КРИСТАЛЛОГРАФИЯ, 2012, том 57, № 1, с. 63-69

СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.736 + 549.612

УТОЧНЕНИЕ КРИСТАЛЛИЧЕСКИХ СТРУКТУР СИНТЕТИЧЕСКИХ НИКЕЛЬ- И КОБАЛЬТСОДЕРЖАЩИХ ТУРМАЛИНОВ

© 2012 г. И. В. Рождественская, Т. В. Сеткова*, О. С. Верещагин,

А. Г. Штукенберг, Ю. Б. Шаповалов*

Санкт-Петербургский государсвенный университет E-mail: ivrozhdestvenska@mail.ru *Институт экспериментальной минералогии РАН, Черноголовка Поступила в редакцию 24.11.2010 г.

Уточнены кристаллические структуры уникальных по составу синтетических турмалинов, содержащих 3d-элементы (Ni, Fe, Co): (Ca_{0.12} $\Box_{0.88}$)(Al_{1.69}Ni²⁺_{0.81}Fe²⁺_{0.50})(Al_{5.40}Fe³⁺_{0.60})(Si_{5.82}Al_{0.18}O₁₈)(BO₃)₃(OH)_{3.25}O_{0.75} I, a = 15.897(5), c = 7.145(2) Å, V = 1564(1) Å³; Na_{0.91}(Ni²⁺_{1.20}Cr³⁺_{0.96}Al_{0.63}Fe²⁺_{0.18}Mg_{0.03})(Al_{4.26}Ni²⁺_{1.20}Cr³⁺_{0.48}Ti_{0.06}) (Si_{5.82}Al_{0.18})O₁₈(BO₃)₃(OH)_{3.73}O_{0.27} II, a = 15.945(5), c = 7.208(2) Å, V = 1587(1) Å³ и Na_{0.35}(Al_{1.80}Co²⁺_{1.20}) (Al_{5.28}Co²⁺_{0.66}Ti_{0.06})(Si_{5.64}B_{0.36})O₁₈(BO₃)₃(OH)_{3.81}O_{0.19} III, a = 15.753(8), c = 7.053(3) Å, V = 1516(2) Å³. Факторы расходимости $R_1 = 0.038 - 0.057, wR_2 = 0.041 - 0.060$. Выявлено, что во всех структурах 3*d*-элементы занимают как *Y*-, так и *Z*-позиции. Компенсация избыточного положительного заряда происходит за счет вхождения двухвалентных анионов кислорода в позиции O3(V)+O1(W).

введение

Турмалины общей формулой с $XY_{3}Z_{6}(T_{6}O_{18})(BO_{3})_{3}(OH)_{3}(O,OH,F)$, где X = Na, K, Ca; Y = Li, Al, Fe, Cr, Mn, Mg, Cu, V, Zn, Ti; Z = Al, Cr, Mg, Ti, V, Mn, Fe; T = Si, Al, B, являются широко распространенными типоморфными минералами, ярким примером кристаллических твердых растворов с высокой изоморфной емкостью, характеризующихся разнообразием состава и устойчивостью в широком интервале термодинамических условий. Кристаллохимия турмалинов исследована достаточно полно. К настоящему времени известно около 150 определений кристаллических структур турмалинов разного состава. Однако закономерности распределения ионов и вакансий в структуре турмалинов с примесями 3*d*-элементов, их предельные доли в различных кристаллографических позициях, величина межпозиционных коэффициентов распределения и другие кристаллохимические особенности структуры до конца не установлены. На сегодняшний день имеется одно минералогическое описание Co-Ni-Zn турмалина из метаморфизованных бокситов с о. Самос, Греция [1] и одно минералогическое описание турмалина из магнезитовокварцевых жил Березовского месторождения, Урал, выполненное И.А. Бакшеевым [2].

Восполнение пробелов в кристаллохимии турмалинов с примесями 3*d*-элементов имеет не только теоретический интерес, но и возможный выход на механизмы их кристаллизации и реконструкцию условий минералообразования.

Природные турмалины всегда представляют собой твердые растворы сложного состава, что затрудняет изучение их кристаллохимии. Использование для этих целей синтетических турмалинов более простого или не встречающегося в природе состава ограничено из-за трудностей получения однородных кристаллов. Первые попытки синтеза турмалина были предприняты еще в середине прошлого столетия. Было изучено взаимодействие турмалина, стекол турмалинового состава и ряда алюмосиликатов с борсодержащими растворами различного состава в модельной Na₂O(K₂O)-MgO(FeO)-Al₂O₃-SiO₂системе H_3BO_3 –HCl(HF)– H_2O_2 , а также установлены новые изоморфные замещения [3-6]. Возможность монокристального роста турмалина на затравку была показана в 60-80 гг. прошлого столетия [7, 8]. В частности, разработан метод выращивания цветных (Fe-, Mg-, Co-, Ni-, Мп- и Сг-содержащих) разновидностей турмалина [7]. Особенностями этого метода являются высокие температуры (порядка 800°С) и давления (200-800 МПа), а также высокие концентрации растворов, требующие использования дорогостоящего оборудования и материалов. Возможность синтеза монокристаллов турмалинов с примесями никеля и кобальта на затравку в водных бор-хлоридных растворах при более низких значениях температуры (450-500°С) и давления (до 100 МПа) показана в [9, 10].

