УДК 548.31

НОВЫЙ КРИТЕРИЙ КОНФОРМАЦИОННОГО ПОЛИМОРФИЗМА

© 2012 г. В. Н. Сережкин, Л. Б. Сережкина

Самарский государственный университет E-mail: serezhkin@ssu.samara.ru Поступила в редакцию 04.10.2010 г.

С помощью молекулярных полиэдров Вороного–Дирихле проведен анализ невалентных взаимодействий в 29 структурах кристаллов соединений состава $C_a H_b N_c O_d$ (салицилальдоксим, глицин и 2,4,6,8,10,12-гексаазаизовюрцитан), обладающих полиморфизмом. Установлено, что каждому конформационному полиморфу отвечает уникальное сочетание типов реализующихся внутри- и межмолекулярных невалентных контактов. Показано, что для выявления конформационных полиморфов может быть использован критерий, учитывающий общее число внутримолекулярных невалентных контактов и их распределение в зависимости от природы соседних атомов и ранга граней молекулярных полиэдров Вороного–Дирихле.

ВВЕДЕНИЕ

Как известно, конформационные полиморфы, различие структуры кристаллов которых обусловлено только слабыми невалентными взаимодействиями, в общем случае обладают разными физико-химическими свойствами, в частности фото-, термо- или механохромными [1]. Химический состав молекул в кристаллах полиморфов одинаков и поэтому они являются идеальными объектами для исследования взаимосвязей "структура – свойство". Однако выяснилось, что даже при наличии детальных кристаллоструктурных данных общепринятые методы кристаллохимического анализа часто не в состоянии объяснить причины резкого различия свойств полиморфов, иногда образующихся при практически одинаковых термодинамических условиях. Более того, как отмечает Бернштейн [1, с. 213], до сих пор отсутствует надежное и однозначное правило, позволяющее признать вещества конформационными полиморфами. Такая ситуация обусловлена целым рядом причин, в том числе и тем, что при классическом кристаллохимическом анализе обычно рассматриваются лишь те невалентные взаимодействия, которые принято считать важными или значимыми.

Цель данной работы состоит в том, чтобы изучить возможность использования параметров молекулярных полиэдров Вороного–Дирихле (**ПВД**) в качестве критерия наличия конформационного полиморфизма. В качестве объектов исследования были выбраны салицилальдоксим ($C_7H_7NO_2$), глицин ($C_2H_5NO_2$) и 2,4,6,8,10,12-гексаазаизовюрцитан ($C_6H_6N_{12}O_{12}$), особенности структуры кристаллов которых активно изучаются в последние годы.

МЕТОДИКА КРИСТАЛЛОХИМИЧЕСКОГО АНАЛИЗА

В соответствии с [2], в рамках метода молекулярных ПВД (ММПВД) для каждого вещества на основе первичных кристаллоструктурных данных (пространственная группа, параметры элементарной ячейки и координаты базисных атомов) с помощью комплекса программ TOPOS [3] и метода пересекающихся сфер [4] определяются координационные числа всех t кристаллографически разных атомов A_i (i = 1, 2, 3, ..., j, ..., t) и устанавливаются основные характеристики соответствующих им атомных ПВД. Такими характеристиками являются площадь (s_{ii}) каждой грани полиэдра и объем пирамиды (v_{ii}), в основании которой лежит общая грань ПВД атомов A_i и A_i , а в вершинах находится ядро атома А, или А,. Одновременно определяется ранг граней (РГ) ПВД, который указывает минимальное число химических связей между соответствующими атомами А_i и А_j. Далее численное значение РГ указывается в виде надстрочного индекса x в символах типа ${}^{x}S_{ii}$ или ${}^{x}V_{ii}$. Как известно [2, 5], в структуре кристаллов любого вещества в зависимости от значения РГ парные межатомные взаимодействия $A_i - A_j$ могут принадлежать одному из трех возможных типов: грани с РГ=1 эквивалентны химическим связям, все грани с РГ > 1 соответствуют внутримолекулярным невалентным взаимодействиям, а грани с $P\Gamma = 0$ отвечают невалентным межмолекулярным взаимодействиям. На основе характеристик ПВД всех кристаллографически разных атомов в структуре кристалла можно установить параметры молекулярных ПВД, которые возникают в результате объединения ПВД атомов, входящих в состав одной молекулы. При таком объединении, которое можно рассматривать как "склеивание"

Рис. 1. Фрагмент молекулярного полиэдра Вороного-Дирихле в структуре кристаллов α -глицина {GLYCIN29}, содержащий ПВД атомов Н4 и О2. Темной штриховкой выделена общая грань ПВД указанных атомов, отвечающая внутримолекулярному невалентному контакту с РГ = 4 и d(H...O) = 2.56 Å. Здесь и далее в фигурных скобках указан код вещества в Кембриджской базе данных [6].

соприкасающихся ПВД по общим граням с $P\Gamma > 0$, исчезают все грани, которые эквивалентны химическим связям или внутримолекулярным межатомным взаимодействиям. Поэтому огранка молекулярного ПВД будет осуществляться только гранями с $P\Gamma = 0$, каждая из которых отвечает определенному контакту между двумя атомами соседних молекул. В качестве примера на рис. 1 показаны ПВД атомов H4 и O2 в структуре α -глицина {GLYCIN29}, общая грань которых отвечает внутримолекулярному контакту H/O с $P\Gamma = 4$, а на рис. 2 изображены молекулярные ПВД в структуре пяти полиморфов глицина.

С помощью программы InterMol комплекса ТОРОЅ на основе данных о ${}^{0}s_{ij}$ и ${}^{0}v_{ij}$ для всех граней с РГ = 0 можно установить два интегральных параметра молекулярных ПВД. Этими параметрами являются общая площадь (${}^{0}S$) всех граней ПВД атомов, содержащихся в одной молекуле, и суммарный объем пирамид (${}^{0}V$), в основании которых лежат грани с РГ = 0, а в вершинах находятся ядра атомов молекулы. В рамках ММПВД величина ${}^{0}S$ характеризует общую площадь поверхности молекулы, а ${}^{0}V$ указывает объем той части электронной плотности молекулы, которая используется при межмолекулярных взаимодействиях, возникающих в кристаллическом веществе. Дополнительными параметрами молекуляр-

ных ПВД являются общее число всех граней с $P\Gamma = 0$ (⁰*k*) и кратчайшее и самое длинное (соответственно ${}^{0}d_{\min}$ и ${}^{0}d_{\max}$) расстояние между атомами соприкасающихся молекул. Для упрощения дальнейшего изложения, в соответствии с [2], условимся обозначать в общем случае невалентные контакты символом А/Z, в котором разделитель "/" отмечает наличие общей грани у ПВД атомов А и Z. Если в составе вещества присутствуют атомы нескольких (например, g) разных элементов, то в структуре кристаллов теоретически могут реализоваться невалентные взаимодействия g(g+1)/2 типов. Чтобы количественно оценить относительную роль межмолекулярных контактов разной природы, как и ранее [2], введем для каждого типа взаимодействий A/Z параметр Δ_{AZ} , показывающий их парциальный вклад (в процентах) в величину интегрального параметра ^{0}V молекулярного ПВД. Например, в структурах кристаллов состава $C_a H_b N_c O_d c g = 4$ могут существовать межмолекулярные контакты только десяти ($4 \cdot 5/2 = 10$) типов, при этом в общем случае ${}^{0}\Delta_{OO} + {}^{0}\Delta_{NO} + {}^{0}\Delta_{CO} + {}^{0}\Delta_{HO} + {}^{0}\Delta_{NN} + {}^{0}\Delta_{CN} + {}^{0}\Delta_{HN} +$ $+ {}^{0}\Delta_{CC} + {}^{0}\Delta_{HC} + {}^{0}\Delta_{HH} = 100.$

