КРИСТАЛЛОГРАФИЯ, 2012, том 57, № 1, с. 50–55

СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.736.6

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА МИНЕРАЛА NaCa(Fe²⁺, Al, Mn)₅[Si₈O₁₉(OH)](OH)₇ · 5H₂O – НОВОГО ПРЕДСТАВИТЕЛЯ ГРУППЫ ПАЛЫГОРСКИТА

© 2012 г. Р. К. Расцветаева, С. М. Аксёнов, И. А. Верин

Институт кристаллографии РАН, Москва E-mail: rast@ns.crys.ras.ru Поступила в редакцию 10.12. 2010 г.

Методом монокристального рентгеноструктурного анализа изучен образец нового представителя семейства палыгорскита-сепиолита из фонолита, вскрытого карьером Арис (Намибия). Параметры триклинной (псевдомоноклинной) ячейки: a = 5.2527(2), b = 17.901(1), c = 13.727(1) Å, $\alpha = 90.018(3)^\circ$, $\beta = 97.278(4)^\circ$, $\gamma = 89.952(3)^\circ$. Структура решена прямыми методами в пр. гр. $P\overline{1}$ и уточнена до *R*-фактора 5.5% по 4168 $|F| > 7\sigma(F)$ с учетом двойникования плоскостью, перпендикулярной *y* (соотношение компонентов двойника 0.52 : 0.48). Кристаллохимическая формула (*Z* = 1): (Na_{1.6}K_{0.2}Ca_{0.2})[Ca₂(Fe²⁺_{3.6}Al_{1.6}Mn_{0.8})(OH)₉(H₂O)₂][(Fe²⁺_{3.9}Ti_{0.1})(OH)₅(H₂O)₂][Si₁₆O₃₈(OH)₂] · 6H₂O, где квадратными скобками выделены составы двух октаэдрических лент и слоя из Si-тетраэдров. Минерал обладает рядом химических, симметрийных и структурных особенностей, которые отличают его от других минералов данного семейства, в том числе туперссуатсиаита и калиферсита – железосодержащих представителей с близкими параметрами элементарной ячейки.

Палыгорскит и сепиолит – широко распространенные минералы, характерные для осадочных пород, как древних, так и современных. Минералы этого семейства можно рассматривать как результат твердофазных реакций с образованием структур, промежуточных между слоистыми и ленточными.

Исследуемый минерал найден среди минералов поздней ассоциации, сформировавшейся в полости эффузивной породы (фонолита), вскрытой карьером Арис (Виндхук, Намибия). Химический состав определялся методом локального рентгеноспектрального анализа. Эмпирическая формула, рассчитанная на восемь атомов кремния, имеет вид: K_{0.1}Na_{0.7}Ca_{1.1}Fe_{3.8}Al_{0.8}Mn_{0.4}Ti_{0.1}(Si₈O₂₀)(OH)_x· nH₂O.

Дифракционный эксперимент проведен в полной сфере обратного пространства ($\sin\theta/\lambda <$ < 1.147 Å⁻¹) на дифрактометре Xcalibur Oxford Diffraction, CCD-детектор. После усреднения эквивалентных отражений в нем содержалось 4168 *I* > 7σ. Близость параметров ячейки и химического состава позволили предположить родство изучаемого минерала с Мп-туперссуатсиаитом. По данным [1], структура Мп-туперссуатсиаита описывается в рамках моноклинной ячейки *a* = = 14.034(7), b = 17.841(7), c = 5.265(2) Å, $\beta =$ = 103.67(4)°, связанной с ячейкой данного минерала матрицей перехода [00-1/010/101], пр. гр. C2/m. Дифракционные отражения, полученные от монокристалла исследуемого минерала, не соответствовали С-центрировке и свидетельствовали о примитивности ячейки. Однако поиск и уточнение структурной модели в рамках пр. гр. *P2/m*, *P2*, *Pm* оставались проблематичными. Только пере-

ход в триклинную симметрию с пр. гр. P1 позволил решить структуру. Все расчеты выполнены с использованием комплекса программ AREN [2]. Характеристика кристалла и эксперимента приведена в табл. 1.

