КРИСТАЛЛОГРАФИЯ, 2012, том 57, № 1, с. 131–137

ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ

УДК 535.551

СТАТИЧЕСКАЯ ФОТОУПРУГОСТЬ КРИСТАЛЛОВ ФОСФИДА ГАЛЛИЯ

© 2012 г. Б. Г. Мыцык^{1, 2}, А. С. Андрушак³, Я. П. Кость¹

¹Физико-механический институт НАН Украины, Львов ² Институт физической оптики МОН Украины, Львов ³ Национальный университет "Львовская политехника", Украина E-mail: mytsyk@ipm.lviv.ua Поступила в редакцию 04.10.2010 г.

Интерферометрическим методом всесторонне изучен пьезооптический эффект в кубических кристаллах GaP (класс симметрии 43m). Записаны соотношения для определения абсолютных пьезооптических коэффициентов π_{im} или их комбинаций на образце $X/45^{\circ}$ -среза при всех допустимых геометриях эксперимента. Определение конкретного коэффициента π_{im} при разных геометриях эксперимента на образцах прямых срезов и X/45°-среза позволило найти значения π_{im} с высокой точностью и достоверностью.

ВВЕДЕНИЕ

Кристаллы фосфида галлия (GaP) обладают широкой областью прозрачности (от 0.6 до 16 мкм [1]) и могут использоваться для электро-, пьезо- и акустооптической модуляции света в инфракрасной области. В [2] методом комбинационного рассеяния света определена только разность абсолютных пьезооптических коэффициентов (ПОК) $\pi_{11} - \pi_{12}$ и коэффициент π_{44} . В настоящей работе все абсолютные ПОК определены независимо. Для этого проведено полное изучение пьезооптического эффекта (ПОЭ) в кристаллах фосфида галлия, а именно: проведено аналитическое описание ПОЭ, интерферометрическим методом измерены управляющие напряжения, рассчитаны абсолютные пьезооптические коэффициенты как для основных геометрий эксперимента, так и для тех геометрий, которые подтверждают достоверность значений ПОК. Определены изменения оптического пути на единицу длины образца и единицу механического напряжения, которые характеризуют модулирующие свойства материала.

СООТНОШЕНИЯ ДЛЯ ОПРЕДЕЛЕНИЯ ПОК КРИСТАЛЛОВ GaP

Кристаллы фосфида галлия относятся к классу симметрии 43m, матрица ПОК которого содержит 12 коэффициентов π_{im} (индексы *i*, *m* обозначают направления вектора колебаний световой волны и действия одноосного давления соответственно в кристаллофизической системе координат), из которых только три ПОК являются независимыми: π_{11} , π_{12} и π_{44} . Главные π_{im} (*i*, *m* = 1, 2, 3) определяются на основе известного соотношения, например [3]:

$$\delta\Delta_k = -\frac{1}{2}\pi_{im}\sigma_m n_i^3 d_k + S_{km}\sigma_m d_k(n_i - 1), \qquad (1)$$

где $\delta \Delta_k$ – индуцированное механическим напряжением σ_m изменение оптического пути интерферометрического луча однопроходного интерферометра, например Маха-Цендера; n_i – показатель преломления образца; d_k – его толщина, индекс k обозначает направления распространения света в образце; S_{km} – коэффициенты упругой податливости кристалла.

Из (1) для метода полуволновых напряжений, когда $\delta \Delta_k = \lambda/2$ ($\lambda = 632.8$ нм — длина световой волны), а $\sigma_m = \sigma_{im}$ – полуволновое механическое напряжение, получим

$$\pi_{im} = -\frac{\lambda}{n_i^3 \sigma_{im}^o} + 2S_{km} \frac{n_i - 1}{n_i^3}, \qquad (2)$$

где $\sigma_{im}^{o} = \sigma_{im} d_k$ – управляющее механическое напряжение.

Соотношение (2) описывает ПОЭ на образце прямых срезов (грани такого образца перпендикулярны осям оптической индикатрисы X, Y, Z). Например, для условия эксперимента m = 1, k = 3возможны два направления вектора колебания (поляризации) световой волны: i = 1 и i = 2. Тогда из (2) получаем

$$\pi_{11} = -\frac{\lambda}{n_1^3 \sigma_{11}^o} + 2S_{21} \frac{n_1 - 1}{n_1^3},$$

$$\pi_{21} = -\frac{\lambda}{n_1^3 \sigma_{21}^o} + 2S_{21} \frac{n_1 - 1}{n_1^3}.$$
(3)

Здесь $S_{21} = S_{12}$, $\pi_{21} = \pi_{12}$ в соответствии с матрицами упругих и пьезооптических коэффициентов кристаллов, относящихся к классу симметрии $\overline{4}3m$ [1, 4].