Особо подчеркнем, что ММПВД позволяет с единых позиций анализировать не только межмолекулярные, но и внутримолекулярные невалентные взаимодействия. Чтобы можно было легко различать однотипные параметры, в случае внутримолекулярных взаимодействий все они снабжены надстрочной численной меткой, указывающей ранг граней. Например, ³₄_{CO} отражает парцальный вклад внутримолекулярных контактов С/О с РГ = 3, параметр $^{>1}$ S равен общей площади всех граней с РГ > 1 ПВД атомов, содержащихся в одной молекуле, ^{>1} V указывает суммарный объем всех пирамид, в основании которых лежат грани с $P\Gamma > 1$, а в вершинах находятся ядра атомов одной и той же молекулы, а $^{>1}k$ равен общему числу таких пирамид. Отметим, что хотя каждому межатомному контакту соответствуют две пирамиды с равным значением ${}^{x}s_{ij}$ (или ${}^{x}v_{ij}$), однако число граней с РГ > 1 (или РГ = 1) всегда в 2 раза меньше соответствующего значения $^{>1}k$ (или ^{1}k), поскольку все такие грани и пирамиды принадлежат одной и той же молекуле. В то же время число граней с $P\Gamma = 0$ обязательно совпадает с ${}^{0}k$, поскольку молекулярный ПВД включает только одну из двух пирамид, отвечающих любому межмолекулярному контакту. По аналогии с ⁰*V* можно считать, что >1V характеризует объем той части электронной плотности молекулы, которая используется для реализации всех внутримолекулярных невалентных взаимодействий, существующих в молекулах в структуре кристаллического вещества. Заметим также, что объем молекулы (V_{mol}) в

Рис. 2. Молекулярные полиэдры Вороного–Дирихле в структуре кристаллов α {GLYCIN29} (a), β {GLYCIN31} (б), γ {GLYCIN33} (в), δ {GLYCIN67} (г) и ϵ {GLYCIN68} (д) модификации глицина. Ориентация молекулы глицина на рис. 2а совпадает с изображенной на рис. 1.

структуре любых кристаллов определяется равенством $V_{mol} = {}^{0}V + {}^{1}V + {}^{>1}V.$

С позиций ММПВД разные молификации вешества можно считать конформационными полиморфами, если молекулярные ПВД химически идентичных молекул в сравниваемых структурах кристаллов имеют разное число граней с РГ >1 либо (при совпадении >1k) грани, отвечающие внутримолекулярным контактам одного или нескольких типов A/Z, различаются реальными спектрами значений РГ (например, в одном полиморфе грани С/О имеют ранг 2 и 3, в другом – только 2 или вообще отсутствуют). Чтобы иметь возможность кратко и количественно характеризовать различия такого рода, введем для каждого типа внутримолекулярных контактов A/Z параметр $^{>1}\phi_{AZ}$, значение которого равно модулю разности числа пирамид, отвечающих этим контактам в двух сопоставляемых молекулярных ПВД, а также интегральный параметр ^{>1}Ф, представляющий собой сумму ^{>1} ф_{AZ}для всех теоретически возможных типов внутримолекулярных контактов А/Z в одной молекуле. С учетом указанных параметров в структурах разных полиморфных модификаций молекулы имеют одинаковую конформацию только при условии (назовем его "критерием *k*-Ф"), что для молекулярных ПВД этих молекул совпадают значения >1k и при этом $^{>1}\Phi = 0$. Отметим, что если сравниваемые ПВД имеют разные значения $^{>1}k$, то молекулы обязательно различаются топологией совокупности реализующихся внутримолекулярных невалентных контактов A/Z. В этом случае всегда $^{>1}\Phi > 0$ и поэтому соответствующие структуры являются конформационными полиморфами, причем различие конформаций тем сильнее, чем больше величина ^{>1}Ф.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Полиморфы салицилальдоксима. В настоящее время в Кембриджской базе данных [6] имеются сведения о структуре трех недавно изученных модификаций салицилальдоксима, которые авторы [7, 8] обозначили как полиморфы I, II и III. Первый полиморф (далее S-I) существует при стандартных условиях, второй (S-II) образуется при повышенном давлении (5.93 ГПа), а третий (S-III) – при температуре 150 К. Отметим, что авторы [7] отождествили изученный ими S-I с давно известным полиморфом (далее S-0), который был структурно охарактеризован в [9]. Поскольку при близких параметрах моноклинной ячейки (с точностью до десятых a, b, c и β соответственно равны 10.3, 5.0, 13.5Å и 112.2° для S-I и 10.4, 5.1, 13.6 Å и 112.9° для **S-0**) полиморфы различаются ориентацией элементов симметрии (пр. гр. соответственно $P2_1/n$ и $P2_1/c$), то считаем **S-0** индивидуальной модификацией и далее рассматриваем ее одновременно с тремя остальными. Так как в обозначениях модификаций салицилальдоксима разными авторами отсутствует согласованность, во избежание недоразумений для всех полиморфов в табл. 1 указан код, под которым кристаллоструктурные и библиографические данные о веществе зафиксированы в базе данных [6].

Согласно имеющимся данным, объем одной молекулы в структурах полиморфов S-0, S-I и S-III отличается примерно на 1% от среднего значения 164(2) Å³ для этих модификаций (табл. 1), тогда как для существующего при высоком давлении S-II, как и следовало ожидать, $V_{\rm mol}$ резко понижен (почти на 18%). В то же время в структуре низкотемпературной модификации S-III $V_{\rm mol}$ больше, чем для S-I при стандартных условиях. Отметим, что в табл. 1 и 2 указаны параметры молекулярных ПВД в расчете на одну молекулу состава $C_7H_7NO_2$. Однако в структуре *S*-III в отличие от остальных модификаций салицилальдоксима имеется не одна, а две кристаллографически разные молекулы. Поэтому для S-III в табл. 1 и 2 указаны усредненные данные для двух разных молекул (далее А и В), которые, согласно [8], содержат соответственно атомы С1-С7 и С8-С14. Дополнительный анализ показывает, что в структуре S-III с позиций критерия k-Ф сосуществующие молекулы А и В представляют собой разные конформеры, поскольку их ПВД имеют разное число граней с РГ>1 (табл. 3). Хотя параметры $^{>1}k$ для молекул A и B (48 и 54) в S-III совпадают с установленными соответственно для S-II и S-0 (табл. 3), во всех этих модификациях реализуются разные конформеры, поскольку соответствующие молекулярные ПВД различаются спектрами внутримолекулярных невалентных контактов. В качестве примера сравним молекулярные ПВД в структуре S-II и молекул A в S-III, имеющих одинаковое >1k = 48. На основании данных табл. 3 можно легко убедиться в том, что для граней с $P\Gamma > 1$ указанных ПВД $\phi_{OO} = \phi_{NN} = \phi_{CC} = 0$, $\phi_{NO} =$ $= \phi_{HO} = \phi_{CN} = \phi_{HN} = \phi_{HH} = 2, \phi_{CO} = 4, \phi_{HC} = 6,$ что в сумме дает $^{>1}\Phi = 20$. Аналогичное сравнение молекулярных ПВД для *S*-0 и молекул *B* в структуре *S*-III (табл. 3) показывает, что для них $^{>1}\Phi = 4$.

