КРИСТАЛЛОГРАФИЯ, 2012, том 57, № 1, с. 5–13

ТЕОРИЯ КРИСТАЛЛИЧЕСКИХ СТРУКТУР

УДК 548.736

НАНОКЛАСТЕРЫ НА ОСНОВЕ ПЕНТАГОНДОДЕКАЭДРОВ С ОБОЛОЧКАМИ В ВИДЕ ДЕЛЬТАЭДРОВ *D32*, *D42* И *D50* В КРИСТАЛЛИЧЕСКИХ СТРУКТУРАХ ИНТЕРМЕТАЛЛИДОВ

© 2012 г. А. А. Панкова, Г. Д. Илюшин*, В. А. Блатов

Самарский государственный университет * Институт кристаллографии РАН, Москва E-mail: ilyushin@mail.ru Поступила в редакцию 25.01.2011 г.

С помощью комплекса программ TOPOS создана база данных интерметаллидов, содержащих пентагондодекаэдрические *d*-кластеры (528 кристаллических структур интерметаллидов, 111 топологических типов, 47 пространственных групп симметрии). Всего выделено 606 атомных *d*-конфигураций, которые описываются 14-ю точечными группами симметрии. Приведены примеры нанокластеров-прекурсоров кристаллических структур интерметаллидов с внешними оболочками в виде дельтаэдров *D*, образованными над додекаэдрами, которые идентифицированы в автоматическом режиме обработки структурных данных: *D*32 (K₈In₆Ge₄₀, Cs₃₀Na₃Sn₁₆₂), *D*₄₂ (Ru₃Be₁₇, Y₃Cd₁₈, Ca₃(Cd₁₇Al)) и *D*₅₀ (Yb₃Zn₁₈, Ce₃(Au₁₄Sn3), Pr₃Cd₁₈, Eu₄Cd₂₅), где 32, 42 и 50 – число атомов в оболочке. Такие дельтаэдры ранее были найдены в икосаэдрических нанокластерах-прекурсорах интерметаллидов. Структуры с додекаэдрическими нанокластерами-прекурсорами, содержащие дельтаэдры *D*42 и *D*50, являются аппроксимантами квазикристаллов *M*Cd_{5.7} (*M* = Yb и Ca) и входят в семейство *M*Cd₆ (*M* = Ce, Pr, Nd, Sm, Eu, Gd, Dy, Yb, Y и Ca).

ВВЕДЕНИЕ

Среди множества полиэдрических структурных единиц, составленных из молекул, кластеров или атомов, особое внимание привлекают квазисферические оболочки в виде дельтаэдров с *i*-икосаэдрической (некристаллографической) симмет-

рией I(235) и $I_h(m\bar{3}\bar{5})$ [1]. Такие оболочки типичны для биологических объектов (вирусов) [2, 3] и неорганических соединений (сплавов металлов с 3*D*-периодической структурой и *i*-квазикристаллов) [4–13].

В настоящее время с помощью рентгеноструктурного анализа установлены детали строения многих икосаэдрических вирусов на атомном уровне [2, 3]. Число структурных единиц (пентамеров и гексамеров, состоящих из пяти и шести белковых молекул), формирующих внешние оболочки вирусов, полностью согласуется с данными геометрического моделирования оболочек Каспера и Клуга, проведенного еще в 1962 г., и их строение детально рассмотрено Б.К. Вайнштейном в [2]. Примеры оболочек различных вирусов приведены в обзоре [3].

Каспером и Клугом было установлено, что в простейших представителях двух икосаэдрических классов число квазисферических единиц, формирующих оболочки, равно 12, 42, 92... (класс P = 1) и 32, 122, 272... (класс P = 3). В моделях строения оболочек вирусов пентамеры и гексамеры изображают в виде двухцветных шариков, при этом пентамеры во всех моделях строения оболочек Каспера и Клуга окружены пятью гексамерами [2].

Среди интерметаллидов особый интерес вызывают нанокластеры, в которых оболочки в виде дельтаэдров с икосаэдрический симметрией располагаются над темплатом — внутренним *i*-икосаэдром. Такие нанокластеры являются типичными периодическими аппроксимантами *i*-квазикристаллов [4—9]. Число атомов, формирующих оболочки нанокластеров-аппроксимантов Бергмана 1@12@32 [7—9] и Маккея 1@12@42 [10], соответственно равно 32 и 42. Топологическая структура дельтаэдров *D*32 и *D*42 в нанокластерах-аппроксимантах соответствует простейшим геометрическим вариантам строения двухцветных оболочек Каспера и Клуга; дельтаэдр *D*32 относится к классу *P* = 3, а *D*42 – к классу *P* = 1.

