3.34; Cl – 9.04; Cu – 16.20; N – 14.28.

ИК-спектр II, см⁻¹: 3290–3270 – $v(OH)_{cn}$, 1605 – v(C=N), 1545 – $v(C-O)_{\phi \in HO,T}$, 1050 – $v(C-O)_{cn}$, 525 и 430 – v(Cu-N), 470 – v(Cu-O). Полосы поглощения внутрисферных нитратионов : 1290 – $v_1(A_1)$, 1035 – $v_2(A_1)$, 1520 $v_4(B_1)$, 780 – $v_6(B_2)$. $\mu_{э\phi}(II) = 1.77 \mu_{\rm b}$ (292 K).

КРИСТАЛЛОГРАФИЯ том 57 № 2 2012

I и II хорошо растворимы в диметилформамиде и диметилсульфоксиде, немного растворимы в воде и спиртах, практически нерастворимы в эфире. Их монокристаллы, пригодные для PCA, получены перекристаллизацией исследуемых веществ из этанольно-диметилсульфоксидного (5 : 1) раствора.

ИК-спектры веществ регистрировали на спектрофотометре Specord M-80 (образцы в виде суспензии в вазелиновом масле). Эффективные магнитные моменты определяли методом Гуи. Расчет молярной магнитной восприимчивости с поправкой на диамагнетизм проводили, учитывая теоре-

Chaor	d, Å			
Связь	Ι	II		
Cu1–O1	1.900(3)	1.899(3)		
Cu1–O2	2.032(3)	2.038(3)		
Cu1–N1	1.942(3)	1.929(3)		
Cu1-N2	1.968(3)	1.956(3)		
Cu1–O2N	2.808(5)	2.795(4)		
O1–C3	1.307(5)	1.306(4)		
C3–C2	1.417(4)	1.420(5)		
C2–C1	1.443(5)	1.436(5)		
C1-N1	1.267(5)	1.288(4)		
N1-C8	1.478(5)	1.480(5)		
C8–C9	1.471(7)	1.480(6)		
С9-О2	1.444(6)	1.452(5)		
Угол	ω, град			
O1–Cu1–N1	93.2(1)	93.4(1)		
O1-Cu1-N2	91.0(1)	91.0(1)		
O2-Cu1-N1	83.0(1)	83.4(1)		
O2-Cu1-N2	93.0(1)	92.7(1)		
N1-Cu1-N2	174.7(1)	173.4(1)		
O1–Cu1–O2	174.6(1)	174.0(1)		
O1-Cu1-O2N	93.3(4)	93.9(1)		
O2-Cu1-O2N	82.6(4)	81.0(1)		
N1-Cu1-O2N	88.5(4)	89.8(1)		
N2-Cu1-O2N	94.4(4)	94.8(1)		
Cu1-O1-C3	126.7(3)	127.1(2)		
01-C3-C2	125.4(3)	124.8(3)		
C3-C2-C1	122.4(3)	123.0(3)		
C2-C1-N1	125.0(3)	124.5(3)		
C1-N1-Cu1	126.9(2)	127.0(3)		
Cu1–N1–C8	113.0(3)	113.6(2)		
N1-C8-C9	107.9(4)	107.8(3)		
C8-C9-O2	108.9(4)	108.9(3)		
C9-O2-Cu1	108.4(3)	107.9(2)		

Таблица 2. Некоторые межатомные расстояния и валентные углы в структурах I, II

тические значения магнитной восприимчивости органических соединений.

Структуры I и II определены методом PCA, решены прямым методом и уточнены в анизотропном приближении для не водородных атомов. Атомы водорода включены в уточнение в геомет-

рически рассчитанных позициях, а их температурные факторы $U_{\rm H}$ приняты в 1.2 раза большими, чем у связанных с ними атомов углерода и кислорода. Основные параметры эксперимента и уточнения структур приведены в табл. 1, а некоторые межатомные расстояния и валентные углы – в табл. 2. Координаты базисных атомов исследованных структур депонированы в Кембриджский банк структурных данных (CCDC № 775697, 775698). Геометрические расчеты и рисунки выполнены с помощью программы PLATON [3], для представления упаковок структур оставлены только те атомы водорода, которые участвуют в водородных связях. Для анализа полученных структур использовались данные Кембриджского банка данных (версия. 5.30) [4, 5].

