УДК 550.504

## ПЕРЕНОС РАДОНА В ПРИПОВЕРХНОСТНЫЕ СЛОИ ГРУНТА И ПРИЗЕМНУЮ АТМОСФЕРУ

#### © 2013 г. В.Н. Шулейкин

#### Институт проблем нефти и газа РАН, г. Москва, Россия

Представлены результаты наблюдений за содержанием и распределением радона до глубины 2 м. Предложена модель переноса радона с глубины в приповерхностные слои грунта и атмосферу пузырьковыми образованиями водорода и метана. Проведена проверка работоспособности модели при содержании метана в грунте  $10^{-6}-10^{-5}$  и  $10^{-3}-10^{-2}$  об. %.

Ключевые слова: радон, перенос, грунт, атмосфера, водород, метан.

#### Введение

Проблема контроля за содержанием радона, его вариациями в приповерхностных слоях грунта и приземной атмосфере представляет особый интерес для городской геофизики, экологии, медицины [Павлов, 1998; Основные..., 2000; Микляев, Петрова, 2007; Зайцев и др., 2008], поскольку на урбанизированных территориях подземные постройки, коммуникации, теплотрассы перераспределяют картину естественной, сравнительно низкой средней плотности радона, не представляющей реальной опасности для здоровья людей и приводят к его накоплению в подвальных помещениях, локальному избыточному сбросу в атмосферу. Для решения задачи оценки и прогноза содержания радиогенного газа необходимо знать его транспортный механизм в приповерхностных слоях грунта и приземной атмосфере.

#### Результаты экспериментов и модельные построения

Транспорт радона по горной породе осуществляется благодаря механизмам диффузного и конвективного переноса [Баранов, 1956]. Конвективному переносу присуща большая скорость: по экспериментальным данным ее максимальное значение в песчано-глинистых средах колеблется в пределах 40–60 см/сут. За три периода полураспада концентрация радона успевает упасть практически на порядок. Принимая во внимание период полураспада радона  $\tau = 3.825$  сут, можно грубо оценить его перенос за 12 дней величиной 5–7 м.

Задача о распределении радона в грунте у поверхности Земли решена аналитически для ряда модельных представлений [Баранов, 1956], из которых остановимся на двух, представляющих интерес для рассматриваемой задачи:

1) бесконечный однородный радиоактивный пласт, выходящий на дневную поверхность;

2) нерадиоактивный слой, покрывающий радиоактивный слой бесконечной мощности.

В граничных условиях всех решений полагается, что концентрация радона на уровне дневной поверхности, а соответственно, и в атмосфере нулевая. Подобное ограничение вполне оправдано: по статистическим данным работ [*Сисигина*, 1962, 1965] отношение концентраций радона на глубине 2–3 м относительно дневной поверхности к радону атмосферы не менее 100; в частности, в работе [*Стыро*, 1959] предельное отношение объемной активности радона на глубине 2 м к объемной активности радона атмосферы составляет 320.

Оценки распределения газа-эманации для бесконечного однородного пласта, выходящего на дневную поверхность, (Q1) и для нерадиоактивного слоя мощностью H = 3 м, покрывающего радиоактивный слой бесконечной мощности, (Q2) представлены на рис. 1.



**Рис. 1.** Относительный уровень концентрации радона в грунте по глубине для однородного радиоактивного слоя (1) и для нерадиоактивного слоя (2) мощностью H = 3 м, покрывающего радиоактивный слой бесконечной мощности

Для модельного приближения Q1 содержание радона от нулевого на дневной поверхности асимптотически приближается к максимуму уже на глубине 4–6 м. Согласно заключению работы [Баранов, 1956], для бесконечного однородного пласта, выходящего на дневную поверхность, диффузионный перенос радона осуществляется именно с этих глубин.

Для модельного приближения *Q*<sup>2</sup> содержание радона от максимального на глубине *H* = 3 м падает до нуля у дневной поверхности.