Схема образца *X*/45°-среза: направления *1, 2, 3* соответствуют направлениям кристаллофизических осей *X, Y, Z*.

Подчеркнем, что (2) справедливо для образцов с параллельными оптическими гранями. В случае незначительной непараллельности оптических граней реальных образцов (угол между гранями составляет $\alpha = (2-5) \times 10^{-2}$ град) соотношение (2) примет вид [3, 5]:

$$\pi_{im} = -\frac{\lambda}{2n_i^3} \left(\frac{1}{\sigma_{im}^o} + \frac{1}{\sigma_{im}^{'o}} \right) + 2S_{km} \frac{n_i - 1}{n_i^3}, \quad (4)$$

где $\sigma_{im}^{\prime 10}$ – управляющее напряжение образца, повернутого на 180° вдоль направления действия одностороннего давления, т.е. нижняя и верхняя грани, на которые действует сила F_m , меняются местами.

Запишем соотношения, аналогичные (4), для коэффициента π_{44} . Для этого воспользуемся уравнением [6], описывающим изменение оптического пути образца $X/45^{\circ}$ -среза (рисунок) для условий эксперимента i = 4 (или $\overline{4}$), m = 4 ($\overline{4}$), $k = \overline{4}$ (4):

$$\delta \Delta_{\bar{4}(4)} = -\frac{\pi_{11} + \pi_{12} + \pi_{44}}{4} \sigma d_{\bar{4}(4)} n_1^3 + \frac{2S_{11} + 2S_{12} - S_{44}}{4} \sigma d_{\bar{4}(4)} (n_1 - 1),$$
(5)

где σ — величина механического напряжения — одноосного давления, действующего вдоль направления 4 или $\overline{4}$ (рисунок).

Обратим внимание, что (5) – это два независимых уравнения для симметричных условий эксперимента, обозначенных выше (в скобках и без них).

Еще два уравнения для определения π_{44} соответствуют условиям эксперимента i = 4 (или $\overline{4}$), m = 4, k = 1:

$$\delta\Delta_1 = -\frac{\pi_{11} + \pi_{12} \pm \pi_{44}}{4} \sigma d_1 n_1^3 + S_{12} \sigma d_1 (n_1 - 1).$$
 (6)

Аналогичное соотношение получим при симметричных условиях: $i = \overline{4}$ (4), $m = \overline{4}$, k = 1.

В соотношении (6) верхний знак при коэффициенте π_{44} соответствует условию i = 4, а нижний — условию $i = \overline{4}$. Поскольку для кубических кристаллов отсутствует критерий однозначного определения положительных направлений осей X, Y, Zи соответственно направлений 4 и $\overline{4}$ (подробно изложено в [6]), то из (6) невозможно однозначно определить знак коэффициента π_{44} . Соотношения (5) лишены указанного противоречия, поэтому они позволяют определять и значения, и знак ПОК π_{44} . Однако абсолютное значение π_{44} более точно определится из (6), поскольку погрешность упругого вклада (второго слагаемого) в $\delta \Delta_1$ мала, так как формируется только погрешностью одного коэффициента упругой податливости (S_{12}). Поэтому знак π_{44} необходимо определять из (5), а его абсолютную величину – из (6).

Приведем (5) и (6) к виду, соответствующему методу полуволновых (управляющих) напряжений. Для этого подставим в эти соотношения $\lambda/2$ вместо $\delta\Delta_k$, а вместо σ – полуволновое напряжения σ_{im} и учтем, что $\sigma_{im}d_k = \sigma_{im}^o$. Кроме того, для устранения погрешности небольшой непараллельности оптических граней образца заменим величину $1/\sigma_{im}^o$ на среднее значение обратных величин управляющих напряжений $(1/\sigma_{im}^o + 1/\sigma_{im}^{\circ o})/2$ (по аналогии с (4)). В результате из (5) для условий $i = m = 4, k = \overline{4}$ получим

$$\pi_{11} + \pi_{12} + \pi_{44} = -\frac{\lambda}{n_1^3} \left(\frac{1}{\sigma_{44}^o} + \frac{1}{\sigma_{44}^{o}} \right) + (2S_{11} + 2S_{12} - S_{44}) \frac{n_1 - 1}{n_1^3}.$$
(7)

Для симметричных условий $i = m = \overline{4}, k = 4$ имеем еще одно независимое соотношение:

$$\pi_{11} + \pi_{12} + \pi_{44} = -\frac{\lambda}{n_1^3} \left(\frac{1}{\sigma_{44}^o} + \frac{1}{\sigma_{44}^{\prime o}} \right) + (2S_{11} + 2S_{12} - S_{44}) \frac{n_1 - 1}{n_1^3}.$$
(8)