Основной задачей данной работы является выявление кристаллохимических особенностей синтетических турмалинов с 3*d*-элементами, например Ni и Co.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Процедура синтеза исследуемых кобальтовых (Co-), никель-хромовых (Ni,Cr-) и никель-железных (Ni,Fe-) турмалинов из бор-хлоридных и бор-фторидных гидротермальных растворов подробно описана в [9, 10]. Здесь остановимся только на основных деталях. Синтезы проводились в интервалах температур 400-750°C и давлений 100–150 МПа в термоградиентных условиях с использованием автоклавов объемом 20, 50 и 200 см³, изготовленных из титанового и хром-никелевого сплавов. Температура измерялась с точностью ±3°С. Разница температур между верхним и нижним торцами автоклава составляла от 20 до 50°С. Давление задавалось коэффициентом заполнения автоклава и оценивалось по PVT-диаграммам для чистой воды или близких по составу растворов [11]. Для приготовления бор-хлоридных растворов использовались химические реактивы H_3BO_3 , NaCl и CoCl₂ · 6H₂O, для бор-фторидных – H₃BO₃ и NH₄F, для бор-хлор-фторидных – H₃BO₃, NaCl и AlF₃. В качестве затравок в опытах использовались пластинки из кристаллов эльбаита Малханского месторождения (Забайкалье), вырезанные перпендикулярно оптической оси. Затравки подвешивались в верхней и нижней зонах автоклава на металлических рамах. Шихта, состоящая из смеси обломков монокристаллов кварца и корунда, помещалась на дно автоклава. Продолжительность опытов составляла от 15 до 40 сут.

Рост турмалина на затравочный кристалл происходил как в верхней (более холодной), так и в нижней (более горячей) зонах автоклава. Кроме этого, наблюдалось спонтанное зарождение мелких кристаллов турмалина. В бор-хлоридных растворах происходил рост на затравку монокристаллов Со-содержащего турмалина, в бор-фторидных растворах _ (Ni,Fe)-содержащего турмалина и в бор-хлор-фторидных растворах – (Ni,Cr)-содержащего турмалина. Наросший слой имеет интенсивную малиновую (Со-турмалин) или зеленую (Ni,Cr- и Ni,Fe-турмалины) окраску и наблюдается практически только на грани положительного моноэдра {+0001}. В начале роста на грани {+0001} появляются мельчайшие, тесно примыкающие друг к другу пирамидки $\{10\overline{1}1\},\$ которые далее разрастаются с образованием типичного шероховатого регенерационного рельефа и вытесняют регенерационную грань{+0001}. Грани гексагнональной призмы $\{11\overline{2}0\}$ и отрицательного моноэдра $\{000\,\overline{1}\}$ практически не растут.

Вследствие интенсивных процессов регенерации затравки и низких скоростей роста перпендикулярно оси 3-го порядка наросший слой турмалина по сути представляет собой параллельношестоватый агрегат, что существенно усложняет выбор бездефектного образца для рентгеноструктурного анализа.

Химический состав Ni.Fe и Со-турмалинов определялся методом электронно-зондового микроанализа с помошью микроскопа Camscan MX2500 с энергодисперсионным спектрометром Link Pentafet (ВСЕГЕИ, аналитик А.А. Антонов). Ускоряющее напряжение – 20 кВ, ток зонда – 1 нА, рабочее расстояние – 35 мм, алгоритм коррекции матричных эффектов - ХРР, время накопления спектра – 70 с (без учета мертвого времени), в качестве стандарта использовался аттестованный турмалин San Piero in Campo, Elba, Italy из коллекции Британского музея, Лондон.

Химический состав Ni, Cr-турмалина определен методом электронно-зондового микроанализа с помощью микроскопа VEGA TS 5130MM МV2300) (ИЭМ РАН, аналитик (CamScan А.И. Некрасов). Образец изучали без помещения в шайбу, использовалась ориентированная, зашлифованная часть кристалла с углеродным покрытием. Корректировка дрейфа зонда проводилась каждые 20-30 мин по чистому металлу (Со). Исследования выполнялись при ускоряющем напряжении 20 кВ. Ток поглощенных электронов на эталонном образце кобальта (Со) составлял 299 пА, а на исследованных силикатных образцах -400 пА (1 пА = 10^{-12} А). Размер электронного зонда на поверхности образца составлял 153 нм. Время накопления спектра – 70 с (без учета мертвого времени). Точность электронно-зондового микроанализа ±2 отн. %.

