УДК 550.388.2

ЗАВИСИМОСТЬ ПАРАМЕТРОВ МАГНИТНЫХ ПУЛЬСАЦИЙ ДИАПАЗОНА *Pc*4 ОТ МОЩНОСТИ ИЗЛУЧЕНИЯ КВ НАГРЕВНОГО СТЕНДА EISCAT/Heating

© 2013 г. Т. Д. Борисова¹, Н. Ф. Благовещенская¹, И. М. Иванова¹, М. Т. Риетвельд²

¹Арктический и антарктический научно-исследовательский институт, г. Санкт-Петербург

²EISCAT, Тромсе дивизион, г. Тромсе, Норвегия e-mail: borisova@aari.nw.ru Поступила в редакцию 21.03.2011 г. После доработки 10.01.2012 г.

Работа посвящена исследованиям процессов взаимодействия ионосферы и магнитосферы Земли, при возбуждении искусственных возмущений в *F*-области авроральной ионосферы нагревным стендом EISCAT/Heating. Эксперимент проводился в дневное время при ступенчатом изменении эффективной мощности излучения стенда. Одновременными измерениями методом ракурсного рассеяния радиоволн и наземными магнетометрами зарегистрированы волновые возмущения с периодами (130–140) с, соответствующими пульсациям *Pc4*. Вариации сдвига доплеровской частоты были коррелированны с изменениями мощности стенда. При анализе использованы результаты измерений радаром некогерентного рассеяния радиоволн на частоте 930 МГц (г. Тромсе) и численных расчетов. Показано, что ионосферная скорость дрейфа мелкомасштабных искусственных ионо-сферных неоднородностей была модулирована магнитосферными волнами Альвена. Рассмотрена возможность воздействия мощного КВ радиоизлучения на амплитуду альфвеновской волны за счет модификации коэффициента отражения ионосферных торцов магнитосферного резонатора и генерации исходящей альфвеновской волны над областью локального усиления ионосферной проводимости.

DOI: 10.7868/S0016794013010045

1. ВВЕДЕНИЕ

Начиная с первых экспериментов по модификации мощным КВ радиоизлучением ионосферы Земли, было установлено, что вблизи высоты отражения волны накачки (ВН) *о*-моды поляризации при ее резонансном взаимодействии с плазмой *F*-слоя ионосферы происходит возбуждение искусственной ионосферной турбулентности (ИИТ) различной природы. Одним из наиболее значимых проявлений ИИТ является генерация вытянутых вдоль геомагнитного поля искусственных неоднородностей плотности плазмы в широком диапазоне поперечных к полю масштабов l_{\perp} от долей метра до десятков километров [Ютло и Коэн, 1973; Stubbe, 1996; Благовещенская 2001; Гуревич, 2007; и литература цитируемая в них].

Геомагнитные пульсации представляют собой короткопериодные колебания геомагнитного поля, характеризуются квазипериодической структурой. Пульсации с периодами 0.2–600 с относятся к диапазону УНЧ (ультранизкочастотных волн в диапазоне 1–500 мГц). Исследования магнитных пульсаций на ионосферных высотах при использовании КВ нагревных комплексов выполняются или когерентными КВ радарами, или/и методом ракурсного (или обратного) рассеяния

диагностических КВ сигналов на мелкомасштабных искусственных ионосферных неоднородностях (МИИН) с $l_{\perp} \in (1-30)$ м как в среднеширотной [Blagoveshchenskaya et al., 1998а; Урядов и др., 2004], так и в высокоширотной ионосфере [Yeoman et al., 1997; Blagoveshchenskaya et al., 1998b; Борисова и др., 2011].

Важную роль во взаимодействии ионосфера – магнитосфера играют альвеновские волны, которые эквивалентны изменяющимся во времени продольным токам геомагнитного поля. Альвеновские волны УНЧ диапазона, вызванные магнитосферными процессами, могут быть зарегистрированы в нижней ионосфере. Квази-периодические колебания сдвига доплеровской частоты, измеренные когерентными КВ радарами или/и методом ракурсного рассеяния коррелируют с геомагнитными пульсациями, которые являются отличительным признаком проявления магнитосферных альфвеновских волн на высотах ионосферы. Изучение ионосферно-магнитосферных связей при исследовании геомагнитных пульсаций, и возможностей воздействия на них с помощью мощных КВ радиоволн представлено в ряде работ [Robinson et al., 2000; Blagoveshchenskaya et al., 2005; Leyser and Wong, 2009].

2. ТЕХНИЧЕСКИЕ СРЕДСТВА И МЕТОДЫ НАБЛЮДЕНИЙ

Модификация ионосферы производилась в дневные часы 3 ноября 2009 г. с помощью КВ нагревного комплекса EISCAT/Heating, [Rietveld et al., 1993], расположенного в Норвегии недалеко от г. Тромсе. Мощная КВ радиоволна обыкновенной (*о*-моды) поляризации излучалась на частоте $f_{\rm H} = 4912.8$ кГц 10 мин нагрев/5 мин пауза со ступенчатым изменением мощности стенда в цикле нагрева по схеме: 10, 25, 100, 25, 10% от максимальной эффективной мощности излучения $P_{эфф_{\rm Makc}} = 190-210$ МВт. Диаграмма направленности антенны КВ нагревного комплекса была наклонена в направлении магнитного поля Земли.

Прием диагностических сигналов, рассеянных на МИИН, осуществлялся методом ракурсного рассеяния на обсерватории Арктического и антарктического научно-исследовательского института "Горьковская", расположенной в вблизи г. С.-Петербург. Для регистрации КВ сигналов использовался многоканальный КВ доплеровский комплекс [Благовещенская, 2001]. Измерения выполнялись на диагностической трассе Прага—Тромсе—С.-Петербург, частота $f_{диагн} = 17545$ кГц. Одновременно проводился прием сигналов на частоте излучения комплекса EISCAT/Heating – $f_{\rm H} = 4912.8$ кГц. Диаграмма направленности приемной антенны ориентирована на Тромсе. Карта эксперимента приведена на рис. 1.