Имеющиеся данные свидетельствуют, что кристаллографически разные молекулы в структуре *S*-III различаются и совокупностью реализующихся межмолекулярных невалентных контактов. Например, взаимодействия С/О реализуются только между двумя соседними молекулами A либо молекулами A и B, однако они отсутствуют среди контактов двух соседних молекул B (табл. 3). В то же время для взаимодействий N/O (или C/N) ситуация диаметрально противоположна, поскольку такие контакты образуются только между

НОВЫЙ КРИТЕРИЙ КОНФОРМАЦИОННОГО ПОЛИМОРФИЗМА

Номер		Простран-	$V_{mol},$	Лите-		Межм взаи	юлекул модейс	іярные ствия		-	Внутри взаи	молеку модей	улярны ствия	ie
поли- морфа	Код в оазе [6]	ственная группа	Å ³	ратура	^{0}k	⁰ d _{min} , Å	⁰ d _{max} , Å	⁰ <i>S</i> , Å ²	⁰ <i>V</i> , Å ³	>1k	^{>1} d _{min} , Å	^{>1} d _{max} , Å	^{>1} <i>S</i> , Å ²	^{>1} <i>V</i> , Å ³
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
			Поли	морфы (салиц	илальд	оксима	ι (C ₇ H ₇	NO ₂)					
<i>S</i> -0	SALOXM	$P2_{1}/c$	165.6	[9]	192	1.99	4.13	193.8	98.2	54	1.77	2.75	62.5	22.6
<i>S</i> -I	SALOXM03	$P2_{1}/n$	162.3	[7]	188	2.02	4.10	190.8	97.2	52	1.77	2.77	58.8	21.4
<i>S</i> -II	SALOXM09	$P2_{1}/n$	126.1	[7]	198	1.83	3.80	173.2	75.7	48	1.68	2.88	33.9	12.7
<i>S</i> -III	SALOXM02	$P2_12_12_1$	162.9	[8]	203	1.99	4.29	190.1	95.5	51	1.77	3.26	60.9	21.8
				Полимо	орфы	глицин	a (C ₂ H	₅ NO ₂)			•			
α	GLYCIN29	$P2_{1}/n$	77.5	[10]	86	1.79	3.93	110.5	47.7	52	1.54	2.73	49.1	16.7
β	G LYCIN31	$P2_1$	79.1	[10]	84	1.86	3.98	111.7	49.1	54	1.42	2.84	52.5	17.3
γ	GLYCIN33	<i>P</i> 3 ₁	78.4	[10]	80	1.93	4.00	112.1	49.5	54	1.45	2.92	47.7	16.1
δ	GLYCIN67	$P2_{1}/a$	70.8	[11]	88	1.92	3.66	106.0	44.2	54	1.45	2.83	44.0	14.4
3	GLYCIN68	Pn	68.4	[11]	94	1.74	3.60	104.4	43.0	50	1.44	2.66	41.1	13.5
		Полимо	рфы 2,	4,6,8,10	,12-ге	ксаазаи	изовюр	цитана	(C_6H_6)	N ₁₂ O	₁₂)			
ε-1	PUBMUU14	$P2_{1}/n$	353.0	[12]	240	2.44	4.73	341.1	174.7	250	1.94	4.29	222.5	91.1
ε-2	PUBMUU05	$P2_{1}/n$	358.0	[6]	240	2.50	4.81	343.0	177.5	252	1.93	4.30	227.0	92.7
ε-3	PUBMUU13	$P2_{1}/n$	350.4	[12]	240	2.44	4.69	340.2	173.5	254	1.93	4.28	220.0	89.8
ε-4	PUBMUU02	$P2_{1}/n$	356.0	[13]	234	2.44	4.77	341.9	176.3	254	1.95	4.29	225.6	92.2
ε-5	PUBMUU15	$P2_{1}/n$	355.0	[12]	238	2.49	4.76	341.9	176.1	256	1.93	4.30	224.6	91.8
ε-6	PUBMUU12	$P2_{1}/n$	349.3	[12]	238	2.44	4.66	339.9	173.0	256	1.95	4.27	218.6	89.4
ε-7	PUBMUU16	$P2_{1}/n$	357.6	[12]	236	2.45	4.80	343.0	177.2	258	1.92	4.31	226.2	92.6
ε-8	PUBMUU18	$P2_{1}/n$	357.2	[14]	242	2.49	4.79	343.0	176.8	258	1.94	4.29	226.0	92.6
ε-9	PUBMUU19	$P2_{1}/n$	356.8	[14]	236	2.44	4.79	343.3	177.2	258	1.87	4.31	225.4	92.2
ε-10	PUBMUU17	$P2_{1}/n$	356.7	[14]	242	2.49	4.78	342.7	176.5	260	1.94	4.29	225.8	92.5
ε-11	PUBMUU20	$P2_1$	352.7	[14]	237	2.37	4.79	340.7	174.0	261	1.79	4.30	223.0	90.5
γ-1	PUBMUU	$P2_{1}/n$	379.7	[13]	238	2.47	5.19	349.7	185.8	262	1.91	4.46	256.8	104.9
γ-2	PUBMUU09	$P2_{1}/n$	375.4	[12]	242	2.40	5.04	348.2	183.4	262	1.95	4.43	252.0	103.0
γ-3	PUBMUU07	$P2_{1}/n$	372.5	[12]	242	2.38	4.98	347.6	181.8	264	1.97	4.41	248.2	101.7
γ-4	PUBMUU08	$P2_{1}/n$	373.7	[12]	242	2.37	5.01	347.8	182.3	264	1.96	4.42	249.9	102.3
γ-5	PUBMUU11	$P2_{1}/n$	380.0	[12]	238	2.47	5.10	349.7	186.1	264	1.94	4.45	256.2	104.7
γ-6	PUBMUU10	$P2_{1}/n$	377.3	[12]	240	2.44	5.07	348.8	184.5	266	1.93	4.44	253.7	103.7
γ-7	PUBMUU04	$P2_{1}/n$	377.8	[6]	236	2.46	5.22	349.2	185.5	266	1.82	4.45	255.2	104.2
β-1	PUBMUU03	$Pca2_1$	366.4	[6]	218	2.50	4.22	329.8	174.4	266	1.88	4.07	246.3	102.5
β-2	PUBMUU01	$Pb2_1a$	366.5	[13]	224	2.54	4.23	330.4	174.6	270	1.88	4.07	245.3	102.2

Таблица 1. Характеристики невалентных взаимодействий в структуре некоторых полиморфов с позиций ММПВД*

* *V_{mol}* – объем одной молекулы в структуре кристалла. Остальные обозначения – в тексте статьи.

соседними молекулами *B*, но отсутствуют у соседних молекул *A*. Заметим, что при необходимости различие межмолекулярных контактов можно кратко охарактеризовать и с помощью параметров $^{0}\phi_{AZ}$ и $^{0}\Phi$, аналогичных соответственно $^{>1}\phi_{AZ}$ и $^{>1}\Phi$, но учитывающих характеристики граней ну-

левого ранга. Так, согласно данным табл. 3, для молекул *A* и *B* в структуре *S*-III ${}^{0}\Phi = 20$.