Химические формулы рассчитывались на 24.5 кислорода (табл. 1).

Уточнение кристаллических структур выполнено методом рентгеновского монокристального анализа. Массивы экспериментальных интенсивностей получены с помощью монокристального рентгеновского дифрактометра Nicolett R3, 45 кВ, 30 мА, графитовый монохроматор, переменная скорость сканирования от 2 до 30 град/мин (табл. 2). Кристаллические структуры уточнялись с использованием программы CSD [13]. Интенсивности были скорректированы поправкой на длительную нестабильность, поглощение, поляризацию и фактор Лоренца. Уточнение структур проводили, чередуя МНК (с учетом анизотропии тепловых колебаний атомов) и анализ разностных синтезов Фурье. Положение атомов водорода выявили для образца Ni, Fe-турмалина в результате детального анализа карт разностных синтезов Фурье после достижения значений *R*-факторов ~4%.

64

КРИСТАЛЛОГРАФИЯ том 57 Nº 1 2012

Таблица 1. Химический состав (мас. %) и число катионов на формульную единицу в структурах изученных турмалинов*

	Образец						
Окислы	Ι		I	Ι	III		
	Состав	Катионы	Состав	Катионы	Состав	Катионы	
SiO ₂	30.28	5.73	33.59	6.02	35.18	5.79	
TiO ₂	0.0	0.0	0.66	0.09	0.53	0.065	
Al_2O_3	32.67	7.29	24.48	5.17	36.25	7.03	
CoO	0.0	0.0	0.0	0.0	14.39	1.90	
FeO	7.42	1.17	0.30	0.04	0.0	0.0	
NiO	5.33	0.81	13.40	1.93	0.0	0.0	
Cr_2O_3	0.0	0.0	10.16	1.44	0.0	0.0	
MgO	0.0	0.0	0.13	0.03	0.0	0.0	
MnO	0.0	0.0	0.02	0.0	0.0	0.0	
CaO	0.66	0.13	0.11	0.02	0.0	0.0	
Na ₂ O	0.0	0.0	1.84	0.64	3.24	1.03	
B_2O_3	Не определено						
Сумма	76.36		84.69		89.59		

* Здесь и далее в таблицах образцы обозначены: Ni,Fe-турмалин – I, Ni,Cr-турмалин – II и Со-турмалин – III.

Окончательные величины относительных координат атомов, заселенностей позиций и изотропных тепловых параметров приведены в табл. 3, длины связей — в табл. 4, а уточненные кристаллохимические формулы — в табл. 5.

Распределение катионов по *Y*- и *Z*-октаэдрам, а также предположение об их валентности сделаны на основе данных химического анализа, уточненных рассеивающих способностей позиций и средних длин связей в октаэдрах. Для расчета были использованы длины связи по F. Bosi [14]: $\langle AI-O \rangle = 1.900, \langle Fe^{2+}-O \rangle = 2.131, \langle Fe^{3+}-O \rangle = 2.06,$ $\langle Mg-O \rangle = 2.08, \langle Cr^{3+}-O \rangle = 1.97, \langle Si-O \rangle = 1.612,$ $\langle B-O \rangle = 1.372$ Å, и R.D. Shannon [15]: $\langle Ni^{2+}-O \rangle =$ $= 2.05, \langle Co^{2+}-O \rangle = 2.01, \langle Ti-O \rangle = 1.962$ Å.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты уточнения заселенностей кристаллографических позиций в Ni,Fe-турмалине показали, что X-позиция практически вакантна и только 0.12 ее доли занято катионами кальция (табл. 3). Состав Y-позиции ($Al_{0.56}Ni_{0.27}Fe_{0.17}^{2+}$) рассчитан с учетом ее рассеивающей способности и размеров этого октаэдра. Экспериментально полученная величина для Y-октаэдра (1.991 Å) (табл. 4) хорошо совпадает с расчетной (1.993 Å). Значительная часть этой позиции (0.56 атома на позицию) занята трехвалентными катионами Al^{3+} , что приводит к значительно меньшим размерам этого октаэдра по сравнению с размерами октаэдра, занятого двухвалентными катионами (например, $\langle Mg-O \rangle = 2.076$ Å). Весь никель (0.27 атома на позицию) входит в *Y*-позицию, замещая двухвалентное железо и алюминий.