В [11–13] впервые были выявлены две новые высокосимметричные икосаэдрические оболочки в виде 50-атомных дельтаэдров *D*50. Они характеризуются усложненной топологией строения, связанной с появлением в оболочке атомов не только с КЧ = 5 и 6, но и с КЧ = 7, т.е. для их топологического описания необходимо использовать модели трехцветных оболочек.

Некристаллографические икосаэдрические то-

чечные группы симметрии I(235) и $I_h(m\overline{35})$ подробно рассмотрены в [1], где подчеркивается, что дуальные *i*-икосаэдр и *d*-додекаэдр (20-атомный додекаэдр с гранями в виде правильных пятиугольников) описываются одной и той же то-

чечной группой симметрии $m\overline{35}$.

Можно предполагать, что из-за отсутствия ограничений по симметрии в интерметаллидах *d*-додекаэдры (пустые и заполненные) выполняют роль темплатов, на которых формируются дельта-эдры *D*32, *D*42 и *D*50 (с икосаэдрической симметрией). Примерами трех спонтанно образующихся незаполненных оболочек с икосаэдрической симметрией кроме *i*-икосаэдра B₁₂ являются молекулы $C_{20}H_{20}$ (с *d*-додекаэдром из атомов С) и фуллерены C_{60} , которые имеют максимально возможную кристаллографическую симметрию $m\bar{3}$ (порядок группы 24) в кристаллических структурах с пр. гр. $Fm\bar{3}$ (№ 202). Моделирование самосборки кластеров B₁₂, C_{20} и C_{60} из микрокластеров проведено в [14, 15].

В настоящей работе проведен систематический анализ всех известных структур бинарных и более сложных по составу интерметаллидов, содержащих локальные области в виде пустых и заполненных додекаэдров, в которых атомы связаны между собой химическими связями. Для таких кристаллических структур интерметаллидов определены пространственные группы симметрии и кристаллографические позиции, занимаемые *d*-додекаэдрами в элементарных ячейках. Приведены примеры нанокластеров-прекурсоров кристаллических структур с оболочками в виде дельтаэдров D32, D42 и D50, которые идентифицированы в автоматическом режиме обработки структурных данных с помощью комплекса программ TOPOS [16, 17]. Под нанокластерамипрекурсорами кристаллической структуры мы понимаем основные типы кластеров, которые при связывании друг с другом образуют первичную цепь кристаллической структуры и определяют значения модулей векторов трансляций [18-20].

Работа продолжает исследования [8, 9, 11–15, 18–20] в области геометрико-топологического анализа строения кристаллических фаз и моделирования процессов самоорганизации химических систем, а также включает разработку новых методов анализа кристаллических структур.

ОБЪЕКТЫ И МЕТОДИКИ АНАЛИЗА

В рамках данной работы создан банк данных, содержащий 2001 топологический тип кристал-

лических структур интерметаллидов. Подчеркнем, что топологический тип включает в себя атомные сетки, имеющие одинаковую топологию, независимо от пространственной симметрии самой сетки, в связи с чем один топологический тип может включать в себя несколько структурных типов. Банк создан на основе комплекса программ TOPOS [16] и данных об атомном строении, приведенных в электронных базах CRYSTMET и ICSD, содержащих информацию по более чем 27000 полностью расшифрованным структурам сплавов и интерметаллических соединений.

Алгоритм автоматизированного геометрического и топологического анализа с использованием комплекса программ TOPOS включал следующие стадии.

– Расчет матрицы смежности структуры и выделение простейших полиэдрических структурных единиц с помощью программы AutoCN. Учитывали межатомные взаимодействия, которым отвечали "основные" грани полиэдров Вороного–Дирихле атомов. В результате структуры интерметаллидов представлены в виде трехмерного неориентированного графа, в котором атомы отождествляются с вершинами графа, а межатомные связи – с его ребрами.

 Расчет координационных последовательностей для всех кристаллографически независимых атомов в кристаллических структурах осуществляли с помощью программы IsoTest.

 Поиск додекаэдрических фрагментов в атомных сетках осуществляли с использованием алгоритма выделения конечных подграфов любой сложности в бесконечных периодических графах.

Для всех кристаллических структур интерметаллидов определены локальные конфигурации, соответствующие каждому кристаллографически независимому атому. Для каждой установленной *d*-конфигурации определена ее точечная симметрия.