Как видно из табл. 2, среди изученных полиморфов салицилальдоксима отсутствует пример структуры, в которой одновременно реализовались бы все 10 типов теоретически возможных невалентных контактов. Максимальные парциаль-

СЕРЕЖКИН, СЕРЕЖКИНА

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Поли-	Парци-				Тип мех	катомног	о взаимод	ействия			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	морф	альные вклады, %	0/0	N/O	C/O	H/O	N/N	C/N	H/N	C/C	H/C	H/H
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Пол	і лиморфы	салицила	льдоксим	1 1a (C ₇ H ₇ N	[O ₂)			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>S</i> -0	$^{0}\Delta$	0.7	1.6	3.0	17.6		3.5	3.1	1.5	27.9	41.1
S-I $^{0}\Delta$ 0.6 1.7 3.2 17.1 3.9 3.2 2.0 25.9 4 S-II $^{0}\Delta$. 4.2 18.3 7.1 4.5 10.8 15.5 4 S-III $^{0}\Delta$ 0.4 0.8 1.9 21.5 0.8 7.0 10.7 15.7 4 S-III $^{0}\Delta$ 0.4 0.8 1.9 21.5 0.8 7.0 10.7 15.7 4 $^{>1}\Delta$ 0.4 0.8 1.9 21.5 0.8 7.0 10.7 15.7 4 $^{>1}\Delta$ 0.2 0.5 0.6 21.8 0.1 2.9 1.4 5.4 3 $^{0}\Delta$ 0.2 0.5 0.6 21.8 0.1 2.9 1.4 5.4 3 $^{0}\Delta$ 0.2 0.5 0.1 0.7 2.3 0.1 0.4 4.5 3 $^{0}\Delta$ 0.7 0.2 9.5 1		$^{>1}\Delta$			0.2	16.9			24.1	1.1	19.0	38.8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>S</i> -I	$^{0}\Delta$	0.6	1.7	3.2	17.1		3.9	3.2	2.0	25.9	42.5
		$^{>1}\Delta$				17.3			25.1	0.8	15.5	41.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S-II	$^{0}\Delta$			4.2	18.3		7.1	4.5	1.2	29.3	35.4
S-III $^{0}\Delta$ 0.4 0.8 1.9 21.5 0.8 7.0 10.7 15.7 4 $^{>1}\Delta$ 0.2 0.5 0.6 60.7 25.2 0.7 17.0 3 α $^{9}\Delta$ 0.1 0.2 0.5 0.6 60.7 0.1 2.9 1.4 5.4 3.3 $\beta^{-1}\Delta$ 0.2 0.5 0.6 60.7 0.2 2.5 1.4 5.4 3.5 γ 0Δ 2.4 0.7 0.3 58.0 0.2 2.5 $1.7.4$ 55 γ 0Δ 2.4 0.1 0.7 23.7 0.2 2.5 $1.7.4$ 55 γ 0Δ 2.0 0.1 0.7 23.7 0.2 2.2 20.6 56 $^{0}\Delta$ 0.5 0.1 0.7 23.9 0.1 0.6 1.2 0.2 2.2		$^{>1}\Delta$		13.0	2.8	8.0		0.6	10.4	3.9	13.1	48.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S-III	$^{0}\Delta$	0.4	0.8	1.9	21.5		0.8	7.0	10.7	15.7	41.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$^{>1}\Delta$				18.3			25.2	0.7	17.0	38.8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1 1		1	Полим	і орфы гли	цина (C ₂ l	H ₅ NO ₂)	I		I	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	α	$^{0}\Delta$	1.1		0.6	60.7				1.4	5.4	30.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$^{>1}\Delta$	0.2	0.5	0.6	21.8		0.1	2.9		19.5	54.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	$^{0}\Delta$	2.4		3.3	58.0				0.4	4.5	31.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$^{>1}\Delta$	0.7	0.1	0.7	23.7		0.2	2.5		17.4	54.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	γ	$^{0}\Delta$	2.0		2.4	61.9					5.9	27.8
δ 0_{Δ} 2.0 4.2 58.1 5.0 3 ε 0_{Δ} 0.5 0.1 0.5 21.3 0.2 2.2 20.4 5 ε 0_{Δ} 0.7 2.9 59.7 2.2 20.2 5 ΠΟΠΗΜΟΡΦΗ 2,4,6,8,10,12-гексазанзовюрщитана (C ₆ H ₆ N ₁₂ O ₁₂) Γ 0_{Δ} 45.6 20.5 0.2 31.6 0.1 0.6 12.4 1.2 0.3 Γ 0_{Δ} 45.6 20.5 0.2 31.6 0.1 0.6 12.4 1.2 0.3 ε-1 0_{Δ} 45.8 20.1 0.2 31.8 0.1 0.6 12.4 1.2 0.3 ε-2 0_{Δ} 45.8 20.1 0.2 31.8 0.1 0.6 ε-3 0_{Δ} 45.2 20.6 0.3 31.7 0.1 0.6 12.2 0.2 ε-4 0_{Δ} 45.6 20.1 <td></td> <td>$^{>1}\Delta$</td> <td>< 0.1</td> <td>0.3</td> <td>0.4</td> <td>24.2</td> <td></td> <td>0.1</td> <td>1.9</td> <td></td> <td>20.6</td> <td>52.5</td>		$^{>1}\Delta$	< 0.1	0.3	0.4	24.2		0.1	1.9		20.6	52.5
$^{>1}$ Δ 0.5 0.1 0.5 21.3 0.2 2.2 20.4 5 ε 0 Δ 0.7 2.9 59.7 2.2 20.2 5 ε 0 Δ 0.1 0.4 0.7 23.9 2.2 20.2 5 ΠΟΠΗΜΟΡΦΗ 2,4,6,8,10,12-ГЕКСАЗИНОВЮЦИТАНА (C ₆ H ₆ N ₁₂ O ₁₂) Ε 0 Δ 45.6 20.5 0.2 31.6 0.1 0.6 12.4 1.2 0.3 ε-1 0 Δ 45.6 20.5 0.2 31.6 0.1 0.6 12.4 1.2 0.3 ε-2 0 Δ 45.8 20.1 0.2 31.8 0.1 0.6 12.4 1.2 0.3 ε-3 0 Δ 45.2 20.6 0.3 31.7 0.1 0.6 12.4 0.2 0.2 ε-4 0 Δ 45.6 20.1 0.2 31.9 0.1 0.6 12.2 0.2 0.3 <t< td=""><td>δ</td><td>$^{0}\Delta$</td><td>2.0</td><td></td><td>4.2</td><td>58.1</td><td></td><td></td><td></td><td></td><td>5.0</td><td>30.7</td></t<>	δ	$^{0}\Delta$	2.0		4.2	58.1					5.0	30.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$^{>1}\Delta$	0.5	0.1	0.5	21.3		0.2	2.2		20.4	54.7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	$^{0}\Delta$	0.7		2.9	59.7					6.9	29.8