В состав Z-позиции (Al_{0.90}Fe_{0.10}) в незначительном количестве (0.10 атома на позицию) входят трехвалентные катионы Fe³⁺, что приводит к некоторому увеличению размера этого октаэдра $(\langle Z-O \rangle = 1.922 \text{ Å})$ по сравнению с размерами Z-октаэдра, заселенного атомами алюминия $(\langle Z-O \rangle = 1.904 - 1.907$ Å). Для того чтобы сделать заключение о валентности катионов железа в *Z*-позиции, рассчитано в двух вариантах среднее расстояние в Z-октаэдре с использованием приведенных выше октаэдрических расстояний из соотношения: $(Z-O)_{cp} = \Sigma (Z-O)_i c_i$, где c_i – доля *i*го катиона в Z-позиции по результатам уточнения ее заселенности (табл. 3). Сравнение рассчитанных значений (1.930 и 1.922 Å для Fe²⁺ и Fe³⁺ соответственно) с экспериментально полученной величиной 1.922 Å (табл. 4) позволяет предположить, что железо в этой позиции находится в трехвалентном состоянии. Чтобы скомпенсировать заряд при расчете кристаллохимической формулы, необходимо принять следующий состав позиций O1(W) + O3(V): $(OH)_{3,25}^{-}O_{0,75}^{2-}$).

Размер *Т*-тетраэдра ($\langle T-O \rangle = 1.616$ Å) несколько превышает размер тетраэдра, заселенного кремнием (1.612 Å), что допускает вхождение в эту позицию незначительного количества катионов Al³⁺ (0.03 атома на позицию).

Образец	Ι	II	III			
Сингония, пр. гр., <i>Z</i>		Тригональная, <i>R3m</i> , 3				
a, Å	15.897(5)	15.945(5)	15.753(8)			
<i>c</i> , Å	7.145(2)	7.208(2)	7.053(3)			
<i>V</i> , Å ³	1564(1)	1587(1)	1516(2)			
D_x , г/см ³	3.08	3.38	3.29			
Излучение, λ, Å		$MoK_{\alpha}, 0.71073$				
μ, мм ⁻¹	22.41	37.15	24.17			
Размер образца, мм	0.2 imes 0.2 imes 0.1	$0.1 \times 0.1 \times 0.05$	$0.1 \times 0.1 \times 0.05$			
Дифрактометр		Nicolett R3				
Тип сканирования	ω/2θ					
Учет поглощения	по программе DIFABS [12]					
θ _{max} , град	4	30				
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$0 \le h \le 24, \\ 0 \le k \le 24, \\ -12 \le l \le 12,$	$0 \le h \le 24, \\ 0 \le k \le 24, \\ -13 \le l \le 13,$	$0 \le h \le 19, \\ 0 \le k \le 19, \\ -9 \le l \le 9,$			
Число отражений: измеренных/неза- висимых (N_1) , R_{int} /с $I > 1.96\sigma(I)$ (N_2)	2356/1170, 0.033/1170	2364/1192, 0.056/1189	998/546, 0.093/546			
Метод уточнения		МНК по <i>F</i>				
Число уточняемых параметров	93	88	85			
Весовая схема	$1/[\sigma_F^2 + 0.001 F_o^2]$	$1/[\sigma_F^2 + 0.002 F_o^2]$	$1/[\sigma_F^2 + 0.004 F_o^2]$			
Факторы недостоверности:						
<i>wR</i> ₂ по (<i>N</i> 2)	0.042	0.054	0.060			
<i>R</i> ₁ по (<i>N</i> 2)	0.039	0.051	0.057			
S	1.11	1.23	0.89			
$\Delta \rho_{max} / \Delta \rho_{min}, $ $ > / Å^3 $	0.73/-0.51	1.52/-1.03	1.12/-0.63			
Программа		CSD [13]				

Таблица 2. Кристаллографические характеристики, данные эксперимента и результатов уточнения структур кристаллов изученных турмалинов

Размеры других полиэдров типичны для минералов группы турмалинов: $\langle X-O \rangle = 2.720, \langle B-O \rangle = 1.371$ Å (табл. 4), и свидетельствуют о том, что *B*-позиция занята бором. В *B*-треугольнике атом В смещен в сторону кислорода O2, расстояние B - O2 = 1.356, a B - O8 = 1.379 Å.

На основе анализа рассеивающих способностей позиций и размеров полиэдров кристаллохимическая формула Ni,Fe-турмалина может быть представлена как (Ca_{0.12} $\Box_{0.88}$)(Al_{1.69}Ni²⁺_{0.81}Fe²⁺_{0.50}) (Al_{5.40}Fe³⁺_{0.60})(Si_{5.82}Al_{0.18}O₁₈)(BO₃)₃(OH)_{3.25}O_{0.75}.