Наличие локальных областей в виде многослойных *d*-нанокластеров было установлено для структур с большими параметрами элементарных ячеек. Такие многослойные *d*-нанокластеры в ряде случаев соответствуют нанокластерам-прекурсорам (первичным нанокластерам), которые могут быть идентифицированы в автоматическом режиме обработки структурных данных с помощью комплекса программ TOPOS.

Для определения состава и строения кластеров, формирующих структуру интерметаллида, использовали нанокластерную модель [11–15], которая основана на следующих принципах.

Структура образуется из многослойных *первичных* нанокластеров, как центрированных, так и не содержащих центрального атома. Количество различных первичных нанокластеров, как

Точечная группа	Число конфигу- раций <i>D</i> 20	Число конфигу- раций <i>I</i> 12	Точечная группа	Число конфигу- раций <i>D</i> 20	Число конфигу- раций <i>I</i> 12
$m\overline{3}(T_h)$	322	732	$\overline{3}(C_{3i})$	9	22
$mmm(D_{2h})$	73	441	$\overline{1}$ (C _i)	5	134
$\overline{3}m(D_{3d})$	53	2269	$1(C_1)$	3	780
$3m(C_{3v})$	45	805	$mm2 (C_{2v})$	3	725
$2/m (C_{2h})$	32	1380	32 (<i>D</i> ₃)	2	7
$m(C_s)$	25	1382	2 (<i>C</i> ₂)	2	122
3 (<i>C</i> ₃)	23	83	222 (<i>D</i> ₂)		
23 (<i>T</i>)	9	9			

Таблица 1. Распределение 607 додекаэдрических (*D*20) и 8892 икосаэдрических (*I*12) конфигураций в интерметаллидах по точечным группам симметрии

правило, не превышает двух, а количество слоев в них варьирует в диапазоне 1–3.

 Центры нанокластеров занимают наиболее симметричные положения в структуре.

 Нанокластеры не должны иметь общих внутренних атомов (взаимопроникать), но могут иметь общие поверхностные атомы.

 Помимо первичных нанокластеров в структуре могут присутствовать спейсеры — кластеры меньшего размера или одиночные атомы, которые заполняют пустоты между первичными нанокластерами.

 Совокупность первичных нанокластеров и спейсеров должна включать в себя все атомы структуры.

В результате создана база данных интерметаллидов, содержащих связные атомные фрагменты в виде *d*-додекаэдров (606 *d*-кластеров, 111 топологических типов, 528 кристаллических структур интерметаллидов).

СИММЕТРИЯ ДОДЕКАЭДРИЧЕСКИХ КЛАСТЕРОВ В КРИСТАЛЛИЧЕСКИХ СТРУКТУРАХ ИНТЕРМЕТАЛЛИДОВ

Додекаэдр (*d*), лежащий в основе выделяемых *d*-нанокластеров, является 20-вершинником, и его грани являются пятиугольниками. Такой пентагон-додекаэдр имеет 20 вершин, 30 ребер и 12 граней.

Максимальная симметрия *d*-додекаэдра, как и *i*-икосаэдра, соответствует $m\overline{35}$, порядок точечной группы 120. В кристаллических структурах додекаэдры, как и икосаэдры, занимают позиции, соответствующие кристаллографическим точечным группам, являющимся подгруппами $m\overline{35}$, а именно $T_h(m\overline{3})$, порядок группы 24, или $D_{3d}(\overline{3}m)$, порядок группы 12, или позиции, соответствующие их подгруппам. Точечными элемен-

тами симметрии d- и i-полиэдров являются оси

3- и 2-порядков, плоскости m и центр симметрии $\overline{1}$.

Всего для кристаллических структур интерметаллидов установлено 47 пространственных групп симметрии. Распределение додекаэдров по точечным группам симметрии приведено в табл. 1. Для сравнения в ней дано также аналогичное распределение для 8892 икосаэдрических конфигураций в 5691 структуре интерметаллидов.

Проведенный анализ показал, что в структурах интерметаллидов симметрия додекаэдрических кластеров описывается 14 кристаллографическими точечными группами, являющимися подгруппами группы симметрии $m\bar{3}\bar{5}$. Не обнаружены додекаэдры с симметрией D_2 (222), которая также

соответствует подгруппе группы $m\overline{35}$.

Установлены следующие особенности строения кристаллических структур с додекаэдрическими конфигурациями.

– Кристаллографическая симметрия *d*-додекаэдра $T_h(m\overline{3})$ реализуется чаще всего (более чем

в 50% случаев). Точечная симметрия D_{3d} ($\overline{3}m$) занимает третье место (8.7%). Для икосаэдрических конфигураций установлено, что наиболее распространенной является точечная симметрия D_{3d} , а T_h занимает шестое место.