Катионный фрагмент структуры получен прямыми методами, а применение процедуры "коррекции фаз" [3] позволило получить полную ее модель, уточненную МНК до 18.41% в изотропном приближении. Распределение катионов по позициям проводилось на основе данных химического состава с учетом соответствия теплового параметра сорту катиона при условии минимального *R*-фактора. Ряд позиций уточнялся с применением смешанных кривых атомного рассеяния.

После учета поглощения по программе DIFABS [4], а также двойникования (плоскостью, перпендикулярной оси *y*; соотношение компонентов двойника 0.52 : 0.48), *R*-фактор снизился до 5.5% в анизотропном приближении. Окончательные координаты и тепловые характеристики атомов приведены в табл. 2, характеристика катионных полиэдров – в табл. 3, некоторые углы Si–O–Si с участием расщепленных позиций тетраэдров – в табл. 4.

Основные особенности состава и структуры изученного минерала отражены в его кристаллохимической формуле (Z = 1):

 $(Na_{1.6}K_{0.2}Ca_{0.2})[Ca_2(Fe_{3.6}^{2+}Al_{1.6}Mn_{0.8})(OH)_9(H_2O)_2]$ [$(Fe_{3.9}^{2+}Ti_{0.1})(OH)_5(H_2O)_2$][Si_1₆O₃₈(OH)_2] · 6H₂O, где квадратными скобками выделены составы двух октаэдрических лент и слоя из Si-тетраэдров. OHгруппы и молекулы воды установлены расчетом локального баланса валентностей по Брезе [5] для соответствующих позиций кислорода.

Исследованный минерал, как и туперссуатсиаит, относится к семейству слоистых силикатов палыгорскита – сепиолита, основой структуры которых являются гофрированные слои [Si₂O₅] с шестерными кремнекислородными кольцами, объединенными в амфиболовые ленты и содержащими тетраэдры двух ориентаций. Особенность этих слоев в том, что смена ориентации происходит во всех тетраэдрах, принадлежащих к одной пироксеновой цепочке, из которых строятся амфиболовые ленты. Слои в структурах палыгорскита [6] и сепиолита [7] характеризуются соотношением числа противоположно ориентированных цепочек 2 : 2 и 3 : 3 соответственно. В структуре данного минерала тетраэдрический кремнекислородный слой сочетает в себе особенности слоев как палыгорскита, так и сепиолита.

Из разностных синтезов найдено расщепление позиций кремния Si6–Si8 с заселенностью ~0.5 в каждой подпозиции (рис. 1). Расстояния между Si6a-Si6b, Si7a-Si7b и Si8a-Si8b составляют 1.22(1), 1.264(8) и 1.00(1) Å соответственно. В результате формируются два статистически реализующихся варианта слоя с тетраэдрами, вершины которых "смотрят" в противоположные стороны. Слой с участием позиций Si6a, Si7a и Si8a содержит фрагменты, состоящие из трех цепочек с одинаковой ориентацией тетраэдров (как в сепиолите) и одной с противоположной. Участие Si6b- и Si7b-тетраэдров приводит к строгому чередованию двух цепочек с одной ориентацией с таким же числом цепочек противоположной ориентации (как в палыгорските), которое нарушается лишь одиночными тетраэдрами Si8b. Тетраэдрические слои в изученном минерале с учетом ориентации тетраэдров отличаются также от слоев в калиферсите [8] и Мп-туперссуатсиаите [1]. Наиболее сложный случай представлен в интерсилите [9], в структуре которого кремнекислородный слой содержит лишь фрагменты цепочек, а наряду с 6-членными присутствуют 5- и 8-членные кольца со смешанной ориентацией тетраэдров.