Небольшие размеры *Y*- и *Z*-октаэдров объясняют невысокие значения параметров элементарной ячейки этого турмалина (a = 15.897, c = 7.145 Å) (табл. 2).

Ni, Fe-турмалин можно отнести к группе турмалинов с практически вакантной *X*-позицией (россманит, фоитит, магнезиофоитит и др.). По своему химическому составу он наиболее близок гипотетическому оксифоититу с идеализированной формулой $(Fe^{2+}Al_2)Al_6(BO_3)_3(Si_6O_{18})(OH)_3O$ [16], у которого часть катионов Fe^{2+} и Al^{3+} в *У*-позиции замещена на Ni^{2+} , а в *Z*-позиции часть катионов Al^{3+} – на Fe^{3+} .

Результаты уточнения заселенностей кристаллографических позиций в Ni, Cr-турмалине показали, что Х-позиция в этой структуре преимущественно занята катионами Na⁺ (0.91 атома на позицию). Состав У-позиции (Ni_{0.40}Cr_{0.32}Al_{0.21}Fe_{0.06}Mg_{0.01}) рассчитывался так же, как и в предыдущем случае, с учетом ее рассеивающей способности и размеров этого октаэдра. Экспериментально полученная величина размера У-октаэдра (2.010 Å) (табл. 4) совпадает с расчетной (2.000 Å) в пределах 1 о. Значительная часть этой позиции (0.53 атома на позицию) занята трехвалентными катионами Cr³⁺ (0.32 атома на позицию) и Al³⁺ (0.21 атома на позицию), оставшаяся часть – двухвалентными катионами: Ni²⁺ (0.40 атома на позицию), Fe²⁺ (0.06 атома на пози-

КРИСТАЛЛОГРАФИЯ том 57 № 1 2012

Поз	иция	Образец	Заселенность, ат. ед.	x/a	y/b	<i>z</i> / <i>c</i>	$U^*_{{}_{\mathrm{H3O}/\mathrm{_{ ЭKB}}}} imes 100, \mathrm{\AA}^{-2}$
X	3 <i>a</i>	Ι	Ca _{0.12}	0	0	0.221(13)	1.9(4)
		II	Na _{0.91}	0	0	0.2346(14)	2.1(2)
		III	Na _{0.35}	0	0	0.212(5)	4.3(2)
Y	9 <i>b</i>	Ι	Al _{0.56} Ni _{0.27} Fe _{0.17}	0.12383(8)	1/2x	0.6294(2)	0.88(3)
		II	$Ni_{0.40}Cr_{0.32}Al_{0.21}Fe_{0.06}Mg_{0.01}$	0.12595(9)	1/2x	0.6309(3)	0.66(3)
		III	Al _{0.60} Co _{0.40}	0.1217(3)	1/2x	0.6383(9)	1.45(14)
Ζ	18c	Ι	$Al_{0.90}Fe_{0.10}$	0.29782(7)	0.26103(7)	0.6084(2)	0.50(3)
		II	Al _{0.71} Ni _{0.20} Cr _{0.08} Ti _{0.01}	0.29761(8)	0.26124(9)	0.6098(2)	0.33(3)
		III	$Al_{0.88}Co_{0.11}^{2+}Ti_{0.01}$	0.2970(2)	0.2608(22)	0.6066(7)	0.77(13)
Т	18 <i>c</i>	Ι	Si _{0.97} Al _{0.03}	0.19129(6)	0.18930(7)	0	0.93(3)
		II	Si _{0.97} Al _{0.03}	0.1913(1)	0.1892(1)	0	0.49(4)
		III	Si _{0.94} B _{0.06}	0.1907(3)	0.1898(3)	0	1.07(13)
В	9 <i>b</i>	Ι	B _{1.00}	0.1096(2)	2x	0.4540(7)	0.97(11)
		II	B _{1.00}	0.1095(3)	2x	0.4541(11)	0.6(2)
		III	B _{1.00}	0.1088(7)	2x	0.452(3)	0.6(5)
O1w	3 <i>a</i>	Ι	O _{1.00}	0	0	0.7722(12)	2.6(2)
		II	O _{1.00}	0	0	0.775(2)	1.6(3)
		III	O _{1.00}	0	0	0.768(3)	0.8(5)
O2	9 <i>b</i>	Ι	O _{1.00}	0.0616(1)	2x	0.4950(5)	1.53(10)
		II	O _{1.00}	0.0604(2)	2x	0.4900(9)	0.97(15)
		III	O _{1.00}	0.0603(4)	2x	0.495(2)	0.3(2)
O3v	9 <i>b</i>	Ι	O _{1.00}	0.2609(4)	1/2x	0.5073(5)	1.84(12)
		II	O _{1.00}	0.2628(5)	1/2x	0.5090(9)	1.1(2)
		III	O _{1.00}	0.2588(11)	1/2x	0.506(2)	0.9(4)
O4	9 <i>b</i>	Ι	O _{1.00}	0.0943(2)	2x	0.0688(5)	1.5(1)
		II	O _{1.00}	0.0933(5)	2x	0.0708(8)	1.0(2)
		III	O _{1.00}	0.960(5)	2x	0.067(2)	1.6(4)
05	9 <i>b</i>	Ι	O _{1.00}	0.1893(3)	1/2x	0.0946(5)	1.4(1)
		II	O _{1.00}	0.1844(5)	1/2x	0.0916(9)	1.0(2)
		III	O _{1.00}	0.1884(11)	1/2x	0.096(2)	2.1(5)
06	18 <i>c</i>	Ι	O _{1.00}	0.1954(2)	0.1843(2)	0.7757(4)	1.2(1)
		II	O _{1.00}	0.1944(3)	0.1847(3)	0.7784(6)	0.77(12)
		III	O _{1.00}	0.1939(6)	0.1827(6)	0.7720(13)	0.6(3)
O 7	18 <i>c</i>	Ι	O _{1.00}	0.2851(2)	0.2858(2)	0.0754(4)	1.15(7)
		II	O _{1.00}	0.2849(3)	0.2847(3)	0.0765(6)	0.87(11)
		III	O _{1.00}	0.2849(6)	0.2862(5)	0.0698(13)	0.6(3)
O 8	18c	Ι	O _{1.00}	0.2094(2)	0.2703(2)	0.4379(4)	1.31(8)
		II	O _{1.00}	0.2088(3)	0.2695(3)	0.4394(7)	1.09(12)
		III	O _{1.00}	0.2087(7)	0.2696(7)	0.4347(13)	0.7(3)
Н	9 <i>b</i>	Ι	H _{1.00}	0.269(7)	1/2x	0.372(12)	3.2(2)