Из (6) для условий i = 4, m = 4, k = 1 и $i = \overline{4}, m = 4, k = 1$ получим

$$\pi_{11} + \pi_{12} + \pi_{44} = -\frac{\lambda}{n_1^3} \left(\frac{1}{\sigma_{44}^o} + \frac{1}{\sigma_{44}^{\prime o}} \right) + 4S_{12} \frac{n_1 - 1}{n_1^3}.$$
 (9)

$$\pi_{11} + \pi_{12} - \pi_{44} = -\frac{\lambda}{n_1^3} \left(\frac{1}{\sigma_{44}^o} + \frac{1}{\sigma_{44}^{\prime o}} \right) + 4S_{12} \frac{n_1 - 1}{n_1^3}.$$
 (10)

Вычтя (10) из (9), запишем простое соотношение для определения π_{44} :

$$\pi_{44} = -\frac{\lambda}{2n_1^3} \left(\frac{1}{\sigma_{44}^o} + \frac{1}{\sigma_{44}^{\prime o}} - \frac{1}{\sigma_{\overline{4}4}^o} - \frac{1}{\sigma_{\overline{4}4}^{\prime o}} \right).$$
(11)

КРИСТАЛЛОГРАФИЯ том 57 № 1 2012

Поскольку в (11) не входят главные ПОК π_{11} , π_{12} и упругий вклад, то погрешность определения π_{44} будет малой.

СООТНОШЕНИЯ ДЛЯ ПОДТВЕРЖДЕНИЯ ДОСТОВЕРНОСТИ ИЗУЧЕНИЯ ПОЭ

Физические свойства кристаллов GaP по данным разных авторов существенно различаются [1], поэтому важным является подтверждение достоверности изучения ПОЭ. Для этого определим главные ПОК на образце $X/45^{\circ}$ -среза (рисунок) и сравним их с главными ПОК, полученными на образце прямых срезов, ПОЭ которого описывается простыми соотношениями (1)–(4).

Сложим (9) и (10). Результат:

$$\pi_{11} + \pi_{12} = -\frac{\lambda}{2n_1^3} \left(\frac{1}{\sigma_{44}^o} + \frac{1}{\sigma_{44}^{'o}} + \frac{1}{\sigma_{\bar{4}4}^o} + \frac{1}{\sigma_{\bar{4}4}^{'o}} \right) + 4S_{12} \frac{n_1 - 1}{n_1^3}.$$
(12)

Значение этой суммы $\pi_{11} + \pi_{12}$ можем сравнить с суммой независимых ПОК π_{11} , π_{12} , полученных из (2)–(4).

Подчеркнем, что формулы (5) и (6) записаны на основе метода сечения возмущенной механическим напряжением оптической индикатрисы и характеристической поверхности тензора деформаций прямыми, совпадающими соответственно с направлением вектора і колебания световой волны и направлением распространения света (метод описан в [6]). Воспользовавшись этим методом, можно записать другие соотношения для определения главных ПОК π_{im} (*i*, *m* = 1, 2, 3) или их сумм на образце *X*/45°-среза. Например,

-для условия $i = m = 1, k = \overline{4}$ (или 4) получим

$$\delta \Delta_{\bar{4}(4)} = -\frac{1}{2} \pi_{11} d_{\bar{4}(4)} \sigma n_1^3 + S_{12} d_{\bar{4}(4)} \sigma (n_1 - 1).$$
(13)

Соотношение (13) для метода полуволновых напряжений при учете непараллельности оптических граней реальных образцов преобразуется к виду:

$$\pi_{11} = -\frac{\lambda}{2n_1^3} \left(\frac{1}{\sigma_{11}^o} + \frac{1}{\sigma_{11}^{\prime o}} \right) + 2S_{12} \frac{n_1 - 1}{n_1^3}; \quad (14)$$

– если для предыдущих условий эксперимента изменить поляризацию света с i = 1 на i = 4 (или $i = \overline{4}$, если k = 4), то получим соотношения для определения ПОК π_{12} :

$$\delta \Delta_{\bar{4}(4)} = -\frac{1}{2} \pi_{12} d_{\bar{4}(4)} \sigma n_1^3 + S_{12} d_{\bar{4}(4)} \sigma (n_1 - 1)$$
(15)

ИЛИ

$$\pi_{12} = -\frac{\lambda}{2n_1^3} \left(\frac{1}{\sigma_{41}^o} + \frac{1}{\sigma_{41}^{\prime o}} \right) + 2S_{12} \frac{n_1 - 1}{n_1^3}$$
(16)

КРИСТАЛЛОГРАФИЯ том 57 № 1 2012

и аналогичное соотношение для π_{12} с заменой σ_{14}^o , σ_{14}^{io} на σ_{41}^o , σ_{41}^{io} ;

