УДК 550.34

НЕРАВНОМЕРНОСТЬ ВНУТРИГОДОВОГО РАСПРЕДЕЛЕНИЯ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ ГАРМСКОГО ПОЛИГОНА

© 2012 г. А.Я. Сидорин

Институт физики Земли им. О.Ю. Шмидта РАН, г. Москва, Россия

Рассмотрены особенности внутригодового распределения сильных землетрясений (энергетический класс K > 9.0) Гармского полигона. Выявлен рост количества таких землетрясений весной в период интенсивного поступления в почву талых вод. Количество слабых землетрясений в этот период, напротив, уменьшается. Обсуждаются возможные причины обнаруженных неравномерностей внутригодовых распределений сейсмичности, в том числе с привлечением механизма гидросейсмичности.

Ключевые слова: сейсмичность, Гармский полигон, сильные землетрясения, слабые землетрясения, сезонные изменения, гидросейсмичность.

Внутригодовые отличия среднемесячного количества землетрясений Гармского полигона [*Сидорин*, 1990] впервые выявлены по сведениям о 37 867 землетрясениях, происшедших на полигоне в период с 1955 по 1977 г., в работе [*Лукк, Юнга*, 1979]. Фактически полученные результаты относились лишь к слабым землетрясениям. Более детальные исследования этой проблемы с использованием в 2.5 раза большего количества землетрясений Гармского полигона выполнены в работе [*Дещеревская, Сидорин*, 2004]. Было установлено отчетливое наличие годовой периодичности землетрясений в потоке слабых, непредставительных сейсмических событий, а с ростом их энергии амплитуда внутригодовых изменений быстро уменьшалась. Вся совокупность экспериментальных данных не противоречила гипотезе о кажущемся характере наблюдавшейся периодичности, ее обусловленности сезонными изменениями уровня помех [*Дещеревская, Сидорин*, 2004, 2005].

Вместе с тем в этой работе была обнаружена и неравномерность распределения среднемесячного количества сильных землетрясений. Под сильными понимались землетрясения энергетического класса $K \ge 9.0$ (магнитуда $M \ge 2.8$). В работе [*Сидорин*, 2007] при сопоставлении данных электрического зондирования земной коры и сейсмичности за 1967–1973 гг. было обнаружено увеличение количества землетрясений с $K \ge 8.5$ весной этих лет, а позже [*Сидорин*, 2009а] была показана приуроченность обнаруженного весеннего увеличения количества землетрясений с $K \ge 8.5$ к периоду интенсивного поступления талых вод в почву. При этом использовалась исходные данные, а не среднемесячные значения.

В настоящей работе анализ внутригодовых распределений землетрясений проводится для всего периода наблюдений на Гармском полигоне с 1955 по 1991 г. В качестве основного источника информации использовался каталог землетрясений Гармского полигона, содержащий информацию примерно о 93 000 сейсмических событий за исследуемый период, полученную по программе НҮРО [*Сидорин*, 1991; *Дещеревская, Сидорин*, 2010а,6]. Анализировались данные о землетрясениях в центральной части полигона, эпицентры которых находились в пределах зоны, ограниченной на рис. 1 рамкой. Здесь оказалось около 57 % общего количества землетрясений каталога. Далее из этой совокупности данных были сформированы две подвыборки землетрясений разной энергии – слабых, с энергетическим классом $K \le 6.0$ ($M \le 1.1$) и сильных, с $K \ge 9.0$ ($M \ge 2.8$); в первой из них 31 854, а во второй 712 событий.

Для исследования формы внутригодовых распределений строились гистограммы количества землетрясений за 5 сут, которые затем сглаживались скользящим средним с окном 35 сут. Статистическая значимость выявленных неравномерностей оценивалась по исходным, несглаженным данным методом Рэлея–Шустера [*Сидорин,* 20096]. Этот же метод использовался для визуализации информации об изменениях фазы периодических изменений анализируемых процессов в течение всего периода наблюдений. При этом введена важная инновация – цветовая градация годографа Рэлея–Шустера, что позволило отразить на нем еще один параметр, в данном случае – время.