Состояние окружающей среды в период эксперимента контролировалось следующими средствами: активным (приемо-передающий) радаром некогерентного рассеяния (НР) радиоволн на частоте 930 МГц г. Тромсе; магнитометрами IMAGE сети Скандинавии <u>http://www.space.fmi.fi/image/</u>, станцией вертикального зондирования (ВЗ) ионосферы г. Тромсе. При анализе и интерпретации результатов наблюдений использовались измерения параметров солнечного ветра и межпланетного магнитного поля на спутнике ACE.

3. РЕЗУЛЬТАТЫ НАБЛЮДЕНИЙ

В данной работе рассматривается нагревной цикл излучения комплекса EISCAT/Heating 3 ноября 2009 г. с 12:15 до 12:25 UT (время мировое), когда одновременными ионосферными и наземными наблюдениями были зарегистрированы пульсации диапазона Pc4 с периодами около 2 минут (130–140) с.

Измерения выполнялись в эпоху минимума солнечной активности. Относительное число солнечных пятен W имело нулевое значение. Магнитные условия были спокойными. Трехчасовой индекс магнитной возмущенности $K_P = 0+$, сумма K_P за сутки $\Sigma K_P = 1-$.

Станция вертикального зондирования ВЗ ионосферы (ионозонд) в г. Тромсе обеспечивала получение ионограмм ВЗ 1 раз в 4 минуты. По данным ВЗ непосредственно в месте расположения КВ нагревного комплекса EISCAT/Heating с 12:00 до 12:30 UT наблюдался ионосферный слой F2 с критическими частотами $f_0F2 \sim 5.0-5.5$ МГц. Критические частоты слоя E в рассматриваемый период не превышали 1.7 МГц.

На рисунке 2 показаны динамические доплеровские спектры (сонограммы) КВ радиосигналов, принятых на НИС "Горьковская" 03.11.2009 г. в период 12:11-12:29 UT методом ракурсного рассеяния. Нулевое значение сдвига доплеровской частоты $f_d = 0$ (рис. 2) соответствует распространению сигналов от передатчика к приемнику по дуге большого круга ("прямой" сигнал). В период нагревного цикла был использован режим ступенчатого изменения эффективной мощности стенда $P_{\rm add}$ по схеме: 10, 25, 100, 25, 10% (2 минуты при каждом уровне мощности) от максимального значения мощности $P_{3\phi\phi \text{ макс}} = 190-210 \text{ MBt. Время из$ лучения стенда с 12:15 до 12:25 UT отмечено скобкой на оси времени рис. 26, которая качественно демонстрирует изменение уровня $P_{_{ \Rightarrow \varphi \varphi}}$.

На рисунке 2а приведена сонограмма КВ нагревного сигнала комплекса EISCAT/Heating на частоте $f_{\rm H} = 4912.8$ кГц. С 12:15 до 12:25 UT на сонограмме кроме прямого нагревного сигнала регистрировалась широкополосная спектральная компонента в полосе частот Δf_{Sdopl} , вызванная рассеянием на мелкомасштабных искусственных ионосферных неоднородностях, МИИН. Из рис. 2а можно видеть коррелированные вариации Δf_{Sdopl} каждые 2 минуты цикла нагрева, связанные с переключением уровня P_{ii} . Средние за 2 минуты значения частотной полосы Δf_{Sdopl} нагревного сигнала составили (12, 15, 29, 20, 13) Гц при изменении мощности $P_{3\phi\phi} = (10, 25, 100, 25, 10)\%$ от $P_{3\phi\phi}$ макс. В результате дополнительной обработки определили средние значения (на уровне 0.5 от максимума) спектральных амплитуд S_{Sdopl} нагревного сигнала. Средние на двухминутных интервалах значения S_{Sdopl} , также менялись с переключением мощности стенда $P_{\rm эф\phi}$ и составили (20, 33, 100, 33 и 10)% от величины максимальной спектральной амплитуды S_{Sdopl max}, наблюдаемой при $P_{\to \phi \phi} = P_{\to \phi \phi \text{ макс}}$.

На рисунке 2δ представлена сонограмма радиосигнала диагностической частоты $f_{диагн} = 17545$ кГц на трассе Прага—Тромсе—С.-Петербург. В цикле излучения с 12:15 до 12:25 UT наблюдались интенсивные ракурсно-рассеянные на МИИН сигналы. Сдвиг доплеровской частоты f_d рассеянных сигналов относительно прямого сигнала имел как положительные, так и отрицательные значения. Как видно из рис. 2δ , рассеянные сигналы на частоте

Долгота, Е град

Рис. 1. Карта – схема геометрии эксперимента 3 ноября 2009 г. Наблюдения выполнены методом ракурсного рассеяния на трассе Прага–Тромсе–С.-Петербург и непосредственные наблюдения нагревного сигнала на трассе Тромсе–С.-Петербург. *1* – трасса прямого распространения КВ сигнала, *2* – трасса ракурсного рассеяния, *3* – наземные магнитометры.

 $f_{\text{диагн}} = 17545$ кГц появились сразу после начала нагревного цикла, т.е. при 10% уровне мощности стенда EISCAT. Значения доплеровских частот f_d рассеянных сигналов на сонограмме (рис. 2*6*) формируют трек, характеризующийся волновыми вариациями относительно $f_d = 0$. С ростом $P_{3\phi\phi}$ наблюдалось увеличение амплитуды вариаций ($f_{\text{dmax}} - f_{\text{dmin}}$) сдвига доплеровской частоты и при снижении $P_{3\phi\phi}$ – уменьшение ($f_{\text{dmax}} - f_{\text{dmin}}$).