— изменим поляризацию света для условий формул (7) и (8) с i = 4 (или $\overline{4}$) на i = 1, тогда:

$$\delta \Delta_{4(\bar{4})} = -\frac{1}{2} \pi_{12} \sigma d_{4(\bar{4})} n_1^3 + \frac{1}{4} (2S_{11} + 2S_{12} - S_{44}) \sigma d_{4(\bar{4})} (n_1 - 1)$$
(17)

или

$$\pi_{12} = -\frac{\lambda}{2n_1^3} \left(\frac{1}{\sigma_{14}^o} + \frac{1}{\sigma_{14}^{\prime o}} \right) + \frac{1}{2} (2S_{11} + 2S_{12} - S_{44}) \frac{n_1 - 1}{n_1^3}.$$
(18)

Аналогичное соотношение для π_{12} получим путем замены $\sigma_{14}^o, \sigma_{14}^{io}$ на $\sigma_{1\overline{4}}^o, \sigma_{1\overline{4}}^{io};$

– соотношения (11) и (12) получены из (6) для условий эксперимента $i = 4(\overline{4}), m = 4, k = 1,$ если изменить эти условия на симметричные $i = \overline{4}$ (или 4), $m = \overline{4}, k = 1$, то получим еще два независимых соотношения для определения π_{44} и суммы $\pi_{11} + \pi_{12}$:

$$\pi_{44} = -\frac{\lambda}{2n_1^3} \left(\frac{1}{\sigma_{44}^o} + \frac{1}{\sigma_{44}^{\prime o}} - \frac{1}{\sigma_{44}^o} - \frac{1}{\sigma_{44}^{\prime o}} \right),$$
(19)

$$\pi_{11} + \pi_{12} = -\frac{\lambda}{2n_1^3} \left(\frac{1}{\sigma_{44}^o} + \frac{1}{\sigma_{44}^{'o}} + \frac{1}{\sigma_{44}^o} + \frac{1}{\sigma_{44}^{'o}} \right) + + 4S_{12} \frac{n_1 - 1}{n_1^3}.$$
(20)

Соотношения (12), (14), (16), (18)–(20) использованы для определения ПОК π_{11} , π_{12} , π_{11} + $+\pi_{12}$, π_{44} на основе дополнительных геометрий эксперимента на образце *X*/45°-среза.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для исследования использованы образцы в форме кубика размером ~8 × 8 × 8 мм. Экспериментальные значения управляющих напряжений σ_{im}^{o} и σ_{im}^{o} , измеренных с помощью установки, созданной на базе интерферометра Маха–Цендера, а также значения ПОК π_{11} , π_{12} , $\pi_{11} + \pi_{12}$ и π_{44} , полученные из разных геометрий эксперимента, приведены в табл. 1. Для расчета коэффициентов π_{im} использованы значения показателя преломления кристаллов GaP $n_1 = 3.313$ [1] (для $t = 20^{\circ}$ C, $\lambda = 0.63$ мкм) и упругие коэффициенты $S_{11} = 9.73$, $S_{12} = -2.99$, $S_{44} = 14.19$ [7, 8] (в ед. 10^{-12} м²/H = = 1 Бр (Брюстер)).

Обратим внимание на следующее. В табл. 1 при значениях π_{im} ПОК указаны их погрешности.