Рассмотрим экспериментальные данные по распределению радона на глубинах первых дециметров-метров относительно дневной поверхности (результаты наблюдений, представленные в работе [Стыро, 1959]). В течение 6.5 мес. – с 4 сентября по 19 марта – было отобрано 264 пробы радона почвенного воздуха с глубин 0.25, 0.75, 1.5 и 2.0 м; содержание радона в атмосферном воздухе не контролировалось.

Период наблюдений захватывал осень, зиму и весну. В зимний период промерзание грунта задерживает поступление радона в атмосферу, способствуя тем самым его накоплению в приповерхностных слоях. Подобное промерзание имело место с 10 января по 1 марта. Объемная активность радона за этот период на глубине 0.25 м в среднем возросла в 5.8 раза, на глубине 0.75 м – в 2.2, на глубине 1.5 м – в 1.2, на глубине 2.0 м осталась без изменений.

В связи с этим весь массив данных был разделен на две части: 16 групп наблюдений считались полученными в условиях промерзания грунта; оставшиеся 50 групп – в условиях без промерзания. Средние значения объемной активности радона по четырем уровням в условиях промерзания грунта и без его промерзания, а также максимальные значения объемной активности радона грунта по рабочим уровням за весь период наблюдений представлены в табл. 1.

**Таблица 1.** Среднее и максимальные значения объемной активности радона грунта (Бк/л) на четырех уровнях наблюдений за период 4 сентября–19 марта (по [*Стыро*, 1959])

| Vспория измерений                    | Глубина, м |      |     |     |  |
|--------------------------------------|------------|------|-----|-----|--|
| у словия измерении                   | 0.25       | 0.75 | 1.5 | 2   |  |
| Промерзание, Rn(промерзание)         | 2.4        | 3.1  | 3.4 | 3.8 |  |
| Без промерзания, Rn(без промерзания) | 0.4        | 1.4  | 2.7 | 3.8 |  |
| Максимальное, Rn(max)                | 3.1        | 3.3  | 3.5 | 4.3 |  |

Для перехода к относительным единицам средние абсолютные значения объемной активности радона (см. табл. 1) нормировались на максимальную объемную активность радона грунта, зарегистрированную за весь период измерений, Rn (2.0 м) = 4.3 Бк/л. Ввиду малых средних значений объемной активности радона на глубине 0.25 м в условиях без промерзания ее нормированное значение на уровне дневной поверхности полагалось равным нулю. Полученные относительные вариации радона от нулевого уровня до глубины 2.0 м в условиях промерзания грунта (кривая 2) и без его промерзания (кривая 1) представлены на рис. 2.



Рис. 2. Относительный уровень содержания почвенного радона по глубине *1* – Rn(без промерзания)/Rn(max); 2 – Rn(промерзание)/Rn(max); 3 – Rn(Лам)/Rn(max)

В двух рассмотренных примерах – Rn(промерзание)/Rn(max) и Rn(без промерзания)/Rn(max) – полученные в ходе наблюдений вариации контролируемого параметра близки к расчетным значениям для первого модельного приближения – вариациям радона в бесконечном однородном пласте, выходящем на дневную поверхность. Зарегистрированные изменения идут с отклонениями от плавного асимптотического хода расчетной кривой Q1 (см. рис. 1), что вполне объясняется неоднородностью реальной геологической среды. Скорее всего, это следствие случайного внедрения глинистых вкраплений, содержание радия в которых ( $1.3 \cdot 10^{-10}$  %) всего лишь в 2 раза меньше, чем в гранитах ( $2.58 \cdot 10^{-10}$  %) [*Кошкин, Ширкевич*, 1976].

Рассмотрим коэффициенты корреляции между вариациями объемной активности радона в пробах, отобранных на разной глубине. В отсутствии промерзания грунта коэффициент корреляции между радоном в пробах с глубин 0.25 и 0.75 м k(0.25;0.75) = 0.72, при промерзании – k(0.25;0.75) = 0.64. Причина спада корреляции, скорее всего, в том, что без промерзания на содержание радона влияет только процесс переноса, а при промерзании – процесс переноса и накопления радиогенного газа. В пользу этого говорит отмеченное выше увеличение содержания радона, особенно на уровнях 0.25 и 0.75 м.