В таблице сведены характеристики волновых вариаций f_d ракурсно-рассеянного КВ радиосигнала частоты $f_{диагн}$ передатчика из Праги, в зависимости от уровня мощности $P_{эф\phi}$ комплекса EISCAT/ Heating. Приведены значения, усредненных на 2-х минутных интервалах, следующих параметров:

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 53 № 1 2013

период T, амплитуда ($f_{\text{dmax}} - f_{\text{dmin}}$), частотный диапазон спектральной компоненты Δf_{Sdopl} и относительная интенсивность спектральной амплитуды S_{Sdopl} .

Из таблицы можно видеть, что амплитуда ионосферной волны ($f_{\rm dmax} - f_{\rm dmin}$) менялась при изменении $P_{\rm эфф}$, но период пульсаций *T* при этом оставался приблизительно постоянным. Максимальное значение ($f_{\rm dmax} - f_{\rm dmin}$) = 13.5 Гц зарегистрировано при $P_{\rm эф\phi}$ = 100%. Периоды волновых вариаций $f_{\rm d}$ составили 130–140 с. Переключение эффективной мощности стенда приводило к коррелированному изменению интенсивности спектральной амплитуды $S_{\rm Sdopl}$ сигналов, рассеянных на МИИН (на рис. 26 представлено яркостью сигнала). Наблюдается относительно небольшое увеличение

БОРИСОВА и др.

Рис. 2. Сонограммы КВ радиосигналов, зарегистрированные 3 ноября 2009 г. с 12:11 до 12:29 UT на трассах (*a*) Тромсе– С.-Петербург и (δ) Прага–Тромсе–С.-Петербург. Распространению сигнала по дуге большого круга между приемником и передатчиком соответствует $f_d = 0$.

ширины полосы ракурсно—рассеянных сигналов Δf_{Sdopl} при максимальной мощности комплекса EISCAT $P_{3000} = 100\%$.

Данные, представленные на рис. 26 и табл. 1, демонстрируют корреляцию в изменениях эффективной мощности $P_{3\phi\phi}$ стенда EISCAT/Heating и характеристик волнового процесса, наблюдаемого методом ракурсного рассеяния, таких как ($f_{\text{dmax}} - f_{\text{dmin}}$) и S_{Sdop} . Во время эксперимента 3 ноября 2009г. проводились ионосферные измерения с помощью <u>ра-</u> <u>дара некогерентного рассеяния (HP)</u> радиоволн на частоте 930 МГц в г. Тромсе [Rishbeth and van Eyken, 1993]. В результате наземной диагностики радаром HP измерялись пространственно-временные распределения параметров ионосферной плазмы вдоль направления магнитного поля. В работе проведен анализ временных вариаций данных тем-

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 53 № 1 2013

Интервал времени нагрева, UT	$\% \cdot P_{ m op \phi}$	T, с по данным наблюдений допл. методом	$(f_{\rm dmax} - f_{\rm dmin}),$ Гц	∆f _{Sdopl} , Гц	$S_{ m Sdop}$	<i>V</i> _d , м/с	<i>Е</i> , мВ/м	б <i>В</i> , нТл
12:15-12:17	10	130	5.2	0.5-2	22	23	1.2	0.08
12:17-12:19	25	140	6.7	~2	50	29	1.5	0.1
12:19-12:21	100	135	9.0	1-2.5	100	40	2.0	0.13
12:21-12:23	25	135	6.2	1.5-2	50	27	1.4	0.09
12:13-12:25	10	130	~4	1.5-2	33	17	0.9	0.06

Характеристики волновых вариаций сдвига доплеровкой частоты *f*_d ракурсно-рассеянного диагностического КВ радиосигнала на трассе Прага–Тромсе–С.-Петербург

Примечания: Период *T*, амплитуда ($f_{\text{dmax}} - f_{\text{dmin}}$), частотный диапазон спектральной компоненты Δf_{Sdop} , средний уровень спектральных амплитуд S_{Sdop} и оценки значений доплеровской скорости V_d , напряженностей электрического *E* и магнитного δB полей в зависимости от эффективной мощности стенда EISCAT/Heating 3 ноября 2009 г.

пературы электронов T_е и электронной концентрации N_e ионосферы в диапазоне высот 100–500 км. На рисунке 3 представлены профили высотных распределений $T_e(h)$ (рис. 3*a*) и $N_e(h)$ (рис. 3*б*) для периода 12:13-12:27 UT. Приведенные данные измерений усреднены на 2х-минутных интервалах, связанных с переключением P_{ij} стенда EISCAT/ Heating в цикле нагрева. Показаны также профили $T_{e}(h)$ и $N_{e}(h)$ до начала цикла нагрева с 12:13 до 12:15 UT и после окончания цикла нагрева с 12:25 до 12:27 UT. По результатам измерений $T_e(h)$ радаром НР в период работы стенда EISCAT/Heating с 12:15 до 12:25 UT наблюдался сильный разогрев ионосферной плазмы в диапазоне высот от 160 до 280 км. При всех уровнях мощности нагревного стенда максимальные возмущения температуры электронов Т_е регистрировались на высоте $h_{\max Te} \approx 200$ км. Перед началом нагрева значения T_e на высоте 200 км составляли около 1300 К. Хорошо виден ступенчатый характер типа "гистерезис" изменений максимальных значений T_e : 2000, 2550, 3650, 2950, 2300 К в зависимости от $P_{эф\phi}$: 10, 25, 100, 25, 10% соответственно. После окончания нагрева T_e составило 1450 К и установилось на значении 1300 К в течение 5 минут.