Номер	Условия эксперимента			$=^{0}$ $=$ $=$ 1^{0} $=$ $=$ 1^{0}		– Fr	
эксперимента	т	k	i	$σ_{im}$ и $σ_{im}$, кI /см		π _{im} , ьр	
			Образцы прям	мых срезов			
1	1	2	1	$\sigma_{11}^{o} = -17.6$	$\sigma_{11}^{\prime 0} = -16.1$	$\pi_{11} = -1.43 \pm 0.11$	
2	1	5	2	$\sigma_{21}^{o} = +81$	$\sigma_{21}^{\prime o} = +115$	$\pi_{12} \!=\! -0.19 \pm 0.03$	
3	1	2	1	$\sigma_{11}^{o} = -19.5$	$\sigma_{11}^{\prime 0} = -14.5$	$\pi_{11}\!=\!-1.45\pm0.11$	
4	1		3	$\sigma_{31}^{o} = +61$	$\sigma_{31}^{\prime o} = +220$	$\pi_{12} \!=\! -0.19 \pm 0.03$	
5	C	1	2	$\sigma_{22}^{o} = -16.5$	$\sigma_{22}^{\prime o} = -16.8$	$\pi_{11} \!=\! -1.45 \pm 0.11$	
6	Z	1	3	$\sigma_{32}^{o} = +110$	$\sigma_{32}^{\prime o} = +85$	$\pi_{12} \!=\! -0.20 \pm 0.03$	
7	ſ	2	2	$\sigma_{22}^{o} = -17.1$	$\sigma_{22}^{\prime o} = -16.4$	$\pi_{11} = -1.44 \pm 0.11$	
8	Z	3	1	$\sigma_{12}^{o} = +95$	$\sigma_{12}^{\prime o} = +93$	$\pi_{12} \!=\! -0.19 \pm 0.03$	
Образец <i>X</i> /45°-среза							
9	1	Λ	1	$\sigma_{11}^{o} = -16$	$\sigma_{11}^{\prime o} = -17$	$\pi_{11}\!=\!-1.46\pm0.11$	
10	1	т	4	$\sigma_{41}^{o} = +110$	$\sigma_{41}^{\prime 0} = +83$	$\pi_{12}\!=\!-0.19\pm0.03$	
11	1	Ā	1	$\sigma_{11}^{o} = -16.4$	$\sigma_{11}^{\prime o} = -17.5$	$\pi_{11}\!=\!-1.43\pm0.11$	
12	1	т	4	$\sigma_{41}^{o} = +120$	$\sigma_{41}^{\prime o} = +80$	$\pi_{12}\!=\!-0.20\pm0.03$	
13	4	Ā	4	$\sigma_{44}^{o} = -14.7$	$\sigma_{44}^{\prime o} = -22.5$	$\pi_{44}\!=\!-1.60\pm0.25$	
14	4 4		1	$\sigma_{14}^{o} = +90$	$\sigma_{14}^{\prime o} = +27.5$	$\pi_{12}\!=\!-0.19\pm0.03$	
15	4	1	4	$\sigma_{44}^{o} = -16$	$\sigma_{44}^{\prime o} = -15.3$	$\pi_{44}\!=\!-1.38\pm0.12$	
16	+		$\overline{4}$	$\sigma_{\overline{4}4}^o = +70$	$\sigma_{\overline{4}4}^{\prime o} = +77$	$\pi_{11} + \pi_{12} \!=\! -1.6 \pm 0.12$	
17	4	4	4	$\sigma_{44}^{o} = -18.0$	$\sigma_{44}^{\prime o} = -19$	$\pi_{44}\!=\!-1.52\pm0.25$	
18	4		1	$\sigma_1^o = +45$	$\sigma_1^{\prime o} = +38$	$\pi_{12} \!=\! -0.19 \pm 0.03$	
19	<u></u>	1	4	$\sigma_{44}^{o} = -17.5$	$\sigma_{44}^{\prime o} = -15.6$	$\pi_{44} = -1.34 \pm 0.11$	
20	4	1	4	$\sigma_{4\overline{4}}^{o} = +55$	$\sigma_{4\overline{4}}^{\prime o} = +90$	$\pi_{11} + \pi_{12} = -1.58 \pm 0.12$	

Таблица 1. Управляющие напряжения $\sigma_{im}^o = \sigma_{im}d_k$ и абсолютные ПОК π_{im} кристаллов GaP

Они рассчитаны как среднеквадратичные величины погрешностей первого и второго слагаемых, которые входят в уравнения для определения π_{im} . Рассчитаем, например, коэффициент π_{11} (в ед. Бр) для исходных данных, указанных в строке 1 табл. 1, подставив их в (4):

$$\pi_{11} = -\frac{632.8}{2(3.313)^3} \left(\frac{-1}{-17.6} + \frac{-1}{-16.1} \right) + 2\frac{-2.99}{(3.313)^3} (3.313 - 1) =$$
(21)

 $= -1.05 \pm 0.105 \ -0.38 \pm 0.019 \ = -1.43 \pm 0.11.$

Подчеркнем, что знак "—" перед "единицей" в числителях (21) взят из табл. 1, где он стоит перед σ_{im}^{o} и σ_{im}^{io} и означает, что сжимающее напряжение уменьшает оптический путь образца (определяется путем поворота плоскопараллельной пластинки, помещенной на пути интерферометрического луча, проходящего образец), а знак "—" в знаменателях (21) соответствует знаку сжимающего механического напряжения.

Погрешность коэффициента π_{11} рассчитана, исходя из погрешности ±10% для суммы $1/\sigma_{11}^{o}$ + $+ 1/\sigma_{11}^{*o}$ (это объективная погрешность, прове-

КРИСТАЛЛОГРАФИЯ том 57 № 1 2012

ренная многократными измерениями σ_{im}^{o} и σ_{im}^{o} на разных образцах) и погрешности ±5% для S_{12} . Подчеркнем, что упругий коэффициент S_{12} в [7] определен с погрешностью ±1.8%, но такой недостаток статического эксперимента, как неравномерность механического напряжения на образце, оправдывает использование коэффициентов S_{12} с погрешностью ±5%.