Таблица 3. Заселенности позиций, относительные координаты и параметры смещения в структуре изученных турмалинов

* $U_{_{3KB}} = 1/3[U_{11}a^{*2}a^2 + ... + 2U_{23}b^*c^*bc\cos\alpha].$

КРИСТАЛЛОГРАФИЯ том 57 № 1 2012

Расстояние	Образец			Расстояние,	Образец		
	Ι	II	III	угол	Ι	II	III
<i>Х</i> –О2 [3]	2.590(15)	2.483(10)	2.59(3)	-O7 [1]	1.606(4)	1.605(4)	1.580(4)
-O4 [3]	2.814(9)	2.835(8)	2.81(2)	среднее	1.616	1.616	1.603
-O5 [3]	2.756(9)	2.748(10)	2.70(2)	O4- <i>T</i> -O5	106.7(3)	103.9(3)	108.0(3)
среднее	2.72	2.69	2.70	O4- <i>T</i> -O6	111.5(3)	111.3(3)	111.1(3)
<i>Y</i> –O1w [1]	1.987(7)	2.024(8)	1.894(15)	O4- <i>T</i> -O7	109.5(3)	110.1(3)	109.2(3)
-O2 [2]	1.952(6)	1.984(7)	1.936(12)	O5- <i>T</i> -O6	110.4(3)	110.5(3)	109.7(3)
-O3v [1]	2.079(8)	2.083(10)	2.09(2)	O5– <i>T</i> –O7	108.8(3)	110.4(3)	109.5(3)
-O6 [2]	1.989(6)	1.993(7)	1.919(12)	O6- <i>T</i> -O7	109.9(3)	110.5(3)	109.3(3)
среднее	1.991	2.010	1.949	среднее	109.47	109.45	109.47
<i>Z</i> –O3v [1]	1.989(7)	1.993(9)	1.98(2)	B-O2 [1]	1.356(5)	1.381(7)	1.359(14)
-O6 [1]	1.893(5)	1.915(6)	1.875(12)	-O8 [2]	1.379(7)	1.375(9)	1.37(2)
-O7 [1]	1.890(4)	1.915(6)	1.890(12)	среднее	1.371	1.377	1.366
-O7 [1]	1.952(5)	1.962(6)	1.921(12)	O2–B–O8 [2]	121.0(4)	120.9(6)	121.7(14)
-O8 [1]	1.920(6)	1.928(7)	1.902(14)	O8–B–O8 [1]	117.9(4)	118.2(6)	116.5(14)
-O8 [1]	1.886(6)	1.909(7)	1.877(14)	среднее	120.0	120.0	120.0
среднее	1.922	1.937	1.907	H1-O3v[1]	0.96(9)		
<i>T</i> –O4 [1]	1.613(4)	1.624(4)	1.582(4)	H1–O5 [1]	2.28(8)	Не определено	Не определено
-O5 [1]	1.635(4)	1.634(4)	1.635(4)	O3v-H1-O5	144(5)		
-06 [1]	1.608(4)	1.601(4)	1.615(4)				

Таблица 4. Длины связей (Å) и углы (град) в структуре изученных турмалинов

цию) и Mg^{2+} (0.01 атома на позицию). Существенно меньшее количество алюминия в этой позиции приводит к большим размерам *Y*-октаэдра по сравнению с размерами этого октаэдра в Ni,Feтурмалине.