Из рисунка 3б можно видеть, что изменения $N_e(h)$ -профилей в цикле нагрева также зависят от уровня мощности $P_{3\phi\phi}$. Максимальные значения $N_e(h)$ -профилей возрастали (уменьшались) вместе с увеличением (понижением) $P_{3\phi\phi}$. При 100% уровне мощности нагревного комплекса наблюдалось максимальное увеличение $\delta N_e/N_e \sim (8-9)\%$ по сравнению с уровнем до начала нагревного цикла.

Рис. 3. Высотные профили (*a*) температуры электронов $T_e(h)$ и (*б*) электронной плотности $N_e(h)$ 3 ноября 2009 г. для 2х минутных интервалов в период с 12:13 до 12:27 UT, построенные по данным радара некогерентного рассеяния радиоволн (HP) в Тромсе.

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 53 № 1 2013

Рис. 4. Изменения высоты отражения КВ нагревного сигнала $f_{\rm H} = 4912.8$ кГц комплекса EISCAT/Heating от времени 3 ноября 2009 г. по данным радара HP в Тромсе.

Отметим влияние уровня $P_{3\phi\phi}$ нагревного стенда не только на экстремальные значения N_e -профиля, но и на его "толщину" в диапазоне высот от 160 до 280 км. На оси абсцисс рис. Зб чертой отмечен уровень электронной концентрации, соответствующий уровню N_e отражения нагревного сигнала $f_{\rm H} = 4912.8$ кГц стенда EISCAT.

По данным измерений радара НР выполнены расчеты высоты отражения $h_{\rm H}$ в ионосфере нагревного сигнала $f_{\rm H} = 4912.8$ кГц от времени (рис. 4). В начале цикла нагрева $h_{\rm H}$ составила 197–199 км. В период нагрева 12:19–12:21 UT с мощностью $P_{\rm эф\phi} = 100\%$ уровень $h_{\rm H}$ понизился на ~10 км, по сравнению с началом нагрева. При последующем уменьшении мощности $P_{\rm эф\phi}$ наблюдался рост $h_{\rm H}$, одновременно с относительным уменьшением N_e на высотах слоя F2.

С 12:15—12:25 UT 3 ноября 2009 г. при ступенчатом изменении $P_{3\phi\phi}$ комплекса EISCAT радаром HP наблюдалась коррелированная модификация ионосферного слоя F2: концентрации N_e и температуры T_e электронов в широком диапазоне высот от 160 до 280 км. В первые 2 минуты цикла при 10% нагреве высота расположения максимума $h_{\max Te} \approx 200$ км и при переключении $P_{3\phi\phi}$ максимум $T_e(h)$ -профиля располагался на одном уровне – выше уровня отражения сигнала $h_{\max Te} > h_H$ (рис. 3 и 4).

Проведенный анализ данных регистрации <u>спутником ACE</u> (Advanced Composition Explorer) не выявил в поведении параметров межпланетного магнитного поля (ММП, база 1-мин данных ОМNI B_x , B_y , B_z компонент ММП, давления P, скорости V и плотности N_p солнечного ветра, http://nssdc.gsfc.nasa.gov/omsc_min.html) с 10:30 до 12:00 UT 3 ноября 2009 г. резких изменений в вариациях измеряемых параметров. Оценка кинетической задержки наземных наблюдений относительно спутниковых составляла ~55–58 мин.

4. ВОЛНОВЫЕ ПРОЦЕССЫ ПО ДАННЫМ НАБЛЮДЕНИЙ

По данным <u>наземных наблюдений магнитометрами</u> всех станций IMAGE сети Скандинавии (<u>http://www.geo.fmi.fi/image/</u>) с 11:30 до 13 UT в *X*и *Y*-компонентах магнитного поля Земли регистрировались естественные волновые процессы квазисинусоидальной формы с амплитудой около 1–1.5 нТл. Детальный анализ вариаций во времени компонент магнитного поля Земли выполнен по 10-ти секундным измерениям магнитометрами на станциях: Тромсе (аббревиатура TRO), Анденес (AND), Соройя (SOR), Кево (KEV) и Маси (MAS). Спектральный анализ временных вариаций *Y*-компоненты показал, что с 11:00 до 12:30 UT преобладали колебания с периодами 130 с и 260 с.

На рисунке 5 для сравнения нанесены одновременные данные измерений сдвига доплеровской частоты f_d на трассе Прага–Тромсе–С.-Петербург и относительных вариаций У-компоненты (ΔY) магнитного поля Земли, измеренных на станции TRO с 12:13 до 12:26 UT 3 ноября 2009 г. На оси времени фигурной скобкой отмечен интервал времени работы комплекса EISCAT/Heating. Данные доплеровских измерений показывают непосредственную зависимость амплитуды вариаций (f_{dmax} — f_{dmin}) от уровня $P_{\to \varphi\varphi}$. Дополнительное исследование измерений У-компонент магнитометрами станций AND, SOR, MAS и KEV, расположенных на геомагнитной широте станции TRO на расстоянии 120, 158, 185 и 310 км соответственно, показало, что наблюдалось подобие в изменении ΔY -компонент на близкорасположенных станциях и вариаций во времени f_d.

По результатам доплеровских измерений ракурсно-рассеянных КВ радиосигналов в период нагревных экспериментов выполнены оценки проекции доплеровской скорости, величин электрического и магнитного полей в зависимости от уровня мощности нагревного стенда. Доплеровская скорость V_d определяется соотношением [Гершман и др. 1984]

$$V_d = \frac{f_d \cdot c}{2f \cdot \sin(\theta/2)},\tag{1}$$

где $f_{\rm d}$ — сдвиг доплеровской частоты, f — частота диагностического КВ сигнала, θ — угол рассеяния между волновыми векторами падающей и рассеянной волн, c — скорость света.