Отметим, что при расчете ПОК π_{44} и суммы $\pi_{11} + \pi_{12}$ (соотношения (11), (12)) погрешность выражения в скобках определена как среднеквадратичная величина погрешностей ±10% для суммы $1/\sigma_{44}^o + 1/\sigma_{44}^{'o}$ и ±10% для суммы $1/\sigma_{44}^o + 1/\sigma_{44}^{'o}$ (это касается также соотношений (19), (20)), а при определении π_{44} на основе сложных соотношений (7) и (8) необходимо учитывать также среднеквадратичные погрешности сумм главных ПОК π_{11} , π_{12} и всех коэффициентов упругой податливости S_{km} .

ПОК π_{11} , полученные из четырех геометрий эксперимента на образце прямых срезов (строки 1, 3, 5, 7 табл. 1), а также из двух геометрий эксперимента на образце X/45°-среза (строки 9, 11) совпадают в пределах погрешности эксперимента. Сказанное касается и коэффициента π_{12} (строки 2, 4, 6, 8, 10, 12). В дальнейшем будем использовать среднеарифметические значения ПОК π_{11} и π_{12} , полученные из указанных геометрий эксперимента (представлены ниже).

Примечательным является то, что соотношения (14), (16) для π_{11} и π_{12} , полученные для образца $X/45^{\circ}$ -среза, тождественны таким соотношениям для образцов прямых срезов (их легко записать на основе (4)). Например, для условий i = 1, m = 2, k = 3 получим

$$\pi_{12} = -\frac{\lambda}{2n_1^3} \left(\frac{1}{\sigma_{12}^o} + \frac{1}{\sigma_{12}^{\prime o}} \right) + 2S_{32} \frac{n_1 - 1}{n_1^3}.$$
 (22)

Из сравнения соотношений (22) и (16) следует вывод, что суммы $1/\sigma_{12}^{o} + 1/\sigma_{12}^{'o}$ и $1/\sigma_{41}^{o} + 1/\sigma_{41}^{'o}$ равны. Эти суммы равны также аналогичным суммам на основе управляющих напряжений σ_{21}^{o} , σ_{32}^{o} , σ_{31}^{o} , σ_{41}^{o} (строки 2, 4, 6, 8, 10, 12), так как для кубических кристаллов справедливыми являются равенства $\sigma_{12}^{o} = \sigma_{21}^{o} = \sigma_{32}^{o} = \sigma_{31}^{o}$ и $\sigma_{41}^{o} = \sigma_{41}^{'o}$ (в соответствии с комменетарием после (16)). Понятно, что суммы $1/\sigma_{11}^{o} + 1/\sigma_{11}^{'o}$, $1/\sigma_{22}^{o} + 1/\sigma_{22}^{'o}$ для образцов прямых срезов и образца $X/45^{\circ}$ -среза в пределах погрешности эксперимента тоже равны (строки 1, 3, 5, 7, 9, 11).

Сумма коэффициентов $\pi_{11} + \pi_{12} = -1.61 \pm 0.12$, определенная на образце *X*/45°-среза (строки 16, 20), с большой точностью совпадает с суммой независимых ПОК π_{11} и π_{12} , определенных на образ-

КРИСТАЛЛОГРАФИЯ том 57 № 1 2012

це прямых срезов, что дополнительно подтверждает достоверность значений π_{11} и π_{12} .

Обратим внимание на существенные различия управляющих напряжений σ_{im}^{o} и $\sigma_{im}^{'o}$, особенно в случаях, когда эти напряжения большие (например, табл. 1, строки 4, 12, 14, 20). Однако суммы $(1/\sigma_{im}^{o} + 1/\sigma_{im}^{'o})$ для симметрично тождественных геометрий эксперимента равны в пределах погрешности (±10%) их определения (например, попарно строки 1 и 3, 2 и 4, 14 и 18, 16 и 20). Это подтверждает эффективность предложенной в [3, 5] методики учета влияния небольшой непараллельности оптических граней реальных образцов на погрешность определения ПОК.

Коэффициент π_{44} определен из четырех геометрий эксперимента (строки 13, 15, 17, 19). Малая погрешность определения π_{44} при условиях эксперимента m = 4, k = 1, $i = 4(\overline{4})$ и симметричных условиях $m = \overline{4}$, k = 1, $i = \overline{4}(4)$ обусловлена тем, что соотношения (11) и (19), соответствующие этим условиям, не содержат главных ПОК и упругих коэффициентов S_{km} .