— Практическое отсутствие полностью десимметризованных кластеров (точечная группа C_1) связано с тем, что структуры, как правило, содержат только одну додекаэдрическую конфигурацию. В этом основное отличие додекаэдрических структур от икосаэдрических, часто содержащих несколько кристаллографически независимых икосаэдров (с последовательно понижающейся симметрией).

 Не обнаружено ни одного примера реализации неэквивалентных центрированных додекаэдрических конфигураций в одной структуре.
Примером кристаллической структуры с двумя

Рис. 1. Додекаэдрический кластер 0@Ве20 в структуре Ru₃Be₁₇: а – в виде связанных атомов, б – в виде полиэдра.

Рис. 2. Заполненные додекаэдрические нанокластеры: a - K@Ge20 в структуре $K_8In_6Ge_{40}$, $\delta - Cd4@Cd20$ с внутренним тетраэдром в структуре YbCd₆.

нецентрированными додекаэдрическими конфигурациями является Eu_4Cd_{25} (пр. гр. $Fd\overline{3}$ (№ 203), в которой центры нанокластеров находятся в позициях 8*a* и 8*b* с симметрией 23).

КРИСТАЛЛИЧЕСКИЕ СТРУКТУРЫ ИНТЕРМЕТАЛЛИДОВ, СОДЕРЖАЩИЕ ОБОЛОЧКИ В ВИДЕ ДЕЛЬТАЭДРОВ *D*32, *D*42, *D*50

Отметим основные особенности строения интерметаллидов, содержащих додекаэдрические кластеры.

Как известно, структуры интерметаллидов содержат икосаэдры двух типов: в виде 12-атомных (пустых) кластеров 0@B12 и 13-атомных кластеров C@B12, т.е. центрированных меньшими атомами *С.* Додекаэдрические кластеры также могут быть пустыми — 0@B20 (рис. 1). Но если они заполнены, то обычно содержат в центре либо самые большие атомы *А*, входящие в состав соединения (A@B20, рис. 2а, вариант 1), либо простейшие полиэдры, например тетраэдры, образованные атомами меньшего размера C4@B20, или состоящие из тех же атомов, что и атомы додекаэдрической оболочки (B4@B20, рис. 26, вариант 2), либо оба варианта заполнения оболочки реализуются одновременно (вариант 3).

Додекаэдрические кластеры могут быть выделены в виде оболочки из 20-ти связанных химическими связями крупных атомов A, образованной над *i*-икосаэдром любого типа: в виде 12-атомного (пустого) кластера 0@B12 или 13-атомного кластера C@B12. Атомы A додекаэдрической оболочки располагаются над 20-ю гранями икосаэдра, и все пятиатомные окна этой оболочки центрированы 12-ю атомами B. Такой вариант соответствует нанокластерам Бергмана с дельтаэдром D32 (*вариант* 4); анализ серии таких структур проведен в [8].

Додекаэдрические кластеры, пустые и заполненные (варианты строения 1, 2, 3), как и икосаэдрические кластеры, являются темплатами, на поНАНОКЛАСТЕРЫ НА ОСНОВЕ ПЕНТАГОНДОДЕКАЭДРОВ С ОБОЛОЧКАМИ

Соединение	Пространствен- ная группа	Индекс Пирсона	Последователь- ность Уайкоффа	Параметры ячей- ки <i>a</i> , <i>c</i> , Å	Объем, $Å^3$			
Структуры с оболочками D32								
$K_8 In_6 Ge_{40} [21]$	$Pm\overline{3}$	<i>cP</i> 54	kidca	10.977	1322.67			
Cs ₃₀ Na ₃ Sn ₁₆₂ [22]	P4 ₂ /mnm	<i>tP</i> 206	$k^6 j^4 i^7 g^2 f^2 db$	23.556, 12.104	6716.67			
Структуры с оболочками D42								
Ru ₃ Be ₁₇ [23]	Im 3	<i>cI</i> 160	hg ³ fed	11.337	1457.12			
Y ₃ Cd ₁₈ [24]	$Im\overline{3}$	<i>cI</i> 162	hg ⁴ fed	15.482	3710.92			
YbCd ₆ [25]	<i>I</i> 23	<i>cI</i> 158	$f^5 dc^3$	15.638	3824.23			
Ca ₃ Cd ₁₇ Al [26]	<i>R</i> 3	<i>hR</i> 168	$b^{54}a^{6}$	22.134, 27.108	11501.33			
Структуры с оболочками D50								
Yb ₃ Zn ₁₈ [27]	$Im \overline{3}$	<i>cI</i> 194	hg ⁴ fedca	14.299	2923.6			
$Ce_3(Au_{14}Sn_3)$ [28]	<i>I</i> 23	<i>cI</i> 159	$f^5 edc^3$	15.118	3455.28			
Pr ₃ Cd ₁₈ [29]	$Im\overline{3}$	<i>cI</i> 258	$h^2g^4f^2edc$	15.643	3827.90			
Eu ₄ Cd ₂₅ [30]	Fd3	<i>cF</i> 1416	$g^{12}fe^6c$	31.872	32375.74			