Состав Z-позиции ($Al_{0.71}Ni_{0.20}Cr_{0.08}Ti_{0.01}$) (табл. 3) показывает, что она заселена преимущественно катионами Al^{3+} (0.71 атома на позицию), но в эту позицию входят также катионы Ni^{2+} (0.20 атома на позицию), Cr^{3+} (0.08 атома на позицию) и в незначительном количестве катионы Ti^{4+} (0.01 атома на позицию). Из-за значительного количества крупных катионов Ni^{2+} и Cr^{3+} в этой позиции ее размер (1.937 Å) больше, чем в Ni-Fe-турмалине (1.922 Å) (табл. 4).

Размер *T*-тетраэдра ($\langle T-O \rangle = 1.616$ Å) несколько превышает размер тетраэдра, заселенного кремнием (1.612 Å), что так же, как и в Ni–Fетурмалине, допускает вхождение в эту позицию незначительного количества катионов Al³⁺ (0.03 атома на позицию). Средние расстояния: $\langle X-O \rangle = 2.694$, $\langle B-O \rangle$ 1.377 Å. В *B*-треугольнике атом В смещен в сторону кислорода O8, расстояние B–O2 = 1.381, а B–O8 = 1.375 Å, что подтверждает уменьшение положительного заряда в *Z*-позиции.

На основе полученных составов позиций кристаллохимическая формула Ni,Cr-турмалина может быть представлена как Na_{0.91}(Ni $_{1.20}^{2+}$ Cr $_{0.96}^{3+}$ Al $_{0.63}$ Fe $_{0.18}^{2+}$ Mg $_{0.03}$)(Al $_{4.26}$ Ni $_{1.20}^{2+}$ Cr $_{0.48}^{3+}$ Ti $_{0.06}$)(Si $_{5.82}$ Al $_{0.18}$)O $_{18}$ (BO} $_{3}$)₃(OH)_{3.73}O $_{0.27}$.

Большие размеры *Y*- и *Z*-октаэдров в структуре Ni,Cr-турмалина объясняют высокие значения параметров элементарной ячейки (a = 15.945, c = 7.208 Å) (табл. 2).

Этот турмалин можно отнести к группе турмалинов с *X*-позицией, заселенной атомами Na, по параметрам элементарной ячейки и своему химическому составу он наиболее близок к шерлу $(NaFe^{2+}_{3}Al_{6}(Si_{6}O_{18})(BO_{3})_{3}(OH)_{4})$ [16], в котором в *Y*-позиции вместо большей части железа находится никель и хром, а в *Z*-позиции часть алюминия замещается также никелем и хромом.

Со-турмалин занимает промежуточное положение по заполненности позиции X (доля Na составляет 0.35 атома на позицию) между двумя никельсодержащими турмалинами. Катионы Co²⁺ (1.86 атома на формулу) входят как в Y-, так и в Zпозиции, замещая алюминий. Значительная часть Y-позиции (Al_{0.60}Co_{0.40}) занята катионами Al³⁺. В Z-позицию (Al_{0.88}Co_{0.11}Ti_{0.01}) катионы Co²⁺ входят в значительно меньшем количестве (0.11 атома на позицию), чем в Y-позицию. В

КРИСТАЛЛОГРАФИЯ том 57 № 1 2012

Z-позицию входят также в незначительном количестве катионы Ti⁴⁺. Размеры Y- и Z- октаэдров $(\langle Y-O \rangle = 1.949, \langle Z-O \rangle = 1.907 \text{ Å})$ (табл. 4) меньше, чем в никелевых турмалинах из-за отсутствия в них крупных катионов. Эти экспериментальные данные хорошо совпадают с расчетными: $(\langle Y-O \rangle = 1.944 \text{ Å}, \langle Z-O \rangle = 1.913 \text{ Å}).$

Размер *T*-тетраэдра также значительно меньше ($\langle T-O \rangle = 1.603$ Å), чем в тетраэдрах, заселенных кремнием ($\langle T-O \rangle = 1.612$ Å), что можно объяснить вхождением в нее атомов бора (0.12 атома на позицию). Вхождение бора в *T*-позицию неоднократно устанавливалось в других синтетических и природных турмалинах [17, 18]. Размеры других полиэдров также невелики: $\langle X-O \rangle = 2.70$, $\langle B-O \rangle$ 1.366 Å. В *B*-треугольнике атом В смещен в сторону кислорода O2, расстояние B-O2 = 1.359, а B-O8 = 1.37 Å.