Третий значащий коэффициент корреляции был получен между вариациями объемной активности радона в отсутствии промерзания грунта на уровнях 1.5 и 2.0 м – k(1.25;2.0) = 0.79. Полученный результат позволяет высказать ряд предположений. С одной стороны, газопроницаемость грунта на глубинах 0.25-0.75 и 1.5-2.0 м практически одинакова, хотя следовало бы ожидать, что на большей глубине будет меньшая газопроницаемость. С другой стороны, меньший коэффициент корреляции вариаций радона на меньших глубинах является следствием дополнительных процессов, влияющих на содержание радона. Это попадание и испарение влаги из атмосферы в приповерхностные поры грунта и «ветровое подсасывание» радона в атмосферу [*Стыро*, 1959, 1968].

В рассмотренном примере распределения радона по глубине зарегистрированные средние значения контролируемого параметра сравнительно малы (см. табл. 1). Дополнительный эксперимент был поставлен в условиях аномально высоких объемных активностей радона. Средний уровень объемной активности радона в атмосфере Rn(a) за трехсуточный период наблюдений составил 7.6 Бк/л.

За все время наблюдений было проанализировано 65 проб, отобранных в атмосфере и на глубинах 0.5, 0.6, 1.25 и 1.9 м. Измерения проходили на левом берегу р. Полосня у д. Ламоново Тульской обл. Площадка, на которой проводился отбор проб, находилась на высоте  $\sim 2$  м относительно уреза воды, т.е. на расстоянии 3–4 м от мощного глинистого водоупора. Другими словами, грунтовые условия наблюдений были близки к модельному приближению Q2 (см. рис. 1). Средние и максимальные значения объемной активности радона на перечисленных отметках представлены в табл. 2.

| Объемная активность | Глубина, м |      |      |      |      |  |  |
|---------------------|------------|------|------|------|------|--|--|
| радона, Бк/л        | 0–Rn(a)    | 0.5  | 0.6  | 1.25 | 1.9  |  |  |
| Средняя             | 7.6        | 13.7 | 24.5 | 29.7 | 31.0 |  |  |
| Максимальная        | 9.3        | 20.5 | 31.4 | 36.3 | 40.2 |  |  |

**Таблица 2.** Среднее и максимальные значения объемной активности радона грунта на пяти уровнях наблюдений у д. Ламоново, Тульская обл.

Переход от абсолютных значений к относительным осуществлялся путем нормирования на максимальное значение объемной активности радона, зарегистрированное на глубине 1.9 м (последняя строка табл. 2). Среднее значение объемной активности радона атмосферы полагалось равным объемной активности радона на уровне дневной поверхности и тоже нормировалось Rn(1.9,max). Полученные относительные вариации радона грунта в диапазоне глубин 0–1.9 м показаны на рис. 2 (кривая 3).

Кривая Rn(Лам)/Rn(max) имеет заметно больший разброс, нежели кривые Rn(промерзание)/Rn(max) и Rn(без промерзания)/Rn(max) (2 и 3 на рис. 2 соответственно), но тем не менее в большей мере подходит под расчетные оценки первого модельного приближения. Причина сильных отклонений от плавного хода расчетной кривой Q1 (см. рис. 1) – аномально высокие значения объемной активности радона на выбранном участке. Присутствующие в рассматриваемом диапазоне глубин случайно разбросанные вкрапления содержат аномально высокие количества материнского вещества.