Из рис. 1 видно, что слои опираются вершинами своих тетраэдров на ленты из реберносвязанных октаэдров, которые могут быть заселены атомами Mg, Fe, Mn. Преобладание Mg характерно для палыгорскита, сепиолита и лохлинита [10], железо доминирует в туперссуатсиаите и калиферсите, а марганец — в йофортьерите [11], раите [12] и Mn-туперссуатсиаите. Ленты различаются не только составом катионов, но и количеством

КРИСТАЛЛОГРАФИЯ том 57 № 1 2012

Таблица 1. Кристаллоструктурные данные и характеристики эксперимента $NaCa(Fe^{2+},Al,Mn)_5[Si_8O_{19}(OH)](OH)_7 \cdot 5H_2O$

Сингония, пр. гр., Z	Триклинная, <i>Р</i> 1, 2
a, Å	5.2527(2)
b, Å	17.901(1)
<i>c</i> , Å	13.727(1)
α, град	90.018(3)
β, град	97.278(4)
ү, град	89.952(3)
$V, Å^3$	1280.3(1)
D_x , г/см ³	2.847
Излучение; λ, Å	$MoK_{\alpha}; 0.71073$
μ, мм ⁻¹	3.6
Размеры кристалла, мм	$0.25 \times 0.25 \times 0.75$
Дифрактометр	Xcalibur Oxford Diffraction, CCD-детектор
Тип сканирования	ω-сканирование
θ _{max} , град	55
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$\begin{array}{l} -28 < h < 27, -38 < k < 36, \\ -10 < l < 11 \end{array}$
Число отражений: изме- ренных/независимых, $R_{int}/c F > 7\sigma(F)$	12049/4168, 0.037/4168
Метод уточнения	МНК по <i>F</i>
Число независимых пози- ций	51
Число уточняемых пара- метров	460
Фактор недостоверности <i>R</i> _{анизо}	0.055
Программы	AREN [2, 3], DIFABS [4]

октаэдров, а следовательно, толщиной и формой, с чем, по-видимому, и связано соотношение числа противоположно ориентированных тетраэдрических цепочек в разных слоях.

Из железосодержащих представителей группы (табл. 5) изученный минерал ближе всего к двум туперссуатсиаиту и калиферситу [8]. Хотя структура первого неизвестна, можно предположить, что реберносвязанные Fe-октаэдры образуют ленту, в которой чередуется один октаэдр с двумя. По краям эта лента обрамлена Na-октаэдрами (рис. 2a). В калиферсите присутствуют два типа лент: в узкой ленте чередуются два октаэдра с одним (рис. 26), а широкая состоит из трех октаэдров (рис. 2в). Отличительной чертой изученного минерала является наличие двух типов октаэдрических лент, что формально связывает его с три-

РАСЦВЕТАЕВА и др.