Потиморфы 2,4,6,8,10,12-гексаззаизовюрщитана (C ₆ H ₆ N ₁₂ O ₁₂) ε -1 $\stackrel{\circ}{0}\Delta$ 45.6 20.5 0.2 31.6 0.1 0.6 12.4 1.2 0.3 ε -2 $\stackrel{\circ}{0}\Delta$ 45.8 20.1 0.2 31.8 0.1 0.6 2 0.2 ε -3 $\stackrel{\circ}{0}\Delta$ 45.2 20.6 0.3 31.7 0.1 0.6 2 0.2 ε -3 $\stackrel{\circ}{0}\Delta$ 45.6 20.1 0.2 31.9 0.1 0.6 2 0.2 ε -4 $\stackrel{\circ}{0}\Delta$ 45.6 20.1 0.2 31.9 0.1 0.6 2 0.2 ε -4 $\stackrel{\circ}{0}\Delta$ 45.6 20.1 0.2 31.9 0.1 0.6 2 0.2 ε -4 $\stackrel{\circ}{0}\Delta$ 45.6 20.1 0.2 31.9 0.1 0.6 2 0.2 ε -5 $\stackrel{\circ}{0}\Delta$ 45.9 20.3 0.2 31.5 0.1 0.6 2 0.2 ε -6 $\stackrel{\circ}{0}\Delta$ 45.1 20.7 0.3 31.7 0.1 0.6 2 0.1 ε -6 $\stackrel{\circ}{0}\Delta$ 45.1 20.7 0.3 31.7 0.1 0.6 2 0.1 ε -6 $\stackrel{\circ}{0}\Delta$ 45.1 20.7 0.3 31.7 0.1 0.6 2 0.1 ε -6 $\stackrel{\circ}{0}\Delta$ 45.1 20.7 0.3 31.7 0.1 0.6 2 0.1 ε -6 $\stackrel{\circ}{0}\Delta$ 45.1 20.7 0.3 31.7 0.1 0.6 2 0.1 ε -7 $\stackrel{\circ}{0}\Delta$ 46.1 20.1 0.2 31.5 0.1 0.6 2 0.1 ε -8 $\stackrel{\circ}{0}\Delta$ 45.6 20.1 0.2 31.5 0.1 0.6 2 0.1 ε -7 $\stackrel{\circ}{0}\Delta$ 46.1 20.1 0.2 31.5 0.1 0.6 2 0.1 ε -8 $\stackrel{\circ}{0}\Delta$ 45.6 20.1 0.2 31.5 0.1 0.6 12.5 0.1 ε -7 $\stackrel{\circ}{0}\Delta$ 46.1 20.1 0.2 31.5 0.1 0.6 12.5 0.1 ε -8 $\stackrel{\circ}{0}\Delta$ 46.4 20.2 0.2 31.5 0.1 0.6 12.2 0.3 ε -8 $\stackrel{\circ}{0}\Delta$ 46.4 20.2 0.2 31.5 0.1 0.6 12.2 0.3 ε -9 $\stackrel{\circ}{0}\Delta$ 46.4 20.2 0.2 31.5 0.1 0.6 12.2 0.3 ε -9 $\stackrel{\circ}{0}\Delta$ 46.4 20.2 0.2 31.5 0.1 0.6 12.2 0.3 ε -9 $\stackrel{\circ}{0}\Delta$ 46.4 20.2 0.2 31.5 0.1 0.5 1.2 0.3 ε -9 $\stackrel{\circ}{0}\Delta$ 46.4 20.2 0.2 31.5 0.1 0.5 1.2 0.3 ε -9 $\stackrel{\circ}{0}\Delta$ 46.4 20.2 0.2 31.5 0.1 0.5 1.2 0.3 ε -9 $\stackrel{\circ}{0}\Delta$ 46.4 20.2 0.2 31.5 0.1 0.5 1.2 0.3 ε -9 $\stackrel{\circ}{0}\Delta$ 46.4 20.2 0.2 31.5 0.1 0.5 1.2 0.5 1.2 0.3 1.5 0.5 1.2 0.5 1.2 0.3 1.5 0.5 1.2 0.3 1.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0		$^{>1}\Delta$	0.1	0.4	0.7	23.9			2.2		20.2	52.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1 1	По	лиморфы	2,4,6,8,10),12-гекса	азаизовю	рцитана (C ₆ H ₆ N ₁₂	D ₁₂)	I	I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ε-1	$^{0}\Delta$	45.6	20.5	0.2	31.6	0.1		0.6			1.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$^{>1}\Delta$	16.6	12.2	1.7	37.2	11.9	0.6	12.4	1.2	0.3	5.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ε-2	$^{0}\Delta$	45.8	20.1	0.2	31.8	0.1		0.6			1.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$^{>1}\Delta$	16.7	11.9	1.8	37.4	11.8	0.5	12.6	1.2	0.2	5.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ε-3	$^{0}\Delta$	45.2	20.6	0.3	31.7	0.1		0.6			1.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$^{>1}\Delta$	16.3	12.1	1.7	37.5	12.0	0.6	12.7	1.2	0.2	5.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ε-4	$^{0}\Delta$	45.6	20.1	0.2	31.9	0.1		0.6			1.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$^{>1}\Delta$	16.8	12.0	1.7	37.4	11.8	0.6	12.2	1.2	0.3	6.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ε-5	$^{0}\Delta$	45.9	20.3	0.2	31.5	0.1		0.6			1.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$^{>1}\Delta$	16.7	12.0	1.7	37.2	11.8	0.6	12.7	1.2	0.1	5.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ε-6	$^{0}\Delta$	45.1	20.7	0.3	31.7	0.1		0.6			1.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$^{>1}\Delta$	16.2	12.3	1.7	37.4	12.0	0.6	12.5	1.2	0.3	5.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ε-7	$^{0}\Delta$	46.1	20.1	0.2	31.5	0.1		0.6			1.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$^{>1}\Delta$	16.9	12.1	1.6	37.3	11.9	0.6	12.2	1.2	0.3	6.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ε-8	$^{0}\Delta$	45.6	20.1	0.2	32.0	0.1		0.6			1.4
ϵ -9 $^{0}\Delta$ 46.4 20.2 0.2 31.1 0.1 0.6 0.6 >1 Δ 16.9 12.2 1.8 36.7 11.9 0.6 12.3 1.2 0.4 ϵ -10 $^{0}\Delta$ 45.6 20.1 0.2 32.0 0.1 0.6 12.3 1.2 0.4 $\epsilon^{>1}\Delta$ 16.8 12.0 1.9 37.2 11.8 0.6 12.2 1.2 0.5		$^{>1}\Delta$	16.8	12.0	1.9	37.2	11.8	0.6	12.2	1.2	0.5	5.9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ε-9	$^{0}\Delta$	46.4	20.2	0.2	31.1	0.1		0.6			1.5
ϵ -10 $\stackrel{0}{\bigtriangleup}$ 45.6 20.1 0.2 32.0 0.1 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5		$^{>1}\Delta$	16.9	12.2	1.8	36.7	11.9	0.6	12.3	1.2	0.4	6.0
$ >1_{\Lambda} 168 120 19 372 118 06 122 12 05 $	ε-10	$^{0}\Delta$	45.6	20.1	0.2	32.0	0.1		0.6			1.4
		$^{>1}\Delta$	16.8	12.0	1.9	37.2	11.8	0.6	12.2	1.2	0.5	5.9
ϵ -11 $^{0}\Delta$ 44.7 20.1 0.5 32.1 0.1 0.9	ε-11	$^{0}\Delta$	44.7	20.1	0.5	32.1	0.1		0.9			1.6
$^{>1}\Delta$ 16.4 12.1 2.0 37.4 12.0 0.9 11.2 1.2 1.4		$^{>1}\Delta$	16.4	12.1	2.0	37.4	12.0	0.9	11.2	1.2	1.4	5.4