Для ориентации трассы Прага–Тромсе–С.-Петербург (рис. 1), в зависимости от знака доплеровского сдвига частоты, измерялась или южная компонента скорости дрейфа неоднородностей (географический азимут А~ 167.7°) при положительном

Рис. 5. Данные измерений модуля сдвига доплеровской частоты $|f_d|$ на трассе Прага—Тромсе—С.-Петербург и относительной вариации ΔY -компоненты геомагнитного поля (Тромсе).

значении $+f_d$, или северная компонента (азимут А ~ ~ 347.7°) – при $-f_d$. Выполненные расчеты модуля скорости дрейфа ионосферных неоднородностей представлены в таблице. При увеличении $P_{3\phi\phi}$ от 10 до 100% величина скорости движения ионосферных неоднородностей возросла в 2 раза (23 и 40 м/с).

Изменение амплитуды скорости движения неоднородностей в плазме δV_d связано с магнитным полем волны δB выражением [Франк-Каменецкий, 1968],

$$\delta V_{\rm d} \approx \frac{\delta B}{\sqrt{4\pi\rho}},$$

где ρ — плотность ионов плазмы ($\rho \approx m_i N_i, m_i$ — масса иона и N_i — концентрация ионов). На высотах слоя *F* от 200 км ионосферная плазма преимущественно представлена ионами O⁺. Результаты расчетов величины магнитного поля поперечной магнитогидродинамической волны УНЧ диапазона представлены в таблице. Для спокойных геомагнитных условий 3 ноября 2009 г. величина δB изменялась от 0.06 до 0.13 нТл.

По доплеровским измерениям выполнена оценка электрического поля **E** в искусственно возмущенной области ионосферы ИВО *F* области, в предположении, что скорость дрейфа ионосферных неоднородностей происходит в скрещенных полях и определяется как $\mathbf{E} \times \mathbf{B}_0$, где \mathbf{B}_0 – постоянное магнитное поле Земли. При ступенчатом изменении мощности нагревного стенда значения электрического поля **E** в верхней ионосфере менялись во время эксперимента от ~1.2 мВ/м (10% $P_{_{3\phi\phi}}$) до ~2.0 мВ/м (100% $P_{_{3\phi\phi}}$).

Сопоставление волновых структур, зафиксированных наземными и ионосферными наблюдениями 3 ноября 2009 г. в период модификации ионосферы комплексом EISCAT/Heating с 12:15 до 12:25 UT, показало наличие корреляции в вариациях сдвига доплеровской частоты f_d ракурсно-рассеянного диагностического сигнала и *Y*-компоненты магнитного поля Земли (магнитометр г. Тромсе), как по периодам, так и по амплитуде (см. рис. 4). Расчетные значения напряженностей электрического *E* и магнитного δB полей в ИВО (таблица) демонстрируют зависимость от уровня излучения $P_{aф\phi}$, нагревного стенда.

5. ОБСУЖДЕНИЕ

При модификации авроральной ионосферы 3 ноября 2009 г. стендом EISCAT/Heating зарегистрировано появление квазипериодических вариаций f_d ракурсно-рассеянных на МИИН диагностических КВ сигналов с периодами T = 130-140 с (рис. 2 и 5, таблица), лежащими в диапазоне устойчивых магнитных пульсаций *Pc*4. Сопоставительный анализ изменений во времени ионосферных пульсаций f_d и вариаций *Y*-компоненты магнитного поля, измеренного в Тромсе, показал высокую корреляцию (рис. 5). Установлено, что периоды волновых вариаций f_d не зависят от эффективной мощности излучения стенда EISCAT, однако амплитуды вариаций ($f_{dmax} - f_{dmin}$) существенно возрастали при увеличении $P_{эф\phi}$.

Магнитометры сети IMAGE регистрировали в вариациях Х- и У-компонент геомагнитного поля естественные пульсации *Pc*4 с амплитудами ~1–1.5 нТл в течение 3 часов до начала цикла нагрева ионосферы. Возбуждение и существование естественных пульсаций *Pc*4 характерно для магнитоспокойных условий с максимумом проявления на высоких широтах в предполуденные часы [Клейменова, 2007]. В настоящее время является общепринятым, что дневные пульсации в магнитосфере типов Рс2-4, представляют собой тороидальные альвеновские резонансные колебания силовых линий геомагнитного поля [Chen and Hasegawa, 1974]. Параметры собственных колебаний, которые устанавливаются вдоль силовой линии в магнитосфере (FLR – field line resonances), определяются профилем альвеновской скорости V_A и коэффициентами отражения МГДволн от "концевых зеркал" резонатора. Характерные частоты колебаний FLR составляют десятки миллигерц. Они известны как короткопериодные пульсации геомагнитного поля и наблюдаются чаще всего в виде узкополосных, квазисинусоидальных цугов вариаций поля в дневное время [Клейменова, 2007].

Важным параметром УНЧ волн является азимутальное волновое число, m, которое может быть использовано для оценки пространственного масштаба волны. Для двух магнитометров, расположенных на одной геомагнитной широте ϕ на расстоянии D км, параметр m можно определить из соотношения [Olson and Rostoker, 1978]

$$m=\frac{2\pi R\Delta\Phi}{360D}\cdot\cos\phi,$$

где R — радиус Земли в километрах, $\Delta \Phi$ — разность фаз в градусах, рассчитанная по данным наблюдений.

Вычисления параметра *m* были выполнены для условий 3 ноября 2009 г. по данным наблюдений магнитометрами TRO, AND, MAS, SOR, и KEV сети IMAGE, расположенных на близкой геомагнитной широте (см. рис. 1) для периода с 11:55 до 12:42 UT.