Атом	x/a	<i>y/b</i>	<i>z/c</i>	q	$B_{ m _{ ЭКВ/ИЗО^*}}$, Å ²		
Fe1	0.7518(5)	0.1338(1)	-0.0014(2)	1	1.61(3)		
Fe2	0.2454(5)	0.0466(1)	-0.0054(2)	1	1.24(4)		
Fe3	0.2507(4)	0.2177(1)	-0.0040(1)	1	2.38(3)		
Fe4	0.2481(4)	0.4555(1)	0.5021(1)	1	1.15(2)		
Fe5	0.7652(3)	0.3718(1)	0.5061(1)	1	2.09(2)		
Sil	0.5253(3)	0.0367(1)	0.7990(1)	1	0.8(1)		
Si2	0.9822(3)	0.0457(1)	0.2015(1)	1	1.4(1)		
Si3	0.5211(4)	0.4607(1)	0.2928(1)	1	1.0(1)		
Si4	0.9797(4)	0.4563(1)	0.7043(1)	1	0.9(1)		
Si5	0.0186(6)	0.2909(1)	0.8030(2)	1	2.5(1)		
Si6a	0.995(1)	0.2105(3)	0.1999(5)	0.49(1)	2.2(1)		
Si6b	0.030(2)	0.2115(2)	0.2895(5)	0.51(1)	2.2(1)		
Si7a	0.486(1)	0.3001(1)	0.2001(4)	0.55(1)	1.7(1)		
Si7b	0.523(1)	0.2951(3)	0.2927(5)	0.45(1)	2.1(1)		
Si8a	0.5281(6)	0.2072(1)	0.7934(2)	0.58(1)	0.7(1)		
Si8b	0.485(2)	0.2088(4)	0.720(1)	0.42(1)	2.9(1)		
Са	0.759(1)	0.3207(1)	-0.0056(3)	1	3.39(3)		
Na	0.496(4)	0.3917(5)	0.780(1)	1	2.0(1)*		
01	0.951(1)	0.0481(3)	0.0814(6)	1	1.9(3)		
02	0.765(1)	0.0024(4)	0.7551(5)	1	2.2(3)		
03	0.738(2)	0.0044(4)	0.245(1)	1	2.6(3)		
04	0.764(2)	0.5002(4)	0.2518(5)	1	2.2(3)		
05	0.556(1)	0.0378(3)	0.9127(5)	1	1.9(3)		
O6	0.746(1)	0.5015(3)	0.7457(5)	1	1.8(3)		
O7	0.005(1)	0.1295(3)	0.2472(4)	1	1.7(3)		
O 8	0.745(2)	0.2432(4)	0.746(1)	1	2.0(2)		
09	0.764(2)	0.2559(5)	0.244(1)	1	2.4(2)		
O10	0.013(1)	0.3732(3)	0.7468(5)	1	2.3(3)		
011	0.953(1)	0.4602(4)	0.5849(3)	1	1.7(3)		
O12	0.265(1)	0.2540(3)	0.2420(5)	1	1.8(2)		
O13	0.520(1)	0.1207(4)	0.7530(6)	1	2.4(2)		
O14	0.570(1)	0.4608(3)	0.4154(4)	1	1.6(3)		
O15	0.505(2)	0.3789(3)	0.250(1)	1	3.2(2)		
O16	0.260(2)	0.2456(5)	0.750(1)	1	2.6(2)		
O17	0.105(3)	0.2913(6)	0.911(1)	1	6.0(1)		
OH1	0.461(1)	0.1249(5)	0.084(1)	1	5.5(3)		
OH2	0.046(2)	0.136(1)	0.918(1)	1	4.7(3)		
OH3	0.450(2)	0.3640(5)	0.5754(5)	1	2.8(3)		
OH4	0.064(2)	0.3760(5)	0.4270(6)	1	3.3(3)		
OH5	0.439(3)	0.203(1)	0.592(1)	0.48(3)	1.9(3)		
OH6	0.052(2)	0.2198(5)	0.405(1)	0.50(3)	1.7(3)		
(O,OH)1	0.945(4)	0.2129(6)	0.076(1)	1	5.6(3)		
(O,OH)2	0.415(2)	0.2959(4)	0.0825(6)	1	2.9(3)		
(O,OH)3	0.560(1)	0.2058(2)	0.9093(6)	1	2.2(3)		
(\mathbf{O}, W)	0.581(3)	0.292(1)	0.402(1)	1	5.2(2)		
(OH,W)1	0.718(3)	0.4404(6)	-0.059(1)	1	5.4(3)		
(OH, <i>W</i>)2	0.711(3)	0.286(1)	0.589(1)	1	6.5(2)		
(OH, <i>W</i>)3	0.947(3)	0.401(1)	0.092(1)	1	5.1(3)		
W1	0.726(6)	0.043(1)	0.583(1)	1	2.7(2)*		
W2	0.208(4)	0.104(1)	0.448(1)	1	6.7(1)		
W3	0.580(5)	0.129(1)	0.391(1)	1	3.0(1)*		
Примечание. Fe1 = Fe _{0.6} Al _{0.4} ; Fe2 = Fe _{0.6} Al _{0.4} ; Fe3 = Fe _{0.6} Mn _{0.4} ; Fe4 = Fe _{0.9} Ti _{0.1} ; Na = Na _{0.8} K _{0.1} Ca _{0.1} .							