Высокий молекулярный вес радона – 222 – исключает возможность его самопроизвольной субвертикальной миграции. Долгое время считалось, что в качестве газов – носителей радона в приповерхностные слои грунта и атмосферу выступают пузырьковые образования всех летучих газов почвенного воздуха [*Козлова и др.*, 1999; *Войтов и др.*, 2000; *Гергедава и др.*, 2001]. Однако комплексные работы под г. Москвой, г. Калугой и в Ставропольском крае [*Шулейкин*, 2006; *Зубарев, Шулейкин*, 2009] заставили несколько изменить эти представления. В ходе экспериментов проводился одновременный отбор проб почвенного воздуха для лабораторного анализа на содержание летучих газов и оперативный контроль объемной активности радона почвенного воздуха. Совместная обработка полученных результатов показала, что концентрации азота и диоксида углерода меняются в противофазе и охвачены жесткой корреляционной связью  $k(N_2;CO_2) = -0.99$  при отсутствии корреляционной связи с метаном и водородом  $|k(H;N_2;CO_2)| = 0.28$  и 0.29 соответственно.

Более того, коэффициент корреляции водорода и метана очень высок –  $k(H;CH_4) = 0.96$ ; коэффициенты корреляции между концентрациями двух последних летучих газов с объемной активностью радона тоже достаточно велики –  $k(Rn;H_2) = 0.84$ ,  $k(Rn;CH_4) = 0.89$ . Незначительный спад коэффициентов корреляции с объемной активностью радона имеет понятное физическое объяснение – точность лабораторного определения концентрации водорода и метана существенно выше точно-сти полевых измерений объемной активности радона.

Дополнительный отбор проб почвенного воздуха в Щелкове и Ставропольском крае позволил проанализировать связи между водородом и метаном на 68 парах значений [Шулейкин и др., 2008; Зубарев, Шулейкин, 2009]. Коэффициент корреляции  $k(CH_4,H_2)_{68} = 0.76$  достаточно высок. Однако если рассмотреть коэффициент корреляции между логарифмами ln(H<sub>2</sub>), ln(CH<sub>4</sub>), то его величина возрастает –  $k[ln(H_2);ln(CH_4)] = 0.96$ . Построение линейной аппроксимации логарифмов измеренных значений содержаний водорода и метана в грунте позволяет с достоверностью D = 0.92 рассчитать уравнение связи исследуемых параметров

$$CH_4 = \exp[1.675\ln(H_2) + 2.762].$$
(1)

На рис. 3 построены графики измеренных и рассчитанных по выражению (1) значений содержания метана в грунте по парам 68 точечных массивов данных.



Рис. 3. Расчетные (2) и измеренные (1) значения содержания метана в грунте (68 пар точек)

Пробы: 1–52 – г. Ставрополь; 53–60 – г. Калуга; 61–68 – г. Щелково. *3* – средний мировой фоновый уровень содержания метана в грунте

Принимая во внимание диапазон перепада рассматриваемых концентраций метана – 4 порядка ( $10^{-6}$ – $10^{-2}$  об. %), совпадение измеренных и расчетных значений можно считать идеальным. Полевой материал, использованный при выводе выражения (1), был отобран в разное время и в разных местах; абсолютные значения концентраций водорода и метана получены разными операторами на различном лабораторном оборудовании. Это позволяет утверждать, что выведенная закономерность носит фундаментальный характер. Естественно, что выражение (1) требует дальнейшей проверки и уточнения. В частности, необходимо получение дополнительного полевого материала в диапазоне концентраций метана грунта  $10^{-5}$ – $10^{-3}$  об. %.

Полученный результат позволяет утверждать, что перенос радона в приповерхностные слои грунта и приземную атмосферу осуществляется пузырьковыми образованиями только двух летучих газов – водорода и метана. Рассмотрим несколько экспериментальных доказательств высказанного предположения.

В августе 2006 г. на территории Северо-Ставропольского газохранилища на площади 20×30 км на 300 наблюдательных пикетах регистрировались объемные активности радона грунта и атмосферы. На 28 пикетах с максимальными и минимальными отношениями радона грунта и радона атмосферы параллельно были отобраны образцы почвенного воздуха для определения содержания метана и водорода.