Таблица 2. Парциальные вклады межмолекулярных ($^{0}\Delta$) и внутримолекулярных ($^{>1}\Delta$) невалентных контактов в кристаллах полиморфов в зависимости от природы соседних атомов A/Z^*

Таблица 2. Окончание

Поли-	Парци-				Тип мех	катомного	о взаимод	ействия			
морф	альные вклады, %	0/0	N/O	C/0	H/O	N/N	C/N	H/N	C/C	H/C	H/H
γ-1	$^{0}\Delta$	50.8	18.8	0.1	28.3	0.2		1.4			0.5
	$^{>1}\Delta$	19.2	9.3	0.9	39.8	12.5	0.7	10.8	1.1	0.4	5.4
γ-2	$^{0}\Delta$	50.1	19.3	0.1	28.3	0.2		1.4			0.7
	$^{>1}\Delta$	18.9	9.4	0.7	40.2	12.6	0.8	10.5	1.2	0.3	5.3
γ-3	$^{0}\Delta$	49.7	19.6	0.2	28.3	0.2		1.4			0.7
	$^{>1}\Delta$	18.8	9.6	0.8	40.0	12.7	0.8	10.5	1.2	0.2	5.4
γ-4	$^{0}\Delta$	49.8	19.4	0.1	28.4	0.2		1.4			0.7
	$^{>1}\Delta$	18.9	9.5	0.8	40.1	12.7	0.8	10.5	1.2	0.2	5.4
γ-5	$^{0}\Delta$	50.7	18.9	0.1	28.2	0.2		1.3			0.6
	$^{>1}\Delta$	19.1	9.4	0.7	40.1	12.5	0.7	10.7	1.1	0.2	5.4
γ-6	$^{0}\Delta$	50.4	19.1	0.1	28.3	0.2		1.4			0.6
	$^{>1}\Delta$	19.1	9.4	0.8	40.1	12.6	0.8	10.5	1.1	0.2	5.4
γ-7	$^{0}\Delta$	50.6	18.7	0.1	28.5	0.2		1.4			0.5
	$^{>1}\Delta$	19.6	9.3	0.8	39.5	12.5	0.8	10.4	1.1	0.8	5.2
β-1	$^{0}\Delta$	46.9	17.2	0.2	31.9	0.6		1.3			1.9
	$^{>1}\Delta$	18.7	14.1	1.7	35.1	11.4	0.8	10.9	1.0	0.5	6.0
β-2	$^{0}\Delta$	46.9	17.2	0.1	32.0	0.6		1.3			1.8
	$^{>1}\Delta$	18.6	14.2	1.7	35.3	11.4	0.7	10.9	1.0	0.2	6.0

* Значения ⁰Δ и ^{>1}Δ округлены с точностью до одной десятой. Пустая ячейка означает отсутствие соответствующего типа невалентных взаимодействий в структуре кристаллов.

			F	Внут	римоле	екуля	ірнь	ле не	вален	ITHE	ые конт	гакты				ł	Невал меж	енті кду м	ные к иолек	онтаі улам:	кты И
Тип												S-]	III					2	S-III		
кон- такта		<i>S</i> -0			<i>S</i> -I			S-I	[М	олекул	ыА	M	олекул	ы В	A	-A	В	— <i>B</i>	А (или	-B B-A)
	^{>1} k	РΓ	^{>1} <i>V</i> , Å ³	>1k	РΓ	^{>1} <i>V</i> , Å ³	^{>1} k	РΓ	^{>1} <i>V</i> , Å ³	^{>1} k	РΓ	^{>1} <i>V</i> , Å ³	^{>1} k	РΓ	^{>1} <i>V</i> , Å ³	⁰ k	⁰ <i>V</i> , Å ³	⁰ k	⁰ <i>V</i> , Å ³	^{0}k	⁰ <i>V</i> , Å ³
0/0																2	0.7	2	< 0.1	2	< 0.1
N/0							2	4	1.7									2	1.4	2	< 0.1
C/O	2	2	< 0.1				4	2.3	0.4							2	0.4			12	3.3
H/O	4	3	3.8	4	3	3.7	2	3	1.0	4	3	4.0	4	3	3.9	10	8.4	12	6.2	36	26.4
N/N																					
C/N							2	2	0.1									2	< 0.1	8	1.5
H/N	6	2.5	5.4	6	2.5	5.4	4	4	1.3	6	2.5	5.0	6	2.5	6.1	6	3.7	8	4.4	10	5.3
C/C	10	2.3	0.3	10	2.3	0.2	10	2.3	0.5	10	2.3	0.2	10	2.3	0.2					74	20.4
H/C	24	2.3.4	4.3	24	2.3.4	3.3	14	2	1.7	20	2.3.4	3.7	24	2.3.4	3.8	16	2.3	16	2.8	82	25.0
H/H	8	3.4	8.8	8	3.4	8.8	10	3.4	6.1	8	3.4	8.6	10	3.4.7	8.3	18	16.7	20	17.2	64	44.9
сумма	54		22.6	52		21.4	48		12.7	48		21.5	54		22.2	54	32.0	62	32.1	290	126.9

Таблица 3. Некоторые характеристики внутримолекулярных контактов в четырех полиморфах салицилальдоксима и межмолекулярных невалентных контактов кристаллографически разных молекул (*A* и *B*) в структуре *S*-III*

* РГ – ранг граней ПВД. Значения ^{>1}*V* и ⁰*V* округлены с точностью до одной десятой. Пустая ячейка означает отсутствие соответствующего типа невалентных взаимодействий в структуре кристаллов.

Тип			α			β			λ			8			ω	
контак- тов	ΡΓ	y_x	$^{x}d_{\min} - \overset{x}{\hat{A}}d_{\max},$	$^{x}v_{ij}$, Å ³	y_x	$^{xd_{\min}-^{x}d_{\max}}$	$^{x}{}_{Vij}, m \AA^{3}$	y_x	$^{x}d_{\min} - \overset{x}{\hat{A}}d_{\max},$	$^{x}_{V_{ij}}, m \AA^{3}$	y_x	$^{x}d_{\min}{\text{Å}}^{x}d_{\max},$	x $_{Vij}$, Å 3	y_x	${}^{x}d_{\min}-{}^{x}d_{\max},$	$^{x}{}_{Vij}$, Å 3
						Внутр	имолек	ндвпу	ые взаимодей	ствия						
H/H	7	8	1.54-1.59	4.70	8	1.42-1.56	5.08	8	1.45-1.57	4.01	8	1.45-1.58	4.34	8	1.44-1.62	4.17
	ю	8	2.27-2.34	4.39	8	2.22-2.29	4.37	8	2.24-2.29	4.42	8	2.27	3.54	8	2.26	2.91
H/C	7	10	2.00-2.07	2.75	10	1.97 - 2.10	2.60	10	1.95 - 2.06	2.84	10	1.96 - 2.05	2.52	10	1.95 - 2.08	2.44
	3	4	2.66-2.72	0.51	4	2.65-2.69	0.41	4	2.61-2.66	0.49	4	2.63	0.43	4	2.65	0.28
N/H	5	4	1.97-1.99	0.48	4	1.96 - 1.99	0.42	4	2.01	0.30	4	2.01	0.31	4	2.02	0.29
C/N	2	2	2.49	0.02	7	2.49	0.04	2	2.48	0.01	2	2.47	0.04			
O/H	3	4	2.56-2.73	1.45	9	2.56-2.82	1.41	9	2.54-2.92	1.48	9	2.48-2.83	1.29	4	2.57	1.16
	4	4	2.56-2.71	2.20	4	2.49–2.84	2.68	4	2.56-2.63	2.43	4	2.49-2.78	1.79	4	2.63	2.06
c/o	2	4	2.37-2.38	0.10	4	2.38	0.12	4	2.37-2.38	0.07	4	2.36-2.37	0.07	4	2.38	0.09
N/O	ю	2	2.69	0.08	7	2.71	0.03	2	2.68	0.05	7	2.71	0.02	2	2.66	0.05
0/0	7	5	2.23	0.03	7	2.23	0.12	2	2.23	0.01	5	2.24	0.07	2	2.23	0.01
Bcero		52	1.54-2.73	16.71	54	1.42-2.84	17.28	54	1.45-2.92	16.12	54	1.45-2.83	14.40	50	1.44-2.66	13.47
-		_	_	-		Меж	толеку.	андви	е взаимодейс	ТВИЯ			-	-	_	
H/H	0	27	2.47-3.71	14.68	26	2.62-3.98	15.41	26	2.37-3.92	13.77	27	2.34-3.57	13.57	28	2.43-3.27	12.82
H/C	0	14	2.50-3.60	2.56	10	2.58-3.32	2.21	8	2.61-3.56	2.90	10	2.45-3.66	2.19	14	2.53-3.32	2.96
c/c	0	1	3.10	0.68	7	3.38	0.19									
O/H	0	32	1.79–3.45	28.93	36	1.86 - 3.82	28.47	36	1.93-3.45	30.64	38	1.92-3.66	25.68	38	1.74-3.57	25.66
C/0	0	9	3.32-3.93	0.26	9	3.08-3.39	1.61	5	3.23	1.17	9	2.88-3.26	1.84	9	2.77-3.60	1.23
0/0	0	9	3.17-3.72	0.54	4	3.11-3.36	1.17	8	3.19-4.00	0.98	٢	3.03-3.59	0.88	8	3.22-3.40	0.32
Bcero	0	86	1.79-3.93	47.65	84	1.86 - 3.98	49.06	80	1.93 - 4.00	49.46	88	1.92-3.66	44.16	94	1.74 - 3.60	42.98
$*^{x}k - 4$ ис объем пиј лонке таб	ло гра рамид, лицы.	ней со в оснс	ответствующего вании которых) ранга в лежат гр	молеку ани со	илярном ПВД; ^х ютветствующей	ʻd _{min} и ^х d о ранга.	_{max} – с В симв	соответственно золах $^{x}k, ^{x}d_{\min}, ^{x}$	самое ко ^к d _{max} и ^x _v	ротко 'ij вели	е и самое длинн чина х равна р	ное межа ангу гран	томное ей, ука	е расстояние; ^х т азанному во вто	_{<i>jj</i>} (Å ³) – рой ко-