Таблица 2. Координаты, заселенность позиций (q) и тепловые параметры атомов

	КЧ	Расстояния катион-анион, Å				
Позиция		Мини- мальное	Макси- мальное	Среднее		
Fe1	6	1.94(1)	2.279(4)	2.056		
Fe2	6	2.074(6)	2.155(5)	2.109		
Fe3	6	1.85(1)	2.231(8)	2.052		
Fe4	6	1.939(8)	2.190(6)	2.080		
Fe5	6	1.980(9)	2.206(5)	2.080		
Si1	4	1.548(8)	1.630(8)	1.594		
Si2	4	1.623(5)	1.658(8)	1.637		
Si3	4	1.575(7)	1.669(6)	1.612		
Si4	4	1.600(6)	1.632(7)	1.617		
Si5	4	1.49(1)	1.764(9)	1.662		
Si6a	4	1.586(8)	1.68(1)	1.639		
Si6b	4	1.577(7)	1.65(1)	1.614		
Si7a	4	1.565(8)	1.70(1)	1.616		
Si7b	4	1.49(1)	1.65(1)	1.592		
Si8a	4	1.52(1)	1.644(8)	1.588		
Si8b	4	1.45(1)	1.73(1)	1.58		
Ca	6	2.12(1)	2.524(6)	2.324		
Na	7	2.39(1)	2.96(1)	2.65		

Таблица 3. Характеристики координационных полиэдров

Таблица 4.	Некоторые	углы	Si-O-Si	в	структуре	ми-
нерала						

Угол	Величина, град
Si1-013-Si8b	174.0(2)
Si5-08-Si8b	171.2(5)
Si4-010-Si5	172.2(2)
Si3-015-Si7a	176.1(7)
Si6a-09-Si7b	175.5(9)
Si6b-09-Si7a	178.3(9)
Si2-07-Si6b	178.8(7)

клинным калиферситом. Одна лента широкая, сформированная при участии трех октаэдров (Fe1-Fe3), идентична широкой ленте калиферсита. Однако в изученном минерале ленты по краям (поочередно с каждой стороны) наращиваются октаэдрами кальция (рис. 2г). Вторая лента — узкая, в ней чередуются пары Fe-октаэдров (рис. 2д). Она встречается впервые и отличается от узкой ленты калиферсита, в которой чередуется один октаэдр с двумя, как в туперссуатсиаите, но без обрамления Na-октаэдрами.

Ленты расположены в шахматном порядке, и каналы между ними заполнены атомами калия, натрия и молекулами воды (туперссуатсиаит, лохлинит, калиферсит, раит) либо только молекулами воды (палыгорскит, сепиолит, йофортьерит,

Рис. 1. Кристаллическая структура минерала в проекции на плоскость (100).

КРИСТАЛЛОГРАФИЯ том 57 № 1 2012

Минерал	Кристаллохимическая формула	Тип <i>О</i> -ленты	Простран- ственная группа	Литература
Палыгорскит	$[(Mg,Al)_5][(Si,Al)_8O_{20}](OH)_2 \cdot 8H_2O$	[2×3]	C2/m	[6]
Сепиолит	$[Mg_8][Si_{12}O_{30}](OH)_4 \cdot 12H_2O$	[4×4]	Pncn	[7]
Калиферсит	$(K,Na)_{5}[Fe_{3}^{3+}][Fe_{6}^{3+}][Si_{20}O_{50}](OH)_{6} \cdot 12H_{2}O$	$[1 \times 2] + [3 \times 3]$	$P\overline{1}$	[8]
Раит	$Na[Mn_3^{2+} Na_2][Si_8O_{20}](OH)_4 \cdot 10H_2O$	[2 × 3]	C2/m	[12]
Плюмбофиллит	$[Pb_2][Si_4O_{10}]\cdot H_2O$	[2×2]	Pbcn	[14]
Mn-туперссуатсиаит	$[Na_{2}(Mn,Fe)_{2}(Fe,Mn)][Si_{8}O_{20}](OH)_{2} \cdot 6H_{2}O$	[2 × 3]	<i>C</i> 2/ <i>m</i>	[1]
Са-туперссуатсиаит	Na[Ca(Fe ²⁺ ,Al,Mn) ₃][Fe ₂ ²⁺] [Si ₈ O ₁₉ (OH)](OH) ₇ \cdot 5H ₂ O	$[2 \times 2] + [4 \times 4]$	ΡĪ	[Данная работа]