В период времени 11:55–12:42 UT величина азимутального числа *m* составила m = -2 - -4 для пар TRO-KEV, D = 310 км и AND-KEV, D = 430 км. Значения параметра *m* показали зависимость от рабочего состояния нагрев/пауза стенда EISCAT для близко расположенных магнитометров TRO-AND, D = 120 км, TRO-SOR, D = 158 км и TRO-MAS, D = 186 км. Для этих пар в периоды пауз нагревного стенда m = -2 - -4 также как и для удаленных магнитометров, в то время как в цикле нагрева 12:15–12:25 UT параметр *m* вырос до +(4–7).

В соответствии с современными представлениями магнитосферные УНЧ волны, которые имеют внешние относительно Земли источники энергии, такие как импульс в солнечном ветре СВ, ударные волны CB, или неустойчивости Кельвина-Гельмгольца на магнитопаузе, в общем, характеризуются малыми значениями эффективного азимутального волнового числа m, |m| < 3-4 (или, что эквивалентно, крупномасштабными азимутальными размерами). УНЧ волны с мелкомасштабными азимутальными размерами (как правило, волны с |m| > 15) возникают в результате взаимодействия потоков дрейфующих энергичных частиц с собственными колебаниями магнитной силовой линии [Yeoman et al., 2008; Пилипенко, 2006].

Расчет *т* показал локальное его увеличение в период нагревного цикла 12:15–12:25 UT только по данным магнитометров Тромсе и близкорасположенных к нагревному стенду EISCAT станциям Анденес, Соройя и Маси, что позволяет предположить локализацию возбуждения мелкомасштабных альвеновских волн в ионосфере над Тромсе. Учитывая, что для *L*-оболочки Тромсе время распространения альвеновской волны между ионосферой и магнитосферой составляет порядка 60–70 с, магнитные и ионосферные пульсации, связанные с альвеновской волной, должны иметь период $T \sim 120-140$ с, что находится в соответствии с экспериментальными данными.

Нелинейное взаимодействие мощных КВ радиоволн с ионосферной плазмой приводит к модификации ионосферных проводимостей и, следовательно, распределений токов, вследствие изменений температуры T_e и плотности N_e электронов [Ляцкий и Мальцев, 1983; Stubbe, 1996]. Возмущения распределения ионосферных токов вызывают возмущения магнитного поля. Следовательно, информацию о возмущениях ионосферных токов можно получить на основе анализа поляризационных характеристик магнитных вариаций.

Изменения поляризации магнитных пульсаций определяются геометрией ИВО ионосферы, направлением "внешнего" электрического поля и отношением высотно-интегрированных холловской и педерсеновской проводимостей $\Sigma_{\rm H}/\Sigma_{\rm p}$. Отметим, что при изменении отношения $\Sigma_{\rm H}/\Sigma_{\rm p}$ происходит вращение вектора поляризации [Lyatsky et al., 1996]. Поэтому появление "петель" в поляризационных поверхностях является указанием на значительные изменения отношения $\Sigma_{\rm H}/\Sigma_{\rm p}$, а следовательно, и ионосферных токов.

На рисунке 6 в качестве примера представлены временные эволюции поляризации магнитных пульсаций (годографы), полученные по данным X- и Y-компонент магнитометров TRO (рис. 6*a*), SOR (рис. 6*b*), AND (рис. 6*b*) и MAS (рис. 6*c*) 3 ноября 2009 г. в период с 12:13:10 до 12:17 UT. Номера точек с 1 по 11 на годографах относятся ко времени паузы в нагреве ионосферы 12:13:10– 12:14:50 UT; номера 12–23 соответствуют первым 2 минутам работы стенда EISCAT (12:15–12:17 UT) с $P_{эф\phi} = 10\% \cdot P_{эф\phi макс}$. Из рисунка 6 можно видеть,

Рис. 6. Годографы магнитного поля по данным IMAGE сети магнитометров 3 ноября 2009 г. с 12:13:10 до 12.17 UT (пауза 12:13:10–12:14:50 UT соответствует измерениям 1–11; нагревной цикл при $P_{3\phi\phi} = 10\% \cdot P_{3\phi\phi \text{ макс}}$ с 12:15–12:17 UT, измерения 12–23).

что на всех станциях во время паузы 12:13:40– 12:14:30 UT формировались "петли" (точки 5–10) без изменения направления вращения поляризации волнового пакета – по часовой стрелке (ЧС). После начала нагрева на годографах станций TRO и SOR (точки 13–16 рис. 6*a* и 6*b*, с 12:15:10 до 12:15:40 UT) образовались "петли" сложной формы с последующим обращением направления вращения поляризации магнитных пульсаций от направления ЧС (по часовой стрелке) к направлению ПЧС (против часовой стрелки).

В период нагрева 12:15–12:25 UT по данным годографа магнитометра станции TRO отмечено 4 петли с обращением поляризации. На годографе станции SOR зарегистрировано 2 петли, связанные по времени с включением и выключением нагревного стенда. По данным станции AND петель не было на протяжении всего цикла нагрева. На годографе станции MAS наблюдали максимальное количество появления петель – 5. По данным годографов не выявлено влияния эффектов переключения мощности стенда EISCAT.

Анализ поляризационных характеристик магнитных вариаций свидетельствуют о локальной

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 53 № 1 2013

модификации горизонтальных ионосферных токов мощными КВ радиоволнами.

Подтверждение о локальной модификации горизонтальных токов получено также по результатам измерений радаром НР на частоте 930 МГц г. Тромсе. На рисунке 7 приведены результаты вычислений по данным работы [Ляцкий и Мальцев, 1983] высотно-интегрированных холловской $\Sigma_{\rm H}$ и педерсеновской Σ_p проводимостей по данным ионосферных измерений радаром НР в области высот от 80 до 280 км. Результаты расчетов демонстрируют усиление ионосферной проводимости $\Sigma_{\rm p}$ в цикле нагрева 12:15–12:25 UT по сравнению с периодом паузы и зависимость величины $\boldsymbol{\Sigma}_p$ от уровня мощности нагревного стенда EISCAT *Р*_{эфф}. Влияние воздействия мощной КВ радиоволны на значение $\Sigma_{\rm H}$ не так очевидно, хотя анализ расчетов высотных распределений проводимостей Холла показывает, что в период нагрева наблюдается возрастание холловской проводимости в два раза на высотах ионосферы от 150 до 220 км.