С другой стороны, при условиях $m = 4, k = \overline{4}, k = \overline{4}$ i = 4 и симметричных им $m = \overline{4}, k = 4, i = \overline{4}$ (строки 13, 17) коэффициент π_{44} необходимо определять на основе соотношений (7), (8). Поскольку эти соотношения содержат сумму главных ПОК π_{11} и π_{12} , а также сложную сумму коэффициентов S_{km} , то погрешность π_{44} существенно больше. Кроме того, если в (7) и (8) подставить значения коэффициентов S_{km} из [7], то получим (в ед. Бр) π_{44} = $= -0.41 \pm 0.25$ и $\pi_{44} = -0.33 \pm 0.24$. Такие большие погрешности и несоответствие значений π_{44} тем значениям, которые определены на основе простых соотношений (11) и (19) (строки 15 и 19), можно объяснить только необъективной величиной суммы S_{km} , входящей в (7) и (8). В настоящей работе эта сумма S_{km} определена на основе соотношений (18) для определения ПОК π_{12} на образце $X/45^{\circ}$ -среза, так как коэффициент π_{12} , как и π_{11} , определен из шести геометрий эксперимента с большой точностью (абсолютная погрешность определения π_{12} очень мала — ± 0.03 Бр, строки 2, 4, 6, 8, 10, 12 табл. 1). Определенная таким образом ΣS_{km} равна (в Бр) -19.4 ± 1.6 . Подставив это значение ΣS_{km} в (7) и (8), получим соответственно (в Бр): $\pi_{44} = -1.60 \pm 0.25$ и $\pi_{44} = -1.52 \pm 0.25$ (при расчетах использованы среднеарифметические значения π_{11} и π_{12} из табл. 1). Эти значения коэффициента π_{44} в пределах погрешности их определения соответствуют значениям π_{44} , полученным на основе соотношений (11) и (19), строк 15 и 19 табл. 1. В дальнейшем будем использовать среднеарифметическое значения π_{44} из строчек 15, 19 табл. 1, поскольку они определены с малой по-

Таблица 2. $\delta \Delta_k / (\sigma_m d_k)$	Пьезооптический $\delta \Delta_k(\pi_{im})$ и упругий $\delta \Delta_k(\Lambda_{im})$	S _{km}) вклады в 1	индуцированн	юе изменение о	птического пути

Номер	Условия эксперимента			$\delta \Delta_k$ En	$\delta \Delta_k(\pi_{im})$ or	$\delta \Delta_k(S_{km}) \sim \infty$
эксперимента	т	k	i	$\overline{\sigma_m d_k}$, bp	$\delta \Delta_k$, λc	$\delta \Delta_k$, $\gamma \delta$
1	1	3	1	+19.3	+136	-36
2	1	3	2	-3.4	+100	-200
3	4	$\overline{4}$	4	+16.0	+170	-70
4	4	1	4	+20.3	+134	-34
5	4	1	4	-4.5	+54	-154

грешностью (±0.11 Бр), а также среднеарифметические значения коэффициентов π_{11} и π_{12} , каждое из которых определено из шести геометрий эксперимента (в Бр):

$$\pi_{11} = -1.44 \pm 0.11; \quad \pi_{12} = -0.19 \pm 0.03; \quad (23)$$

$$\pi_{44} = -1.36 \pm 0.12.$$

Сравнение с литературными данными. В [2] методом спектроскопии комбинационного рассеяния света определена разность ПОК $\pi_{11} - \pi_{12}$ и коэффициент π_{44} (в Бр): $\pi_{11} - \pi_{12} = -0.97$; $\pi_{44} =$ = -1.16. По нашим данным (23), и разность ПОК $\pi_{11} - \pi_{12} = -1.25$ Бр, и коэффициент π_{44} существенно превышают полученные в [2] значения ПОК (на 29 и 17% соответственно). Указанные различия могут быть обусловлены двумя причинами: большая погрешность определения ПОК в [2] (к сожалению, в этой работе не приведены погрешности изучения ПОЭ); зависимость величины ПОК от технологии выращивания кристаллов GaP. Вторая причина представляется более весомой, так как многие физические свойства фосфида галлия существенно зависят от условий их выращивания [1].