Кристаллохимическая формула Со-турмалина может быть представлена как $Na_{0.35}(Al_{1.80}Co_{1.20}^{2+})$ ($Al_{5.28}Co_{0.66}^{2+}$ $Ti_{0.06}$)($Si_{5.64}B_{0.36}$) $O_{18}(BO_3)_3(OH)_{3.81}O_{0.19}$.

Небольшие размеры всех полиэдров в структуре объясняют невысокие значения параметров элементарной ячейки (a = 15.753, c = 7.053 Å) (табл. 2).

Со-турмалин по своему химическому составу наиболее близок синтетическому олениту $(Na_{0.541}Ca_{0.023})(Al_{0.691}Li_{0.210}Mn_{0.029}Fe_{0.014})_3Al_6((Si_{0.909}B_{0.067}Al_{0.024})_6O_{18})(BO_3)_3((OH)_{3.832}F_{0.161}O_{0.006}Cl_{0.001})$ [18], у которого одновалентные катионы Li⁺ и двухвалентные катионы Mn²⁺ и Fe²⁺ в *Y*-позиции замещены на Co²⁺, а в *Z*-позиции часть катионов Al³⁺ – на Co²⁺.

Результаты расчета кристаллохимических формул исследованных турмалинов по данным рентгеноструктурного анализа хорошо совпадают с результатами химического анализа (табл. 1).

ЗАКЛЮЧЕНИЕ

Проведенное уточнение кристаллических структур синтетических турмалинов показало, что во всех исследованных структурах 3*d*-элементы занимают как *Y*-, так и *Z*-позиции. Во всех случаях экспериментальные и расчетные значения средних длин связей в Y- и Z-октаэдрах совпали в пределах 1σ . Компенсация избыточного положительного заряда происходит за счет вхождения двухвалентных анионов кислорода в позиции O3(V)+O1(W).

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 09-05-00769-а).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Henry D.J., Dutrow B.L.* // Am. Mineral. 2001. V. 86. P. 1130.
- Baksheev I.A., Kudryavtseva O.E. // Can. Mineral. 2004. V. 42. P. 1065.
- Frondel C., Collette R.L. // Am. Mineral. 1957. V. 42. P. 754.
- 4. *Taylor A.M., Terrell B.C.* // J. Cryst. Growth. 1967. V. 1. № 4. P. 238.
- Rosenberg F.E., Foit F.F. // Am. Mineral. 1986. V. 70. P. 1217.
- 6. Von Goerne G., Franz G., Wirth R. // Eur. J. Mineral. 1999. V. 11. P. 1061.
- Воскресенская И.Е., Барсукова М.Л. // Гидротермальный синтез кристаллов. М.: Наука, 1968.
- Каргальцев С.В. // Физико-химические исследования сульфидных и силикатных систем. Новосибирск: ИгиГ СО АН СССР, 1984. С. 73.
- 9. Сеткова Т.В., Шаповалов Ю.Б., Балицкий В.С. // Докл. РАН. 2009. Т. 424. № 1. С. 94.
- 10. Сеткова Т.В., Шаповалов Ю.Б., Маракушев А.А. и др. // Докл. РАН. 2009. Т. 425. № 6. С. 800.
- 11. Самойлович Л.И. Зависимости между давлением, температурой и плотностью водно-солевых растворов. М.: ВНИИСИМС, 1969. 48 с.
- 12. Wolker N., Stuart D. // Acta Cryst. 1983. V. 39. P. 158.
- Akselrud L.G., Grin Yu.N., Zavalii P.Yu. et al. Collected Abstracts XII European Cryst. Meeting, Moscow, 1989. V. 3. P. 155.
- 14. Bosi F., Lucchesi S. // Am. Mineral. 2007. V. 92. P. 1054.
- 15. Shannon R.D. // Acta Cryst. A .1976. V. 32. P. 751.
- Hawthorne F.C., Henry D.J. // Eur. J. Mineral. 1999. V. 11. P. 201.
- 17. *Hughes J.M., Ertl A., Dyar M.D. et al.* // Can. Mineral. 2000. V. 38. P. 861.
- Schreyer W., Hughes J.M., Bernhardt H.-J. et al. // Eur. J. Mineral. 2002. V. 14. P. 935.