ОПИСАНИЕ СТРУКТУР

Кристаллы I и II изоструктурны и содержат комплексы $[Cu(Im)L^{1}(NO_{3})]$ и $[Cu(Im)L^{2}(NO_{3})]$ (рис. 1). Атом меди координирует однократно депротонированные тридентатные молекулы 4-хлори 4-бром-2-[(2-гидроксиэтилимино)метил]-фенолов, нитрат-ион и имидазол. Координационным многогранником атома меди является искаженная тетрагональная пирамида, что подтверждается и расчетом индекса т, предложенного в [6]: $\tau = (\beta - \alpha)/60$, где величины α и β являются наибольшими углами между связями, образованными центральным атомом. Если $\tau = 0$, координация металла описывается как идеальная тетрагональная пирамида, а при $\tau = 1 - как$ идеальная тригональная бипирамида. В I и II значения τ составляют 0.0035 и 0.0067, что позволило сделать указанный выше вывод о координации атома меди. Основание тетрагональных пирамид атомов металла в исследованных комплексах составляют атомы фенольного и спиртового атомов кислорода O1, O2 и азота N1 монодепротонированных молекул HL^1 , HL^2 и атом азота N2 имидазола. Смещения этих атомов в I от определяемой ими средней плоскости составляют -0.060, -0.061, 0.063, 0.058 Å соответственно, а отклонение атома меди от этой плоскости равно 0.005 Å в противоположную сторону от атома кислорода O2N нитрато-группы. В II аналогичные смещения атомов составляют -0.085, 0.086, -0.089, -0.082 Å, а отклонение атома меди от этой плоскости равно 0.0007 Å, что почти на порядок меньше, чем подобное смещение в I. Апикальные вершины координационных пирамид Cul в I и II заняты атомами кислорода O2N нитрато-групп с расстояниями 2.808(5) и 2.795(4) Å соответственно. Углы, образуемые этими связями с атомами основания тетрагональных пирамид, лежат в пределах 82.7°-94.6° и 81.0°-94.8°. Объемы координационных пирамид атома Cu1 в обеих структурах равны 7.282 и 7.103 Å³. С противоположной стороны

Рис. 1. Кристаллографически независимые части в структурах I (а) и II (б).

от апикальной связи Cu1–O2N к атомам металла подходят атомы галогена соседних комплексов, связанных с исходными центром симметрии, с расстояниями 3.291(2) и 3.252(1) Å соответственно.

В обеих структурах наблюдается небольшой перегиб шестичленных металлоциклов по линиям O1…N1, двугранные углы между плоскостями CulO1N1 и O1C1C2C3N1 равны 4.8° и 4.1°. Следует отметить, что в родственных соединениях ди(μ -о_{фенокси})-бис{нитрато-2-[2-(гидроксиэти-л-имино)метил]фенолято-имидазолмеди(**II**)} [1], нитрато-2-[2-(гидроксиэтилимино)метил]фенолято-з-пиколинмеди(**II**) [7], 3-гидроксипро-пилсалицилальдиминатомеди [8], значения аналогичного двугранного угла равны 20.6°, 14.9° и 22.7° соответственно, тогда как в нитрато-2-

КРИСТАЛЛОГРАФИЯ том 57 № 2 2012

[2-(гидроксиэтилимино)метил]фенолятомеди [9], нитрато-2-[2-(гидроксиэтил-имино)метил]фенолято-4-пиколинмеди [10], 2-[2-(гидроксиэтилимино)-метил]фенолятомеди [11] такого перегиба наблюдается. Пятичленные металлоциклы не Cu1O2N1C8C9 в исследованных комплексах имеконформацию конверта – отклонения ЮТ атомов С9 от среднеквадратичных плоскостей (Cu1O2N1C8) равны -0.552 и 0.555 Å, тогда как смещения атомов, составляющих данную плоскость, изменяются в пределах -0.046-0.038 и -0.033-0.042 Å соответственно. В комплексах I и II имидазол (N2N3C10C11C12) развернут относительно оснований координационных многогранников центральных атомов на 7.8° и 6.5°.

В кристалле водородные связи с участием нитрато-групп объединяют комплексы I и II в трех-

Рис. 2. Фрагмент упаковки в кристаллах I и II.

мерный каркас (рис. 2, табл. 3). При этом в обоих исследованных комплексах образуются также внутримолекулярные водородные связи между атомами кислорода салицилиденового фрагмента азометинов и атомами углерода имидазола C10– H…O1.

В кристаллах I и II, согласно критерию, предложенному в [3] (*CgI*···*CgJ* < 6.0 Å, β < 60.0°, где β – угол между вектором CgI…CgJ и нормалью к ароматическому циклу CgI, наблюдается π - π стэкинг-взаимодействие между циклами Cg1(N2, N3, C10, C11, C12) и Cg2(C2, C3, C4, C5, C6, C7), а также Cg2 и Cg3(Cu1O1, N1, C1, C2, C3). В них расстояния Cg1...Cg2(1 + x, y, z) и Cg2...Cg3(-x, 2 - x)-y, -z) между центроидами указанных фрагментов составляют 3.798, 3.844 и 3.780, 3.780 Å, а величины β равны соответственно 32.9°, 30.3° и 32.8° , 27.0° . Наряду с отмеченным $\pi - \pi$ -взаимодействием в данных комплексах осуществляется У-*X*···*Cg*-(π -кольцо)-взаимодействие (*X*···*Cg* < 4.0 Å, $\gamma < 30.0^{\circ}$, где γ — угол между вектором *X*···*Cg* и нормалью к ароматическому циклу [3]). Так, для взаимодействия C6-Br1(Cl1)···Cg3 (-x, 2 - y, -z) расстояние между атомами Br1, Cl1 и центроидами металлоциклов равны 3.704 и 3.632 Å, а углы $\gamma - 28.4^{\circ}$ и 28.0° .