Треугольники показывают места расположения сейсмических станций, рамка ограничивает зону, внутри которой расположены эпицентры анализируемых землетрясений

Внутригодовые изменения количества слабых и сильных землетрясений показаны на рис. 2. Там же приведены графики соответствующих изменений основных параметров, характеризующих гидрорежим в окрестности метеостанции «Гарм» [Дещеревский и др., 2008]. График изменений количества слабых землетрясений (см. рис. 2, *a*) имеет квазисинусоидальную форму с быстрым уменьшением весной до минимального значения к середине лета и длительным нарастанием вплоть до достижения максимума в февралемарте. Это совпадает с тем, что было получено при анализе данных о слабых землетрясениях всего каталога [*Сидорин*, 2009в, 2011а].

Рис. 2. Сглаженные скользящим средним внутригодовые изменения количества слабых (a) и сильных (δ) землетрясений, поступления влаги в почву W, атмосферных осадков d (z) и высоты снежного покрова H (d). Показаны два годовых периода, штриховкой обозначен интервал весеннего повышения количества сильных землетрясений

В отличие от слабых землетрясений, количество сильных землетрясений весной увеличивается, формируется некий пик квазитрапецеидальной формы, а затем происходит медленное уменьшение количества землетрясений вплоть до конца года. Время существование трапецеидального импульса помечено на рис. 2 штриховкой. Хорошо видно, что в это время происходит быстрое таяние снега (см. рис. 2, ∂) и увеличивается количество атмосферных осадков (см. рис. 2, z), что приводит к очень интенсивному поступлению воды в почву (см. рис. 2, e). Сопоставление рис. 2, δ и 2, e показывает, что передний фронт трапецеидального весеннего пика количества сильных землетрясений точно совпадает во времени с периодом резкого роста поступления влага в почву. Момент изменения характера уменьшения количества сильных землетрясений, выражающийся в резком уменьшении скорости этого процесса (излом на заднем фронте трапеции), совпадает во времени с моментом начала резкого уменьшения поступления воды в почву.

Фазовые различия внутригодовых изменений количества сильных и слабых землетрясений иллюстрирует рис. 3, на котором представлены годографы (фазовые диаграммы) Рэлея-Шустера для годового периода сильных (см. рис. 3, *a*) и слабых (см. рис. 3, *б*) зем-

Рис. 3. Годографы Рэлея–Шустера для годовой периодичности сильных (*a*, левая и верхняя оси) и слабых (*б*, правая и нижняя оси) землетрясений. Для наглядности точки начала координат обоих графиков совмещены

летрясений. На графике слабых землетрясений отчетливо виден устойчивый рост длины результирующего вектора R_W во второй половине наблюдений; до начала 1970-х годов картина более сложная, хотя и в это время длина вектора растет. Картина осложняется квазиокружностями. Землетрясения происходят в течение всего года, и при их равномерном распределении во времени годограф должен представлять собой окружность, т.е. $R_W = 0$. При наличии годовой периодичности появляется преобладающее направление вектора R_W и движение его конца в течение каждого года представляет собой суперпозицию движения по окружности и смещения в направлении акрофазы внутригодовых изменений сейсмичности. В целом годограф хорошо аппроксимируется прямой линией – вектором R_W . Согласно критерию Рэлея–Шустера, гипотеза о случайном внутригодовом распределении слабых землетрясений отвергается с исключительно высоким уровнем значимости ($p = 1.7 \cdot 10^{-154}$).

Направление результирующего вектора R_S годографа сильных землетрясений менее устойчиво во времени, и значение угла θ_S на протяжении всего периода наблюдений варьирует относительно итогового значения. Видны квазилинейные участки годографа длительностью несколько лет каждый. Это означает, что в течение нескольких лет подряд сильные землетрясения происходили в большем количестве примерно в одно и то же время года, затем положение этого внутригодового пика несколько смещалось, и это положение опять сохранялось в течение нескольких лет. Согласно критерию Рэлея—Шустера, вероятность выполнения гипотезы о случайном внутригодовом распределении сильных землетрясений составляет менее $0.2 \% (p = 1.9 \cdot 10^{-3})$. Это существенно хуже, чем в случае слабых землетрясений, но позволяет сделать достаточно уверенное заключение о наличии неравномерности внутригодового распределения сильных землетрясений.