Область повышенной ионосферной проводимости поляризуется во внешнем электрическом поле, и поляризационное электрическое поле

Рис. 7. Вариации высотно-интегрированных холловской $\Sigma_{\rm H}$ и педерсеновской $\Sigma_{\rm p}$ проводимостей ионосферы в период с 12:13 до 12:27 UT 3 ноября 2009 г., рассчитанные по данным радара HP г. Тромсе для диапазона высот от 80 до 280 км.

распространяется вдоль магнитных силовых линий в магнитосферу в виде выходящей из ионосферы альвеновской волны [Ляцкий и Мальцев, 1983; Lysak, 1990]. Проблема генерации альвеновской волны над круговой неоднородностью возмущенной проводимости при наличии фонового вытекающего из ионосферы продольного тока исследовалась в работе [Kozlovsky and Lyatsky, 1997]. Учитывая результаты работы [Kozlovsky and Lyatsky, 1997], можно ожидать возникновение локальной системы продольных токов альвеновской волны (вытекающего из ионосферы и втекающего), которые замыкаются в ионосфере педерсеновским током.

На наличие вертикальных потоков в искусственно возмущенном объеме ионосферы над Тромсе указывает также факт, что максимальные изменения концентрации N_e и температуры T_e электронов в цикле нагрева происходят на 10—12 км выше уровня отражения $h_{\rm H}$ нагревной волны (рис. 3 и 4). В настоящее время известно два основных механизма возрастания N_e при воздействии мощных КВ радиоволн на ионосферу [Гуревич и Шварцбург, 1973]: нарушение ионизационно-рекомбинационного баланса и стимулированная ионизация ускоренными электронами. Оценки, выполненные в работе [Blagoveshchenskaya et al., 2009] для условий нагревных экспериментов в Тромсе, показали, что вследствие нарушения ионизационно-рекомбинационного баланса значения N_e могут увеличиваться от 2.4 до 5.3% относительно невозмущенного уровня. Поэтому в рамках этого механизма невозможно объяснить наблюдаемые 3 ноября 2009 г. возрастания N_e на величину порядка 8-9%. Наиболее вероятным механизмом возрастания N_e является генерация потока ускоренных электронов в поле мощной КВ радиоволны.

Изменения концентрации N_e (8–9%) и температуры T_e (35–65%) электронов в нагревном эксперименте 3.11.2009 г. преобразуют коэффициент отражения R УНЧ волн магнитосферного резонатора на высотах ионосферы, что приводит к изменению амплитуды альвеновских волн. Согласно [Ляцкий и Мальцев, 1983; Ягова и др., 1998] коэффициент отражения альвеновского резонатора можно представить как

$$R = (\Sigma_{\rm p} - \Sigma_{\rm A} \sin I) / (\Sigma_{\rm p} - \Sigma_{\rm A} \sin I),$$

где $\Sigma_{\rm A}$ – волновая проводимость магнитосферы; I – наклонение геомагнитного поля. Для дневных условий 3 ноября 2009 г. значение волновой проводимости $\Sigma_{\rm A} \sim (0.8 - 1.0)$ ом⁻¹ и увеличение/уменьшение амплитуды альвеновской волны с учетом изменения ионосферной проводимости (рис. 7) (10-40)% в нагревном эксперименте с 12:15 до 12:25 UT. Оценки изменений значений напряженностей электрического поля Е, полученные в данный период 12:15-12:25 UT по экспериментальным измерениям доплеровским методом (таблица) составили (30–120)% и в 3 раза больше, чем вариации альвеновской волны, вызванные модификацией коэффициента отражения ионосферных торцов магнитосферного резонатора при изменении мощности стенда EISCAT/Heating. Таким образом, в нагревном эксперименте 3 ноября 2009 г. воздействие на альвеновскую волну происходит не только из-за модификации коэффициента отражения волн R на высотах ионосферы, но и генерацией в ионосфере над областью повышенной проводимости исходящей альвеновской волны в режиме двухминутного переключения мощности стенда EISCAT в условиях существования естественных пульсаций Рс4 с периодами около 130 с.

6. ЗАКЛЮЧЕНИЕ

Приведены результаты комплексных наблюдений пульсаций в диапазоне периодов Pc4 во время нагревного эксперимента 3 ноября 2009 г. с 12:15 до 12:25 UT при использовании режима ступенчатого изменения эффективной мощности излучения $P_{эф\phi}$ комплекса EISCAT/Heating.

Выявлена взаимосвязь между переключением *P*_{эфф} стенда EISCAT и параметрами доплеровский измерении.

Обнаружена корреляция изменений во времени ионосферных пульсаций f_d и вариаций *Y*-компоненты магнитного поля, измеренных наземными магнитометрами г. Тромсе. Параметр *m* показал локальное увеличение в период нагревного цикла 12:15–12:25 UT до m = +(4-7) по сравнению m = -(2-4) в паузу, что позволяет предположить локализацию возбуждения мелкомасштабных альвеновских волн в ионосфере над Тромсе. Анализ поляризационных характеристик магнитных вариаций свидетельствовал о локальной модификации горизонтальных ионосферных токов мощными КВ радиоволнами стенда EISCAT. По данным радара HP на частоте 930 МГц (г. Тромсе) выполнены расчеты высотно-интегрированных холловской $\Sigma_{\rm H}$ и педерсеновской $\Sigma_{\rm p}$ проводимостей. Возмущение ионосферной проводимости явилось причиной возникновения локальной системы продольных токов альвеновской волны (вытекающих из ионосферы и втекающих), которые замыкаются в ионосфере педерсеновским током.