Таким образом, проведенное исследование показало, что введение галогенсодержащих заместителей в салицилиденовый фрагмент азометина приводит к образованию моноядерных изоструктурных комплексов. В кристаллах ацидо-

Связь	Расстояние, Å		Угол <i>D</i> НА,	Координаты			
$D-\mathrm{H}\cdots A$	<i>D</i> –H	H…A	D····A	град	атома А		
I							
O2−H2 <i>O</i> …O1 <i>N</i>	0.82	2.26	3.001(5)	151	-1 + x, $1/2 - y$, $-1/2 + z$		
O2−H2 <i>O</i> …O3 <i>N</i>	0.82	2.16	2.899(5)	151	-1 + x, $1/2 - y$, $-1/2 + z$		
N3–H3…O1 <i>N</i>	0.86	2.47	3.055(5)	126	1 - x, 1 - y, 1 - z		
N3–H3···O2 <i>N</i>	0.86	2.33	3.183(5)	174	1 - x, 1 - y, 1 - z		
C9–H9…O1 <i>N</i>	0.97	2.46	3.056 (5)	120	-1 + x, $1/2 - y$, $-1/2 + z$		
C10-H10-01	0.93	2.43	2.862(5)	109	-x, -y, 1-z		
C11–H11…O2 <i>N</i>	0.93	2.57	3.459(5)	159	1 + x, y, z		
II II							
O2−H2 <i>O</i> …O1 <i>N</i>	0.82	2.36	2.899(5)	124	-1 + x, $1/2 - y$, $-1/2 + z$		
O2−H2 <i>O</i> …O3 <i>N</i>	0.82	2.27	3.021(5)	152	-1 + x, $1/2 - y$, $-1/2 + z$		
N3–H3…O1 <i>N</i>	0.86	2.47	3.054(5)	126	1 - x, 1 - y, 1 - z		
N3–H3···O2 <i>N</i>	0.86	2.37	3.223(5)	174	1 - x, 1 - y, 1 - z		
C9–H9…O1 <i>N</i>	0.97	2.44	3.024(6)	118	-1 + x, $1/2 - y$, $-1/2 + z$		
C10-H10-01	0.93	2.44	2.871(5)	108	-x, -y, 1-z		
C11–H11····O2 <i>N</i>	0.93	2.49	3.373(6)	159	1 + x, y, z		

Таблица 3. Геометрические параметры водородных связей в соединениях I, II

КРИСТАЛЛОГРАФИЯ том 57 № 2 2012

лиганды объединяют эти комплексы водородными связями в трехмерные каркасы.

- 5. Allen F.H. // Acta Cryst. B. 2002. V. 58. P. 380.
- 6. *Addison A.W., Rao J., Reedijk J. et al.* // J. Chem. Soc. Dalton Trans. 1984. P. 1349.

СПИСОК ЛИТЕРАТУРЫ

- 1. Чумаков Ю.М., Цапков В.И., Антосяк Б.Я. и др. // Координац. химия. 2004. Т. 30. Вып. 7. С. 520.
- 2. *Sheldrick G.M.* SHELX97. Program for the Solution and Refinement of Crystal Strusture. University of Gottingen, Germany, 1997.
- 3. Spek A.L. // J. Appl. Cryst. 2003. V. 36. P. 7.
- Bruno I.J., Cole J.C., Edginton P.R. et al. // Acta Cryst. B. 2002. V. 58. P. 389.
- 7. Чумаков Ю.М., Биюшкин В.Н., Малиновский Т.И. и др. // Координац. химия. 1989. Т. 15. № 3. С. 354.
- 8. Чумаков Ю.М., Антосяк Б.Я., Мазус М.Д. и др. // Кристалография. 1998. Т. 46. Вып. 5. С. 859.
- 9. Чумаков Ю.М., Биюшкин В. Н., Малиновский Т. И. и др. // Координац. химия. 1988. Т. 14. № 9. С. 1273.
- 10. Чумаков Ю.М., Биюшкин В.Н., Малиновский Т.И. и др. // Координац. химия. 1989. Т. 15. № 8. С. 1074.
- Чумаков Ю.М., Биюшкин В.Н., Малиновский Т.И. и др. // Координац. химия. 1990. Т. 16. № 7. С. 945.