Погодные условия не благоприятствовали проведению измерений. Засуха августа 2006 г. привела к сильному растрескиванию грунта. Наличие глубоких трещин (до 50–60 см) резко увеличило площадь воздухообмена почва–атмосфера, т.е. увеличила плотность эксхалирующего почвенного радона – среднее значение Rn(a) = 0.49 Бк/л. Пробы почвенного радона отбирались с островков грунта площадью ~ 0.5 м<sup>2</sup>, ограниченных трещинами, среднее значение составило 4.04 Бк/л.

Наблюдения повторялись в июне 2007 г. в нормальных погодных условиях, но уже на 500 наблюдательных пикетах с параллельным отбором проб на 24 пикетах. Зарегистрированные средние значения радона атмосферы и грунта: Rn(a) = 0.46 Бк/л, Rn = 1.07 Бк/л. По данным лабораторного анализа 52 образцов почвенного воздуха зарегистрированные концентрации почвенного метана варьировали в пределах  $10^{-6} - 10^{-5}$  об. %.

Результаты измерений 2006 и 2007 гг. объединялись, и оценивалась степень участия двух летучих газов в транспорте радона – 15 % радона переносилась пузырьковыми образованиями метана, 85 % – пузырьковыми образованиями водорода. Для введенного соотношения водорода и метана в переносе радона рассчитывалась рабочая формула, связывающая радон грунта и атмосферы и два летучих газа. Дополнительный эксперимент, проведенный на 28 наблюдательных пикетах, позволил оценить работу рассматриваемого модельного приближения.

На рис. 4 приведены кривые измеренных и расчетных значений объемной активность радона атмосферы, рассчитанные для трех случаев: 15 % радона переносится метаном, 85 % – водородом; 100 % радона переносится метаном; 100 % радона переносится водородом. Для удобства сравнения кривые  $Rn(a;CH_4)$  (2) и  $Rn(a;H_2)$  (3) на рис. 4,  $\delta$  даны со сдвигом ±0.2 Бк/л.



**Рис. 4.** Измеренные (1) и расчетные (2, 3) значения объемной активности радона атмосферы для трех случаев транспорта радона

2 (рис. 4, *a*) – 15 % радона переносится метаном, 85% – водородом [Rn(a;0.15CH<sub>4</sub>;0.85H<sub>2</sub>)]; 2 (рис. 4,  $\delta$ ) – 100 % радона переносится метаном [Rn(a;CH<sub>4</sub>)+0.2]; 3 (рис. 4,  $\delta$ ) – 100 % радона переносится водородом [Rn(a;H<sub>2</sub>)–0.2]

Коэффициенты корреляции измеренных и расчетных значений радона атмосферы  $k[\text{Rn}(a);\text{Rn}(a;0.15\text{CH}_4;0.85\text{H}_2)] = 0.84; k[\text{Rn}(a);\text{Rn}(a;\text{CH}_4)] = 0.69; k[\text{Rn}(a);\text{Rn}(a;\text{H}_2)] = 0.81.$ В рассматриваемом диапазоне вариаций концентраций метана пузырьковые образования водорода, очевидно, доминируют в переносе радона. Как следствие, 85 % транспорта радона осуществляется водородом. Коэффициент корреляции  $k[\text{Rn}(a);\text{Rn}(a;\text{H}_2)]$  заметно ближе к  $k[\text{Rn}(a);\text{Rn}(a;0.15\text{CH}_4;0.85\text{H}_2)].$ 

В сентябре 2009 г. эксперимент повторялся в условиях бо́льших концентраций метана грунта –  $10^{-3}$ – $10^{-2}$  об. %. Работы выполнялись на территории куста 20 нагнетательных скважин на площади ~ 500×500 м Касимовского газохранилища. Было обследовано 160 пикетов на территории нагнетательных скважин и 16 пикетов на профиле, удаленном от основной площади наблюдений на ~ 2 км. По максимальным и минимальным отношениям радона грунта и радона атмосферы было отобрано 22 наблюдательных пикета, на которых измерения проводились повторно с параллельным отбором образцов почвенного воздуха для лабораторного анализа на содержание метана и водорода.