Таблица 4. Некоторые характеристики невалентных взаимодействий в структуре полиморфов глицина*

46

СЕРЕЖКИН, СЕРЕЖКИНА

2012 КРИСТАЛЛОГРАФИЯ том 57 Nº 1

ные вклады во всех случаях отвечают межмолекулярным взаимодействиям с участием атомов водорода (H/H, H/C, H/O и H/N), на которые в сумме приходится 88(2)% параметра ⁰*V* и 99(1)%(если не учитывать S-II, для которого такая сумма равна ≈80%) величины ^{>1}V. Барический полиморф S-II в отличие от трех остальных модификаций имеет пониженные (примерно на 10%) значения вкладов ${}^{>1}\Delta_{HN}$ и ${}^{>1}\Delta_{HO}$, которые эквивалентны внутримолекулярным водородным связям, и повышенные примерно на те же 10% значения $^{>1}\Delta_{\rm HH}$ и $^{>1}\Delta_{\rm NO}$ (табл. 2). Отметим также, что только в структуре S-II имеются внутримолекулярные, но отсутствуют межмолекулярные контакты N/O (в остальных полиморфах ситуация диаметрально противоположна). В целом, в обсуждаемых полиморфах наиболее часто нулевые значения ⁰ Δ_{AZ} или $^{>1}\Delta_{AZ}$ отвечают взаимодействиям N/N, O/O и N/O, а в ряде случаев не реализуются и внутримолекулярные контакты С/О и С/N (табл. 2).

Полиморфы глицина. К настоящему времени для глицина установлено существование пяти полиморфов. Три из них (α , β и γ), различающиеся условиями кристаллизации из растворов, существуют при стандартных условиях, а два (δ и ϵ) образуются только при повышенном давлении (соответственно 1.9 и 4.3 ГПа [10, 11]). В структуре всех модификаций содержится по одному сорту молекул, причем во всех случаях глицин присутствует в виде цвиттер-ионов.

Полученные результаты показывают, что в кристаллах β-, γ- и δ-глицина молекулярные ПВД имеют не только одинаковое число внутримолекулярных невалентных контактов A/Z (^{>1}k = 54, табл. 1), но и одинаковое распределение этих контактов в зависимости от природы соседних атомов и РГ (табл. 2, 4), который изменяется от 2 до 4. Для любой пары этих модификаций $^{>1}\Phi = 0$, и поэтому в соответствии с критерием k-Ф в кристаллах β -, γ - и δ -глицина молекулы находятся в одной и той же конформации. Для молекулярных ПВД в структурах α- и ε-глицина соответственно $^{>1}k = 52$ и 50. В сравнении с β- (γ- или δ-) формой для них $^{>1}\Phi = 2$ и 4, поскольку, как видно из табл. 4, в α- и ε-глицине уменьшается число внутримолекулярных контактов $H/O c P\Gamma = 3$, а в ε -глицине в отличие от всех остальных модификаций отсутствуют внутримолекулярные взаимодействия С/N. Поэтому, согласно критерию k- Φ , в структурах α- и ε-глицина молекулы находятся в конформациях, которые отличаются от таковой для β -, γ - или δ -глицина.

Структуры всех пяти полиморфов глицина различаются межмолекулярными взаимодействиями, что наглядно проявляется в разном числе граней молекулярных ПВД (${}^{0}k = 86, 84, 80, 88$ и 94 соответственно для α -, β -, γ -, δ - и ε -модифика-

КРИСТАЛЛОГРАФИЯ том 57 № 1 2012

ции). Минимальное число граней с $P\Gamma = 0$ отвечает ПВД в наиболее устойчивой у-форме [11], по сравнению с которой для α-, β-, δ- и ε-глицина, как следует из данных табл. 4, соответственно $^{0}\Phi = 18, 12, 10$ и 14. В структурах кристаллов глицина реализуется всего 6 (α и β) или 5 (γ , δ и ϵ) из 10 теоретически возможных типов межмолекулярных контактов (табл. 2, 4). Во всех случаях наиболее важными являются взаимодействия Н/О и Н/Н, общий парциальный вклад которых составляет в среднем 89(1)% величины ⁰V. Внутримолекулярные контакты в полиморфах глицина разнообразнее, чем межмолекулярные, поскольку кроме взаимодействий N/N и C/C, которые принципиально невозможны для глицина из-за особенностей состава и структуры молекул, отсутствуют лишь контакты C/N в є-форме. Для всех полиморфов наиболее важными являются внутримолекулярные взаимодействия Н/Н, Н/О и H/C, на которые приходится в среднем 96(1)%величины >1V (табл. 2, 4). Как и следовало ожидать, объем молекулы глицина в δ- и ε-модификациях (\approx 71 и 68 Å³), образующихся при повышенном давлении, заметно меньше среднего значения (≈78(1) Å³, табл. 1) для α-, β- и γ-форм, существующих при стандартных условиях. Отметим, что повышение давления сопровождается ростом общего числа межмолекулярных контактов, приходящихся на одну молекулу глицина, и значительным (на 0.3-0.4 Å, табл. 4) сокращением наиболее длинных межмолекулярных контактов.

Полиморфы 2,4,6,8,10,12-гексаазаизовюриитана. Поскольку из четырех изученных модификаций 2,4,6,8,10,12-гексаазаизовюрцитана (далее **HNIW**) одна (α) является полугидратом, то далее будут обсуждаться особенности полиморфизма только трех других полиморфов, для которых разными авторами в последние годы проведено 20 независимых определений структуры кристаллов (соответственно 2, 7 и 11 для β-, γ- и ε-модификации) при температурах от 100 до 383 К. Характеристики молекулярных ПВД в структуре всех изученных кристаллов HNIW указаны в табл. 1 и 2, при этом полученные данные сгруппированы по мере роста величины $^{>1}k$ (пятый столбец справа в табл. 1). Чтобы отличать независимые определения структуры одного и того же полиморфа, каждому из них присвоен определенный порядковый номер (например, β-1 и β-2). Средний объем молекулы HNIW в структурах кристаллов β-, γ- и ε-модификаций заметно различается (соответственно 366.5(1), 375(3) и 355(3) Å³, табл. 1).