Таблица 2. Основные структурные данные интерметаллидов с оболочками в виде дельтаэдров D32, D42 и D50

верхности которых формируются три типа высокосимметричных оболочек в виде дельтаэдров *D*32, *D*42 и *D*50.

Нанокластеры Бергмана с дельтаэдром D32(вариант 4) также являются темплатами, на поверхности которых формируются различные типы высокосимметричных оболочек. Пример нанокластера Бергмана с дельтаэдром D92 (соответствующий классу P = 1 Каспера и Клуга) рассмотрен в [9].

Далее рассмотрены примеры кристаллических структур, содержащих дельтаэдры D32, D42 и D50, образованные на додекаэдрах-темплатах (варианты строения 1, 2, 3); основные структурные данные для этих соединений приведены в табл. 2. Как видно из этой таблицы, кристаллические структуры обладают в основном кубической симметрией и характеризуются широкой областью изменения параметров ячейки от a = 11.337до a = 31.871 Å и объема ячейки (от 1457.12 до 32375.74 Å³) в интерметаллидах Ru₃Be₁₇ и Eu₄Cd₂₅. При этом структура Eu₄Cd₂₅ с индексом Пирсона *cF*1416 и последовательностью Уайкоффа $g^{12}fe^{6}c$ (с 20-ю независимыми атомами) является одной из самых сложных структур интерметаллидов.

В табл. 3 для трех структур с дельтаэдрами D32, D42 и D50 приведены координационные последовательности $\{N_k\}$ атомов. Значения координационных последовательностей атомов для k = 1 и 2, равные 20 и 32 (структура K₈In₆Ge₄₀), а также 20 и 50 (структура Yb₃Zn₁₈), указывают на присутствие нанокластера, образованного на додекаэдре, содержащем в центре крупные атомы (К и Yb). Для интерметаллида YbCd₆ отметим топологическую симметрию атомов Cd7 и Cd8 (в оболочке додекаэдра) и Cd1 и Cd2 (в оболочке дельтаэдра D42), имеющих одинаковые значения координационных последовательностей. Для выделенной группы кристаллических структур геометрические и топологические характеристики дельтаэдров D32, D42 и D50 приведены в табл. 4.

Структуры с оболочками в виде дельтаэдров D32. В структурах $K_8In_6Ge_{40}$ и $Cs_{30}Na_3Sn_{162}$ установлены додекаэдрические кластеры K@Ge20 и Cs@Sn20 с оболочками в виде дельтаэдров D32 (рис. 3). Центры кластеров занимают в кубической и тетрагональной ячейке наиболее симметричные позиции 2*a* и 2*b* и характеризуются симметрией *m* $\overline{3}$ и *mmm* (табл. 4).

В структуре K₈In₆Ge₄₀ однослойные додекаэдрические кластеры K@Ge20 являются первичными нанокластерами, а атомы из оболочки D32 (К и In) располагаются между связанными нанокластерами K@Ge20.

В структуре $Cs_{30}Na_3Sn_{162}$ первичными нанокластерами являются *двухслойные додекаэдрические кластеры* Cs@Sn20@Cs12Sn20 с оболочками D32. Нанокластеры образуют первичные цепи, распространяющиеся в направлении [001] и расположенные со сдвигом на c/2.

В обоих случаях самые большие атомы, входящие в состав соединения (К и Сs), центрируют додекаэдры, а также располагаются в оболочке D32 над гранями додекаэдра, тогда как атомы Ge, In и Sn находятся над вершинами додекаэдра. Координационные числа атомов в оболочке равны 5 и 6.