**Рис. 5.** Измеренные (1) и расчетные (2, 3) значения объемной активности радона атмосферы для трех случаев транспорта радона

2 (рис. 5, *a*) – 52 % радона переносится метаном, 48 % – водородом [Rn(a;0.52CH<sub>4</sub>;0.48H<sub>2</sub>)]; 2 (рис. 5,  $\delta$ ) – 100 % радона переносится водородом [Rn(a;H<sub>2</sub>)+0.5]; 3 (рис. 5,  $\delta$ ) – 100 % радона переносится метаном [Rn(a;CH<sub>4</sub>)–0.2]

Анализ полученных результатов позволил установить, что в рассматриваемом случае 52 % радона переносится пузырьковыми образованиями метана и 48 % – пузырьковыми образованиями водорода. Введенные рабочие формулы позволили сравнить измеренные и расчетные значения объемной активности радона атмосферы для трех случаев: 52 % радона переносится метаном, 48 % – водородом; 100 % радона переносится метаном, 100 % радона переносится водородом (рис. 5). Для удобства сравнения кривые Rn(a;CH<sub>4</sub>) и Rn(a;H<sub>2</sub>) на рис. 5,  $\delta$  даны со сдвигом ±0.2 Бк/л.

Коэффициенты корреляции измеренных и расчетных значений радона атмосферы  $k[\text{Rn}(a);\text{Rn}(a;0.52\text{CH}_4;0.48\text{H}_2) = 0.92; k[\text{Rn}(a);\text{Rn}(a;\text{CH}_4)] = 0.89; k[\text{Rn}(a);\text{Rn}(a;\text{H}_2) = 0.90.$ В рассматриваемом диапазоне вариаций концентраций метана участие пузырьковых образований водорода и метана сравнимо между собой. Следствие этого – сравнимость коэффициентов корреляции  $k[\text{Rn}(a);\text{Rn}(a;\text{H}_2)]; k[\text{Rn}(a);\text{Rn}(a;\text{CH}_4]]$  и  $k[\text{Rn}(a);\text{Rn}(a;0.52\text{CH}_4;0.48\text{H}_2)].$ 

#### Выводы

Полученные в ходе экспериментов материалы позволяют сделать ряд заключений.

1. Радон, распределенный в грунте на глубине до 2 м и поступающий в приземную атмосферу, является продуктом распада материнского вещества, вкрапления которого случайно разбросаны в геологической среде. Его поведение ближе всего описывается моделью бесконечного однородного пласта, выходящего на дневную поверхность.

2. Анализ результатов экспериментальных наблюдений позволяет утверждать, что перенос радона в приповерхностные слои грунта и атмосферу осуществляется пузырьковыми образованиями двух летучих газов – водорода и метана.

3. Проверка этого утверждения, проведенная на территории Северо-Ставропольского ПХГ в диапазоне концентраций метана грунта  $10^{-6}-10^{-5}$  об. %, показала, что коэффициент корреляции измеренных и расчетных объемных концентраций радона атмосферы  $k[\text{Rn}(a);\text{Rn}(a;0.15\text{CH}_4;0.85\text{H}_2)] = 0.84$ . Проверка, выполненная на территории Касимовского ПХГ в диапазоне концентраций метана  $10^{-3}-10^{-2}$  об. %, привела к коэффициенту корреляции измеренных и расчетных значений объемной активности радона атмосферы  $k[\text{Rn}(a);\text{Rn}(a;0.52\text{CH}_4;0.48\text{H}_2)] = 0.92$ .

### Литература

Баранов В.И. Радиометрия. М.: Изд-во АН СССР, 1956. 343 с.