Для дополнительной оценки реальности существования описанной внутригодовой неравномерности распределений землетрясений используем робастный подход – сравнение независимых выборок. Для этого разделим полную анализируемую выборку землетрясений на две части, в одну из которых включим землетрясения за первые 18 лет наблюдений, а во вторую – за остальные 19 лет. Оценки, полученные методом Рэлея–Шустера, сведены в таблицу. Анализ приведенных в таблице данных подтверждает достоверность годовой периодичности слабых землетрясений, но показывает отличие акрофазы в сопоставляемых выборках примерно на 1 мес ($\theta = 8.2^{\circ}$ и 36.3°).

	Землетрясения								
Годы	Слабые (К ≤ 6.0)			Сильные (<i>K</i> ≥ 9.0)			Сильные без афтершоков		
	N	р	θ	N	р	θ	N	р	θ
1955–1991	31 854	$1.7 \cdot 10^{-154}$	29.1	712	$1.9 \cdot 10^{-3}$	124.0	630	$1.2 \cdot 10^{-1}$	118.5
1955–1972	11 311	$1.3 \cdot 10^{-30}$	8.2	416	$2.1 \cdot 10^{-2}$	109.2	371	$2.5 \cdot 10^{-1}$	78.8
1973–1991	20 543	$1.3 \cdot 10^{-138}$	36.3	296	$4.9 \cdot 10^{-2}$	144.0	259	$1.0 \cdot 10^{-1}$	154.9

Статистическая значимость неравномерности внутригодовых распределений землетрясений разной энергии, определенная методом Рэлея–Шустера

Наиболее важным результатом представляется подтверждение значимости существования годовой периодичности в обеих подвыборках сильных землетрясений – в 1955–1972 гг. с вероятностью 97.9 %, а в 1973–1991 гг. – 95.1 %. Довольно неплохо совпадают акрофазы ($\theta = 109.2^{\circ}$ и 144.0° соответственно), что служит дополнительным подтверждением стабильности обсуждаемого эффекта.

Следует также отметить запаздывание акрофазы внутригодовых вариаций сильных землетрясений относительно аналогичных вариаций слабых землетрясений примерно на 90° (3 мес), точнее: $\Delta \theta = 94.9^{\circ}$. Это было хорошо видно и на рис. 3, но данные таблицы дополнительно показывают, что сдвиг устойчиво сохраняется в обеих выборках: отличия θ менее 7°, хотя в подвыборках сильных и слабых землетрясений изменения θ составляют 28.1° и 34.9° соответственно. Иными словами, вариации акрофазы изменений слабых и сильных землетрясений происходят достаточно согласованно.

На характер внутригодовых распределений количества землетрясений сильно влияет кластеризация сейсмических событий, в частности наличие афтершоковых последовательностей или роев землетрясений. В данном случае влияние кластеров может наиболее сильно сказаться на результатах анализа сильных землетрясений. Поэтому была проведена декластеризация анализируемого каталога по программе В.Б. Смирнова [1997]. Результаты анализа декластеризованных данных о сильных землетрясениях также представлены в таблице. После декластеризации количество событий в выборке сильных землетрясений сократилось с 712 до 630, а вероятность выполнения нулевой гипотезы о равномерном внутригодовом распределении сильных землетрясений повысилась с 0.2 % ($p = 1.9 \cdot 10^{-3}$) до 12 % ($p = 1.2 \cdot 10^{-1}$). В первой подвыборке эта вероятность еще выше – 25 % ($p = 2.5 \cdot 10^{-1}$). При этом значения θ для исходных и декластеризованных подвыборок достаточно близки между собой.