Структуры с оболочками в виде дельтаэдров D42. Додекаэдрические кластеры с оболочками в виде дельтаэдров D42 установлены в кубических структурных типах Ru₃Be₁₇ (рис. 4a) и Y₃Cd₁₈

Атом	Координационные последовательности								
	N_1	N_2	N_3	N_4	N_5	N_6	N_7	N_8	
K ₈ In ₆ Ge ₄₀									
K1	20	32	152	230	344	560	818	992	
K2	24	38	160	278	324	658	824	946	
Ge1	8	68	98	254	410	497	827	1067	
Ge2	8	67	103	246	421	509	799	1091	
In1	8	70	92	250	414	452	846	1058	
YbCd ₆									
Cd1, Cd2	12	47	112	194	321	478	642	858	
Cd2	12	47	112	194	321	478	642	858	
Cd3	12	47	109	197	320	482	637	840	
Cd4	10	51	107	189	328	460	633	854	
Cd5	12	45	92	207	308	462	665	836	
Cd6	15	45	107	195	324	465	661	853	
Cd7, Cd8	10	52	109	193	320	466	650	853	
Yb1	16	47	109	208	316	467	648	861	
Cd-тетраэдр	20	42	114	224	314	476	654	854	
Yb_3Zn_{18}									
Zn2	15	49	111	203	340	481	689	913	
Zn3	13	49	116	205	334	502	677	896	
Zn4	10	53	113	197	344	490	667	890	
Zn5	12	49	115	203	336	504	667	884	
Zn6	11	53	116	206	332	497	689	896	
Zn7	12	49	96	211	332	470	705	884	
Zn8	8	38	110	188	308	464	674	848	
Yb1	16	49	113	220	330	491	678	907	
Yb2	20	50	122	224	362	500	686	950	

Таблица 3. Координационные последовательности атомов в структурах с дельтаэдрами D32, D42 и D50

Примечание. Жирным шрифтом выделено число соседних атомов в ближайшем окружении (*к* = 1) в трехмерных сетках.

Таблица 4. Геометрические и топологические характеристики дельтаэдров D32, D42, D50 в кристаллических структурах

Соединение	Тип дельтаэдра	Пространствен- ная группа	Позиция	Точечная симметрия	КЧ атомов в оболочке
K ₈ In ₆ Ge ₄₀	D32	$Pm\overline{3}$	2 <i>a</i>	$m\overline{3}$	5, 6
$Cs_{30}Na_3Sn_{162}$	D32	P4 ₂ /mnm	2b	mmm	5, 6
Ru_3Be_{17}	<i>D</i> 42	$Im\overline{3}$	2a	$m\overline{3}$	5,6
Y_3Cd_{18}	<i>D</i> 42	$Im\overline{3}$	2a	$m\overline{3}$	5, 6
YbCd ₆	<i>D</i> 42	<i>I</i> 23	2a	23	5, 6
Ca ₃ (Cd ₁₇ Al)	<i>D</i> 42	<i>R</i> 3	3 <i>a</i>	3	5, 6
Yb ₃ Zn ₁₈	D50	$Im\overline{3}$	2a	$m\overline{3}$	5, 6, 7
$Ce_3(Au_{14}Sn_3)$	D50	<i>I</i> 23	2a	23	5, 6, 7
Pr_3Cd_{18}	D50	$Im\overline{3}$	2a	$m\overline{3}$	5, 6, 7
Eu ₄ Cd ₂₅	D50	$Fd\overline{3}$	8 <i>a</i>	23	5, 6, 7

КРИСТАЛЛОГРАФИЯ том 57 № 1 2012

Рис. 3. Внешние оболочки *D*32 над додекаэдрическими кластерами: $a - структура K_8 In_6 Ge_{40}$, в оболочке 12 атомов (белые шары) располагаются над гранями додекаэдра, а атомы Ge (черные шары) и In (серые шары) – над вершинами додекаэдра; б – структура $Cs_{30}Na_3Sn_{162}$, в оболочке 12 атомов (белые шары) располагаются над гранями додекаэдра, а атомы Sn (черные шары) – над вершинами додекаэдра.

Рис. 4. Внешние оболочки *D*42 над додекаэдрическими кластерами: а – структура Ru₃Be₁₇, в оболочке атомы Ru (белые шары) располагаются над гранями додекаэдра, атомы Be (черные шары) – над ребрами додекаэдра; б – структура YbCd₆, в оболочке атомы Yb (белые шары) располагаются над гранями додекаэдра, атомы Cd (черные шары) – над ребрами додекаэдра.

(YCd₆) (рис. 4б), а также в тригональной структуре Ca₃(Cd₁₇Al). Симметрия нанокластеров ($m\overline{3}$ и $\overline{3}$) также максимальна для соответствующих пространственных групп (табл. 4). В оболочках дельтаэдров *D*42 атомы Cd1 и Cd2 эквивалентны атомам Be6 (рис. 4а и 46).