На основе коэффициентов π_{im} и S_{km} можем найти изменение оптического пути $\delta \Delta_k$ на единицу длины образца и единицу механического напряжения – $\delta \Delta_k/(\sigma_m d_k)$, а также сравнить пьезооптический $\delta \Delta_k(\pi_{im})$ и упругий $\delta \Delta_k(S_{km})$ вклады в $\delta \Delta_k$. Для этого на основе (1) запишем

$$\frac{\delta\Delta_k}{\sigma_m d_k} = -\frac{1}{2}\pi_{im}n_i^3 + S_{km}(n_i - 1).$$
⁽²⁴⁾

Соотношение (24) справедливо для главных ПОК π_{im} (*i*, *m* = 1, 2, 3). Для других геометрий эксперимента аналоги (24) легко записать на основе соотношений (5) и (6). В табл. 2 приведены значения $\delta \Delta_k / (\sigma_m d_k)$ и соответствующие вклады (пьезооптический и упругий) в изменение оптического пути для пяти геометрий эксперимента. Интересными с точки зрения практического применения (например, фотоупругая модуляция света [9–12]) являются геометрии с большими значениями $\delta \Delta_k / (\sigma_m d_k)$. Из табл. 2 видно, что большинство геометрий эксперимента (строки 1, 3, 4 табл. 2, а также симметрично тождественные геометрии) обладают большими значениями индуцированного изменения оптического пути. Для сравнения: максимальные значения $\delta \Delta_k / (\sigma_m d_k)$ для кристаллов чистого и легированного оксидом магния ниобата лития составляют 8.0–13.7 Бр [3], а для кристаллов лангасита — 6.25—6.65 Бр [5]. Основной вклад в $\delta \Delta_k$ для указанных геометрий эксперимента вносит пьезооптический эффект (в 2.5-4.0 раза больший, чем вклад упругости). Это результат того, что пьезооптический вклад формируется большим коэффициентом π_{11} (строка 1, табл. 2) или большим значением суммы ПОК $\pi_{11} + \pi_{12} + \pi_{44} = -2.99$ Бр (строки 3, 4, табл. 2). Малые значения $\delta \Delta_k / (\sigma_m d_k)$ соответствуют малому ПОК π_{12} (строка 2, табл. 2) или малому значению комбинации ПОК $\pi_{11} + \pi_{12} - \pi_{44} = -0.27$ Бр. Таким образом, кристаллы GaP следует отнести к лучшим фотоупругим материалам как на основе ПОК π_{11} и π_{44} , так и на основе больших значений $\delta \Delta_k / (\sigma_m d_k).$

выводы

На примере кристаллов GaP подтверждена эффективность методики устранения погрешностей изучения ПОЭ, обусловленных небольшой реальной непараллельностью граней образца, перпендикулярных направлению оптического луча. Записаны соотношения для определения абсолютных ПОК π_{im} или их комбинаций на образце $X/45^{\circ}$ -среза при всех возможных геометриях эксперимента. Показано, что соотношения для определения ПОК π_{11} и π_{12} на образце $X/45^{\circ}$ -среза тождественны аналогичным соотношениям для образца прямых срезов. Соответствие ПОК π_{im} или их комбинаций, полученных на указанных образцах, подтверждает достоверность их значений.

На основе ПОК π_{im} определены удельные (на единицу механического напряжения и единицу

1	3	6
-	~	~

длины образца) изменения оптического пути $\delta \Delta_k / (\sigma_m d_k)$, которые характеризуют модуляционные свойства материала. И по величине ПОК, и по значениям $\delta \Delta_k / (\sigma_m d_k)$ кристаллы фосфида галлия следует отнести к лучшим фотоупругим материалам.

СПИСОК ЛИТЕРАТУРЫ

- 1. Акустические кристаллы. Справочник / Под ред. Шаскольской М.П. М.: Наука, 1982. 632 с.
- Canal F., Grimsditch M., Cardona M. // Solid State Commun. 1979. V. 29. P. 523.
- 3. Mytsyk B.G., Andrushchak A.S., Demyanyshyn N.M. et al. // Appl. Opt. 2009. V. 48. P. 1904.
- 4. Сиротин Ю.И., Шаскольская М.П. Основы кристаллофизики. М.: Наука, 1979. 639 с.

- 5. *Мыцык Б.Г., Андрущак А.С., Гаськевич Г.И. //* Укр. физ. журн. 2007. Т. 52. С. 800.
- 6. Mytsyk B. // Ukr. J. Phys. Optics. 2003. V. 4. P. 1.
- 7. Weil R., Groves W.O. // J. Appl. Phys. 1968. V. 39. P. 4049.
- Polian A., Grimsditch M. // Phys. Rev. B. 1999. V. 60. № 3. P. 1468.
- 9. *Trainer M.N.* Photoelastic measuring transducer and accelerometer based thereon. Patent US 4.648.274. Date 10.03.1987.
- Brandi F., Polacco E., Ruoso G. // Meas. Sci. Technol. 2001. V. 12. P. 1503.
- Андрущак А.С., Мыцык Б.Г., Осыка Б.В. Фотоупругий преобразователь давления: А.с. СССР № 1796936. // БИ 1993. № 7.
- 12. Кликушин Ю.Н. Фотоупругий преобразователь: А.с. СССР №1000795. // БИ 1983. № 8.