Таким образом, в результате анализа внутригодовых распределений сильных (K > 9.0) землетрясений Гармского полигона обнаружен статистически значимый рост количества таких землетрясений в весенний период интенсивного поступления в почву талых вод. Этот эффект сохраняется в каждой из выборок землетрясений при делении каталога за 1955–1991 гг. на две выборки примерно равной длительности – 18 и 19 лет. Заметный вклад в повышение статистической значимости обнаруженного эффекта вносят афтершоковые последовательности. Возможно, что в период поступления талых вод и повышения вследствие этого порового давления в горных породах сильные землетрясения сопровождаются бо́льшим, чем в другое время, количеством афтершоков.

Влияние изменений порового давления на сейсмичность отмечалось в большом количестве работ и известно как гидросейсмичность [*Costain et al.*, 1987; *Rodkin*, 1992]. По-видимому, рассмотренные в настоящей работе изменения количества землетрясений в период таяния снега тоже можно объяснить на основе механизма гидросейсмичности. Ранее влияние на сейсмичность поступления в земную коры жидких атмосферных осадков и талых вод отмечалось в ряде работ (см., например, [Leonardi et al., 1998; Saar, Manga, 2003; Rigo et al., 2008]).

Вызывают интерес фазовые различия внутригодовых изменений слабых и сильных землетрясений. Отметим, что при анализе суточной периодичности землетрясений наблюдался противофазный характер изменений количества слабых и сильных землетрясений [*Сидорин*, 2004, 2005, 2008, 2010, 2011б, в]. Этот вопрос требует проведения дополнительных исследований.

Литература

- Дещеревская Е.В., Сидорин А.Я. Особенности сезонной периодичности землетрясений Гармского полигона с разными энергетическими и пространственными характеристиками // Сейсмические приборы. 2004. Вып. 40. С. 45–56.
- Дещеревская Е.В., Сидорин А.Я. Ложная годовая периодичность землетрясений, обусловленная сезонными изменениями помех // Докл. РАН. 2005. Т. 400, № 6. С.798–802.
- Дещеревская Е.В., Сидорин А.Я. Погрешности определения координат землетрясений Гармского полигона // Сейсмические приборы. 2010а. Вып. 46, № 1. С. 61–76.
- Дещеревская Е.В., Сидорин А.Я. Пространственные распределения погрешностей определения координат землетрясений на Гармском полигоне // Сейсмические приборы. 2010б. Вып. 46, № 2. С. 69–77.
- Дещеревский А.В., Мухин В.М., Сидорин А.Я. Фазовые различия сезонных вариаций поступления влаги в почву на станциях Гармского полигона // Физика Земли. 2008. № 9. С. 44–53.
- Лукк А.А., Юнга С.А. Сезонная периодичность ориентации механизмов очагов и количества слабых землетрясений Гармского района // Докл. АН СССР. 1979. Т. 346, № 1. С. 44-47.
- Сидорин А.Я. (ред.). Гармский геофизический полигон. М.: ИФЗ АН СССР, 1990. 240 с.
- Сидорин А.Я. (ред.). Автоматизированная обработка данных на Гармском полигоне. М.: ИФЗ АН СССР, 1991. 216 с.
- *Сидорин А.Я.* Влияние Солнца на сейсмичность и сейсмический шум // Сейсмические приборы. 2004. Вып. 40. С. 71–80.
- Сидорин А.Я. Полуденный эффект во временных рядах землетрясений и сейсмического шума // Докл. РАН. 2005. Т. 402, № 6. С. 822–827.
- Сидорин А.Я. Новый взгляд на проблему годовой периодичности электрического сопротивления земной коры в исследованиях по прогнозу землетрясений характеристиками // Сейсмические приборы. 2007. Вып. 43. С. 17–30.
- Сидорин А.Я. Суточная периодичность сильных землетрясений Гармского полигона // Сейсмические приборы. 2008. Т. 44, № 3. С. 70–76.
- Сидорин А.Я. Многолетние исследования вариаций электрического сопротивления горных пород на Гармском полигоне // Электромагнитные исследования Земли: Материалы IV Всероссийской школы-семинара по электромагнитным зондированиям Земли. г. Москва, 1–4 сентября 2009 г. М.: ИФЗ РАН, 2009а. С. 113–137.
- Сидорин А.Я. О применении метода Рэлея–Шустера в исследованиях периодичности землетрясений // Сейсмические приборы. 2009б. Т. 45, № 3. С. 29–40.
- Сидорин А.Я. Суточная периодичность землетрясений и ее сезонные изменения // Сейсмические приборы. 2009в. Т. 45, № 4. С. 69–84.
- Сидорин А.Я. Сопоставление свойств суточной периодичности сейсмического шума, землетрясений и нагрузки промышленной электрической сети района // Вопросы инженерной сейсмологии. 2010. Т. 37, № 4. С. 66–88.