Как видно из табл. 2, в структуре изученных кристаллов HNIW реализуются все десять теоретически возможных типов внутримолекулярных контактов. Наиболее важными из них являются

взаимодействия H/O, O/O, N/N, H/N и N/O, общий парциальный вклад которых в среднем равен 91(1)% величины ^{>1}V. В то же время среди межмолекулярных взаимодействий во всех случаях отсутствуют контакты типов C/N, C/C и H/C, а наиболее значимыми являются взаимодействия O/O, H/O и N/O, которым в среднем отвечает суммарный парциальный вклад 98(1)% величины ⁰*V*. Для 20 разных молекулярных ПВД параметр $^{>1}k$ изменяется от 250 до 270, причем для изученных кристаллов ε-, γ- и β-модификации он лежит соответственно в практически не перекрывающихся (если не учитывать граничное значение $^{>1}k = 266$) диапазонах 250–261, 262–266 и 266–270 (табл. 1). Хотя молекулярные ПВД в целом ряде случаев имеют одинаковые значения $^{>1}k$, дополнительный анализ показал, что все без исключения пары полиморфов с одинаковым $^{>1}k$ имеют разные спектры невалентных контактов и параметр $^{>1}\Phi$ для них в среднем равен 12, изменяясь в диапазоне от 4 до 32. Отметим также, что структуры кристаллов HNIW, имеющие одинаковое $^{>1}k$, обычно различаются числом граней молекулярных ПВД с РГ=0. Исключением являются только две пары структур, причем в одном случае (ε-5 и ε-6 изучены соответственно при 250 и 100 К) при совпадающем $^{0}k = 238$ структуры различаются спектрами как внутри- (${}^{>1}\Phi = 4$), так и межмолекулярных контактов (${}^{0}\Phi = 8$). Во втором случае $(\gamma - 3 \, \text{и} \, \gamma - 4 \, \text{изучены соответственно при 100 и 150 K})$ структуры различаются только внутримолекулярными контактами ($^{>1}\Phi = 4$), а совокупности межмолекулярных контактов полностью совпадают $(^{0}\Phi = 0).$

Среди исследованных кристаллов выделяется структура ε-11, которая была изучена при максимально высокой температуре (383 К) и отличается симметрией (пр. гр. $P2_1$, а не $P2_1/n$) от десяти других кристаллов є-HNIW. Кроме того, лишь в структуре є-11 содержится два сорта молекул (далее A и B), усредненные характеристики молекулярных ПВД которых указаны в табл. 1 и 2. Дополнительный анализ показал, что ПВД молекул A и B имеют разные $^{>1}k$ (соответственно 258 и 264) и отличаются от всех других конформеров HNIW с аналогичными ^{>1}k-спектрами внутримолекулярных невалентных взаимодействий (параметр $^{>1}\Phi$ изменяется от 12 до 36). По числу граней с $P\Gamma = 0$ ПВД молекул *A* и *B* (243 и 231) также не имеют аналогов среди остальных изученных структур HNIW (табл. 1).

Таким образом, с учетом критерия *k*-Ф все 20 структурно изученных кристалллов HNIW представляют собой разные конформационные полиморфы, поскольку для любой пары этих кристаллов, в том числе и тех, которые считаются представителями одной и той же модификации

 $(\beta$ -, γ - или ε -), параметр $^{>1}\Phi > 0$. Все конформеры обладают близкими значениями энергии решетки (по имеющимся данным разница энергий для β-, γ- и ε-HNIW не превышает 2 ккал/моль [1, с. 377]) и благодаря торсионным степеням свободы молекулы HNIW могут достаточно легко изменять конформацию даже при небольшом изменении температуры или условий кристаллизации. Изменение конформации молекул в конечном итоге отражается на форме и объеме соответствующих молекулярных ПВД (совпадает с $V_{\rm mol}$), а также на особенностях их взаимной упаковки в структуре кристаллов, которая определяет метрику кристаллической решетки. На наш взгляд, именно различие конформаций, которое удается количественно охарактеризовать с помощью параметров ${}^{>1}k$ и ${}^{>1}\Phi$ молекулярных ПВД, является основной причиной отмеченного в [14] разброса параметров элементарной ячейки HNIW, который значительно превышает точность измерений для кристаллов одной и той же модификации, полученных в разных лабораториях, но измеренных на одном и том же приборе.

Как известно, разные конформации молекул могут быть энергетически близки или эквивалентны, поэтому существование разных конформаций (даже в одной и той же структуре при наличии кристаллографически разных молекул) достаточно часто встречается на практике [1]. С учетом имеющихся данных для ферроцена [15] и полиморфов состава $C_a H_b N_c O_d S_e$ [2] полученные результаты дают основание считать, что возможность реализации разных сочетаний типов межатомных невалентных взаимодействий при изменении конформации или взаимной ориентации молекул с одинаковой конформацией (как в случае β-, γ- или δ-глицина) является одним из важнейших факторов, обусловливающих полиморфизм органических и металлоорганических соединений с молекулярной структурой кристаллов. Поэтому можно надеяться, что предложенный метод выявления конформационных полиморфов с помощью молекулярных ПВД, который не требует привлечения ван-дер-ваальсовых радиусов атомов и учитывает все без исключения теоретически возможные типы межатомных контактов, повысит возможности современного кристаллохимического анализа.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 09-03-00206).

СПИСОК ЛИТЕРАТУРЫ

- 1. Бернштейн Дж. Полиморфизм молекулярных кристаллов. М.: Наука, 2007. 500 с.
- 2. Сережкин В.Н., Пушкин Д.В., Сережкина Л.Б. // Кристаллография. 2010. Т. 55. № 4. С. 597.

- 3. *Блатов В.А., Шевченко А.П., Сережкин В.Н.* // Координац. химия. 1999. Т. 25. №7. С. 483.
- Сережкин В.Н., Михайлов Ю.Н., Буслаев Ю.А. // Журн. неорган. химии. 1997. Т. 42. № 12. С. 2036.
- 5. Шевченко А.П., Сережкин В.Н. // Журн. физ. химии. 2004. Т. 78. № 10. С. 1817.
- 6. Cambridge structural database system. Cambridge Crystallographic Data Centre. 2009.
- 7. Wood P.A., Forgan R.S., Henderson D. et al. // Acta Cryst. B. 2006. V. 62. № 6. P. 1099.
- Wood P.A., Forgan R.S., Parsons S. et al. // Acta Cryst. E. 2006. V. 62. № 9. P. 03944.
- 9. *Pfluger C.E., Harlow R.L.* // Acta Cryst. B. 1973. V. 29. № 11. P. 2608.

- 10. *Boldyreva E.V., Drebushchak T.N., Shutova E.S.* // Z. Kristallogr. 2003. B. 218. № 5. S. 366.
- 11. *Dawson A., Allan D.R., Belmonte S.A. et al.* // Cryst. Growth Design. 2005. V. 5. № 4. P. 1415.
- Bolotina N.B., Hardie M.J., Speer R.L., Pinkerton A.A. // J. Appl. Cryst. 2004. V. 37. № 5. P. 808.
- Nielsen A. T., Chafin A.P., Christian S.L. et al. // Tetrahedron. 1998. V. 54. № 39. P. 11793.
- 14. Головина Н.И., Раевский А.В., Чуканов Н.В. и др. // Рос. хим. журн. 2004. Т. XLVIII. № 1. С. 41.
- 15. Сережкин В.Н., Шевченко А.П., Сережкина Л.Б. // Координац. химия. 2005. Т. 31. № 7. С. 495.