- Войтов Г.И., Гусев А.С., Шулейкин В.Н. и др. Эманационные (водород-радоновые) и электрические эффекты над сложнопостроенными тектоническими структурами (на примере Александровской зоны предразломных поднятий, Белоруссия) // Докл. РАН. 2000. Т. 370, № 1. С. 105–108.
- Гергедава Ш.К., Бузинов С.Н., Шулейкин В.Н., Рудаков В.П., Войтов Г.И. Нетрадиционная геофизика для подземных хранилищ газа // Нефть, газ и бизнес. 2001. №5 (43). С. 2–6.
- Зайцев В.В., Рогалис В.С., Кузьмич С.Г. Исследования влияния временных условий на потоки радона на строительных площадках // АНРИ. 2008. № 2. С. 34–36.
- Зубарев А.П., Шулейкин В.Н. Комплексный геофизический и геохимический контроль при эксплуатации подземных газохранилищ. М.: Изд-во ООО «Газпром ПХГ», 2009. 264 с.
- Козлова Н.С., Рудаков В.П., Шулейкин В.Н., Войтов Г.И., Баранова Л.В. Эманационные и электрические эффекты в атмосфере подпочв над Калужской импактной кольцевой структурой // Рос. журн. наук о Земле. 1999. Т. 1, № 6. С. 503–510.

Кошкин Н.И., Ширкевич М.Г. Справочник по элементарной физике. М.: Наука, 1976. 255 с.

- *Микляев П.С., Петрова Т.Б.* Механизмы формирования потока радона с поверхности почв и подходы к оценке радоноопасности селитебных территорий // АНРИ. 2007. № 2. С. 2–16.
- Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99): 2.6.1. Ионизирующее излучение, радиационная безопасность СП 2.6.1.799-99. М.: Минздрав России, 2000. 98 с.
- Павлов И.В. Математическая модель процесса эксгаляции радона с поверхности земли и критерии потенциальной радоноопасности территорий застройки // АНРИ. 1998. № 5. С. 15–26.
- Сисигина Т.И. Измерения эксхаляции радона с поверхности горных пород // Вопросы ядерной метеорологии. М.: Госатомиздат, 1962. С. 104–111.
- Сисигина Т.И. Эксхаляция радона с поверхности нескольких типов почв Европейской части СССР и Казахстана // Радиоактивные изотопы в атмосфере и их использование в метеорологии. М.: Атомиздат, 1965. С. 40–48.
- Стыро Б.И. Вопросы ядерной метеорологии. Вильнюс, 1959. 418 с.
- Стыро Б.И. Самоочищение атмосферы от радиоактивных загрязнений. Л.: Гидрометиздат, 1968. 290 с.
- Шулейкин В.Н. Атмосферное электричество и физика Земли. М.: ООО «ФЭД», 2006. 159 с.
- Шулейкин В.Н., Резниченко А.П., Пущина Л.В. О связях метана водорода и радона почвенного воздуха // Материалы Всерос. конф. «Дегазация Земли: геодинамика, геофлюиды, нефть, газ и их парагенезы». М., 2008. С. 544–546.

Сведения об авторе

ШУЛЕЙКИН Владимир Николаевич – доктор физико-математических наук, главный научный сотрудник, Институт проблем нефти и газа РАН. 119333, г. Москва, ул. Губкина, д. 3. Тел.: (499) 135-73-71. E-mail: shvn1947@yandex.ru

# RADON TRANSFER TO NEAR-SURFACE LAYERS OF EARTH AND THE GROUND ATMOSPHERE

### V.N. Shuleikin

Oil and Gas Research Institute, Russian Academy of Sciences, Moscow, Russia

**Abstract.** Results of radon observation up to the depth of 2 are presented. A model of radon transfer from interior to near-surface layers of the earth and the ground atmosphere by hydrogen and methane bubble formations is offered. The model verification is made at the soil methane concentration  $10^{-6}-10^{-5}$  vol. % and  $10^{-3}-10^{-2}$  vol. %

Keywords: radon, transfer, ground, atmosphere, hydrogen, methane.