- Сидорин А.Я. Синхронные сезонные изменения гидрорежима и активности слабых землетрясений в Гармском районе // Геофизические процессы и биосфера. 2011а. Т. 10, № 3. С. 66–73.
- Сидорин А.Я. Изменения параметров суточной периодичности землетрясений Южной Калифорнии в окрестности порога представительности каталога // Вопросы инженерной сейсмологии. 2011б. Т. 38, № 4. С. 59–82.
- Сидорин А.Я. Связь параметров фазовых диаграмм суточной периодичности и графика повторяемости землетрясений Гармского района // Вопросы инженерной сейсмологии. 2011в. Т. 38, № 4. С. 59–82.
- Смирнов В.Б. Опыт оценки представительности данных каталогов землетрясений // Вулканология и сейсмология. 1997. № 4. С. 93–105.
- Costain J.K., Bollinger G.A., Speer J.A. Hydroseismicity: A hypothesis for the role of water in the generation of intraplate seismicity // Seismol. Res. Lett. 1987. V. 58. P. 41–64.
- Leonardi V., Arthaud F., Tovmassian A., Karakhanian A. Tectonic and seismic conditions for changes in spring discharge along the Garni right lateral strike slip fault (Armenian Upland) // Geodin. Acta. 1998. V. 11, N 2. P. 85–103.
- Rigo A., Bethoux N., Masson F., Ritz J.F. Seismicity rate and wave-velocity variations as consequences of rainfall: the case of catastrophic storm of September 2002 in the Nimes Fault region (Gard, France) // Geophys. J. Int. 2008. V. 173. P. 473–482.
- Rodkin M.V. Hydroseismicity new evidence // J. Geodynamics. 1992. V. 15, N 3/4. P. 247-260.
- Saar M.O., Manga M. Seismicity induced by seasonal groundwater recharge at Mt. Hood, Oregon // Earth Planet. Sci. Lett. 2003. V. 214. P. 605–618.

Сведения об авторе

СИДОРИН Александр Яковлевич – кандидат физико-математических наук, заведующий лабораторией, Институт физики Земли им. О.Ю. Шмидта РАН. 123995, ГСП-5, г. Москва, Д-242, ул. Большая Грузинская, д. 10. Тел.: (499) 254-42-68. E-mail: sidorin@ifz.ru

NON-UNIFORMITY OF INTRA-ANNUAL STRONG EARTHQUAKE DISTRIBUTION IN GARM REGION

A.Ya. Sidorin

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia

Abstract. Intra-annual strong earthquake distribution in Garm region is considered. The earthquakes of energy $K \ge 9.0$ ($M \ge 2.8$) were defined as strong ones in the paper. Fast increase in the number of strong earthquake was revealed during spring groundwater recharge. The number of weak earthquakes of $K \le 6.0$ ($M \le 1.1$) decreased during the same time interval. Possible causes of the revealed phenomena, including mechanism of hydroseismicity, are discussed.

Keywords: seismicity, Garm region, strong earthquakes, weak earthquakes, seasonal variations, hydroseismicity.