Таблица 5. Структурно изученные минералы семейства палыгорскита-сепиолита

фалкондоит [13]). В независимой части структуры изученного минерала присутствуют три свободные молекулы воды W1-W3, которые заполняют каналы между октаэдрическими лентами, в то время как атомы Na располагаются в шестичленных кольцах слоя.

По аналогии с известными представителями группы палыгорскита идеализированная формула изученного минерала может быть записана в виде (Z = 2): NaCa(Fe²⁺,Al,Mn)₅[Si₈O₁₉(OH)] (OH)₇ · 5H₂O.

Таким образом, данный минерал обладает рядом уникальных кристаллохимических особенностей, которые отличают его от структурно изученных минералов данного семейства. Несмотря на близость элементарных ячеек с туперссуатсиаитом и калиферситом и аналогии с их структурными фрагментами, новый представитель отличается от этих минералов, как и других минералов группы палыгорскита, по составу, симметрии и строению. Это касается преобладания кальция над натрием в одной из структурных позиций, понижения симметрии до триклинной, обусловленного высокой упорядоченностью структуры с формированием двух типов лент из октаэдров железа, одна из которых встречена впервые, а также тетраэдрических слоев смешанного типа.

Рис. 2. Ленты из октаэдров в структурах: туперссуатсиаита (а), калиферсита (б, в) и изученного минерала (г, д).

Авторы выражают благодарность H.B. Чуканову за предоставленные образцы и данные по их химическому составу.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 10-05-00092а) и НШ-3848.2010.5.

СПИСОК ЛИТЕРАТУРЫ

- 1. Camara F., Garvie L.A.J., Devouard B. et al. // Am. Mineral. 2002. V. 87. P. 1458.
- 2. Андрианов В.И. // Кристаллография. 1989. Т. 34. Вып. 3. С. 592.
- 3. *Андрианов В.И.* // Кристаллография. 1987. Т. 32. Вып. 1. С. 228.
- 4. *Walker N., Stuart D.* // Acta Cryst. A. 1983. V. 39. № 2. P. 158.
- Brese N.E., O'Keefe M. // Acta Cryst. B. 1991. V. 47. P. 192.

- Artioli G., Galli E. // Mater. Sci. Forum. 1994. V. 166. P. 647.
- Brauner K., Preisinger A. // Tschermaks Miner. Petrogr. Mitt. B. 6. S. 120.
- 8. Ferraris G., Khomyakov A.P., Belluso E., Soboleva S.V. // Eur. J. Mineral. 1998. V. 10. P. 865.
- 9. Ямнова Н.А., Егоров-Тисменко Ю.К., Хомяков А.П. // Кристаллография. 1996. Т. 41. № 2. С. 257.
- Fahey J., Ross M., Axelrod J. // Am. Mineral. 1960. V. 45. P. 270.
- Perrault G., Harvey Y. // Can. Mineral. 1975. V. 13. № 1. P. 68.
- Пущаровский Д.Ю., Пеков И.В., Плат Дж. и др. // Кристаллография. 1999. Т. 44. №4. С. 612.
- 13. Springer G. // Can. Mineral. 1976. V. 14. № 4. P. 407.
- 14. *Kampf A.R., Rossman G.R., Housley R.M.* // Am. Mineral. 2009. V. 94. P. 1198.