В кубической структуре Ru_3Be_{17} додекаэдрический кластер не заполнен (рис. 1). В кубической структуре Y_3Cd_{18} додекаэдрические кластеры содержат тетраэдры из атомов Cd, которые занимают три различных положения, и эти же атомы формируют додекаэдрическую оболочку. В тригональной структуре $Ca_3(Cd_{17}Al)$ додекаэдрические кластеры содержат тетраэдры из атомов Al, которые занимают фиксированное положение.

КРИСТАЛЛОГРАФИЯ том 57 № 1 2012

Во всех кластерах самые большие атомы, входящие в состав соединений (Ru, Y, Ca), располагаются над гранями додекаэдра, а остальные атомы (Ве и Cd) располагаются над центрами ребер додекаэдра. Координационные числа атомов в оболочке равны 5 и 6.

Во всех трех структурах *двухслойные додекаэдрические кластеры* с дельтаэдрами D42 являются первичными нанокластерами и образуют ОЦКупаковку. Отметим, что все структуры, содержащие оболочки этого типа, известны как аппроксиманты квазикристаллов или родственные им типы.

Структуры с оболочками в виде дельтаэдров D50. Третий тип дельтаэдрической оболочки (D50) встречается в кубических структурах

Рис. 5. Внешние оболочки D50 над додекаэдрическими кластерами: а – структура Yb₃Zn₁₈ (Yb Zn₆), в оболочке атомы Yb (белые шары) располагаются над гранями додекаэдра, атомы Zn (черные шары) – над вершинами и ребрами додекаэдра; б – структура Ce₃(Au₁₄Sn₃), в оболочке атомы Ce (белые шары) располагаются над гранями додекаэдра, атомы Au (черные шары) и Sn (серые шары) – над вершинами и ребрами додекаэдра.

Yb₃Zn₁₈ (рис. 5а), Ce₃(Au₁₄Sn₃) (рис. 5б), Eu₄Cd₂₅ и Pr₃Cd₁₈, родственных аппроксимантам квазикристаллов MCd_{5.7} (M = Yb и Ca) и принадлежащих семейству аппроксимантов MCd₆ (M = Ce, Pr, Nd, Sm, Eu, Gd, Dy, Yb, Y и Ca). Нанокластеры обладают максимально возможной симметрией $m\overline{3}$ и 23, и занимают в элементарных ячейках позиции 2a.

В структуре $Ce_3(Au_{14}Sn_3)$ додекаэдрический кластер не заполнен (рис. 5 б). В Yb_3Zn_{18} и Al-допированном соединении $Yb_3(Zn,Al)_{18}$ заполненные додекаэдрические кластеры равновероятно содержат как самые большие атомы, входящие в состав соединения (Yb), так и простейшие полиэдры из атомов, которые формируют икосаэдрическую оболочку.

Во всех структурах *двухслойные додекаэдрические кластеры* с оболочкой *D*50 являются первичными нанокластерами.

Как и в рассмотренных выше дельтаэдрических оболочках, самые большие атомы оболочки *D*50 располагаются над гранями додекаэдра, а остальные атомы располагаются и над вершинами, и над центрами ребер додекаэдра. Обнаруженная ранее в икосаэдрических нанокластерах 50-атомная ε-оболочка имеет такую же симметрию и топологическую структуру [11–13].

ЗАКЛЮЧЕНИЕ

Проведен систематический анализ всех известных структур интерметаллидов, содержащих локальные области в виде додекаэдров. Приведены примеры нанокластеров-прекурсоров кристаллических структур с оболочками в виде дельтаэдров *D*32, *D*42 с KЧ = 5 и 6, которые соответствует простейшим геометрическим вариантам строения двухцветных оболочек Каспера и Клуга; дельтаэдр D32 относится к классу P = 3, а $D42 - \kappa$ классу P = 1. Кроме того, выявлена икосаэдрическая оболочка в виде 50-атомных дельтаэдров D50с усложненной топологией строения, связанной с появлением в оболочке атомов не только с KU = 5 и 6, но и с KU = 7. Такие дельтаэдры ранее были найдены в икосаэдрических нанокластерах-прекурсорах интерметаллидов. Это связано с тем, что дуальные полиэдры *i*-икосаэдр и *d*-додекаэдр (выполняющие роль темплатов) описываются од-

ной и той же точечной группой симметрии *m*35 и в кристаллических структурах занимают одни и те же позиции, соответствующие кристаллографи-

ческим точечным группам $T_h(m3)$, порядок груп-

пы 24 и D_{3d} ($\bar{3}m$), порядок группы 12 и их подгруппам. Отметим, что изменение симметрии полиэдра-темплата приведет к появлению новых типов оболочек в виде дельтаэдров. Так, в нанокластерах-прекурсорах интерметаллидов на основе полиэдра Фриауфа, являющегося дельтаэдром с 16-ю вершинами и 28-ю гранями и точечной симметрией $\bar{4}3m$ (порядок группы 24), установлены 44- и 52-дельтаэдры с обычными значениями КЧ = 5 и 6; такие нанокластеры-прекурсоры имеют состав 1@16@44 и 1@16@52.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 09-02-01269).

СПИСОК ЛИТЕРАТУРЫ

 Вайнштейн Б.К. Современная кристаллография. Т. 1. Симметрия кристаллов. Методы структурной кристаллографии. М.: Наука, 1979.

КРИСТАЛЛОГРАФИЯ том 57 № 1 2012

- 2. *Вайнштейн Б.К.* Современная кристаллография. Т. 2. М.: Наука, 1979.
- Костюченков В. А., Месянжинов В. В. // Успехи биол. химии. 2002. Т. 42. С. 177.
- 4. *Steurer W., Deloudi S. //* Acta Cryst. A. 2008. V. 64. P. 1.
- 5. Векилов Ю.Х., Черников М.А. // УФН. 2010. Т. 180. № 6. С. 561.
- Дмитриенко В.Е., Чижиков В.А. // Кристаллография. 2007. Т. 52. С. 1177.
- 7. Bergman G., Waugh J.L.T., Pauling L. // Acta Cryst. 1957. V. 10. P. 254.
- Блатов В.А., Илюшин Г.Д. // Журн. неорган. химии. 2011. Т. 56. № 5.
- 9. Ilyushin G.D., Blatov V.A. // Cryst. Rep. 2010. V. 55. № 7. P. 1093.
- 10. Mackay A.L. // Acta Cryst. 1962. V. 15. P. 916.
- 11. Blatov V.A., Ilyushin G.D., Proserpio D.M. // Inorg. Chem. 2010. V. 49. P. 1811.
- Блатов В.А., Илюшин Г.Д. // XIV Нац. конф. по росту кристаллов НКРК-2010. Москва. 6–10 декабря 2010 г. ИК РАН. Т. 2. С. 180.
- 13. Илюшин Г.Д., Блатов В.А. // Кристаллография. 2011. Т. 56. № 1. С. 80.
- Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. М.: УРСС, 2003. 376 с.
- 15. Ilyushin G.D. // Cryst. Rep. V. 49. Suppl. 1. 2004. P. S5.
- Blatov V.A. // IUCr CompComm. Newsletter. 2006. № 7. P. 4.

- 17. *Блатов В.А.* // Журн. структур. химии. 2009. Т. 50. С. S166.
- Ilyushin G.D., Blatov V.A. // Acta Cryst. B. 2009. V. 65. P. 300.
- Blatov V.A., Ilyushin G.D. // Cryst. Rep. 2010. V. 55. P. 1100.
- 20. Илюшин Г.Д., Блатов В.А. // Журн. неорган. химии. 2010. Т. 55. № 12. С. 2023.
- 21. Sportouch S., Tillard-Charbonnel M., Belin C. // Z. Kristallogr. 1994. B. 209. S. 541.
- 22. *Bobev S., Sevov S.C.* // J. Am. Chem. Soc. 2001. V. 123. P. 3389.
- 23. Sands D.E., Johnson Q.C., Kikorian O.H., Kromholtz K.L. //Acta Cryst. 1962. V. 15. P. 1191.
- 24. *Larson A.C., Cromer D.T.* // Acta Cryst. B. 1971. V. 27. P. 1875.
- 25. Palenzona A. // J. Less-Comm. Met. 1971. V. 25. P. 367.
- Cordier G., Czech E., Schaefer H. // J. Less-Comm. Met. 1986. V. 118. P. 57.
- Fornasini M.L., Manfrinetti P., Mazzone D., Dhar S.K. // Z. Naturforsch. B. 2008. B. 63. S. 237.
- Boulet P., Mazzone D., Noel H. et al. // J. Alloys Compd. 2001. V. 317. P.350.
- 29. *Gomez C.P., Lidin S.* // Phys. Rev. B/ Cond. Mat. 2003. V.68. P. 024203.
- 30. Gomez C.P., Lidin S. // Chem. Eur. J. 2004. V. 10. P. 3279.