Анализ экспериментальных данных и численных расчетов показал, что наиболее вероятной причиной наблюдаемой волновой активности диапазона *Pc4* в зависимости от уровня мощности нагревного стенда EISCAT/Heating 3 ноября 2009 г. является усиление естественных устойчивых пульсаций *Pc4* и генерация альвеновской волны в модифицированной ионосфере.

СПИСОК ЛИТЕРАТУРЫ

- Благовещенская Н.Ф. Геофизические эффекты активных воздействий в околоземном космическом пространстве. С.-Петербург. Гидрометеоиздат, 288 с. 2001.
- Борисова Т.Д., Благовещенская Н.Ф., Корниенко В.А., Ритвельд М. Характеристики пульсаций диапазона Pc4–5, полученные методом ракурсного рассеяния КВ радиоволн с использованием КВ нагревного стенда EISCAT/Heating и наземными магнитометрами // Геомагнетизм и аэрономия. Т. 51. № 4. С. 630–642. 2011.
- Гериман Б.Н., Ерухимов Л.М., Яшин Ю.Я. Волновые явления в ионосфере и космической плазме. М.: Наука. 392 с. 1984.
- Гуревич А.В. Нелинейные явления в ионосфере // Успехи физ. наук. Т. 177. № 11. С. 1145–1177. 2007.
- Гуревич А.В., Шварцбург А.Б. Нелинейная теория распространения радиоволн в ионосфере // М.: Наука, 276 с. 1973.
- Клейменова Н.Г. Геомагнитные пульсации // Модель Космоса: Т. 1 : Физические условия в космическом пространстве // ред.: М. И. Панасюк и др. С. 611– 626. 2007.
- Ляцкий В.Б., Мальцев Ю.П. Магнитосферно-ионосферное взаимодействие. М.: Наука, 1983. 278 с.
- Пилипенко В.А. Резонансные эффекты ультра- низкочастотных волновых полей в околоземном пространстве. Автореферат на соискание ученой степени дфмн Д 002.113.03. М.: ИКИ РАН. 34 с. 2006.
- Урядов В.П., Вертоградов Г.Г., Вертоградов В.Г., Понятов А.А., Фролов В.Л. Радарные наблюдения искусственной ионосферной турбулентности во время магнитной бури. // Изв. вузов. Радиофизика. Т. 47. № 9. С. 722–738. 2004.
- Франк-Каменецкий Д.А. Лекции по физике плазмы.
 М.: Атомиздат, 288 с. 1968.
- Ютло У., Коэн Р. Изменение ионосферы под воздействием мощных радиоволн // Успехи физ. наук. 1973. Т. 109. С. 371–387. 1973.

- Ягова Н.В., Пилипенко В.А., Федоров Е.Н. Влияние ионосферной проводимости на параметры среднеширотных *Pc3*–4 пульсаций // Геомагнетизм и аэрономия. Т. 38. № 2. С. 67–73. 1998.
- Blagoveshchenskaya N.F., Carlson H.C., Kornienko V.A., Borisova T.D., Rietveld M.T., Yeoman T.K., Brekke A. Phenomena induced by powerful HF pumping towards magnetic zenith with a frequency near the F-region critical frequency and the third electron gyro harmonic frequency // Ann. Geophys. V. 27. P. 131–145. 2009.
- Blagoveshchenskaya N.F., Borisova T.D., Kornienko V.A., Thidé B., Rietveld M.T., Kosch M.J., Bösinger T. Phenomena in the ionosphere- magnetosphere system induced by injection of powerful HF radio waves into nightside auroral ionosphere // Ann. Geophysicae. V. 23. P. 87–100. 2005.
- Blagoveshchenskaya N.F., Chernyshev M.Yu., Kornienko V.A. Excitation of small-scale waves in the F region of the ionosphere by powerful HF radio waves // J. Atmos. Terr. Phys. V. 60. P. 1225–1232. 1998a.
- Blagoveshchenskaya N.F., Kornienko V.A., Petlenko A.V., Brekke A., Rietveld M.T. Geophysical phenomena during an ionospheric modification experiment at Tromsø// Ann. Geophysicae. V. 16. P. 1212–1225. 1998b.
- Chen L., Hasegawa A. A theory of long period magnetic pulsations 1. Steady state excitation of field line resonances // J. Geophys. Res. V. 79. P. 1024–1032. 1974.
- Kozlovsky A.E., Lyatsky W.B. Alfén wave generation by disturbance of ionospheric conductivity in the fieldaligned current region // J. Geophys. Res. V. 102.
 № 11. P. 17297–17303. 1997.
- Leyser T.B., Wong A.Y. Powerful electromagnetic waves for active environmental research in geospace // Rev. Geophys. 47, RG1001, doi:10.1029/2007RG000235, 2009.
- Lyatsky W.B., Belova E.G., Pashin A.B. Artificial magnetic pulsation generation by powerful ground-based transmitter // J. Atmos. Terr. Phys. Vol. 58. P. 407–417. 1996.
- Lysak R.L. Electrodynamic coupling of the magnetosphere and ionosphere // Space Sci. Rev. V. 52. P. 33– 87. 1990.
- Olson J.V., Rostoker G. Longitudional phase variation of Pc4–5 micropulsations. // J. Geophys. Res. V. 83. P. 2481–2488. 1978.
- Rietveld M.T., Kohl H., Kopka H., Stubbe P. Introduction to ionospheric heating at Tromsø. – I. Experimental overview // J. Atmos. Terr. Phys. V. 55. P. 577–599. 1993.
- *Rishbeth H., van Eyken T.,* EISCAT: Early history and the first ten years of operation // J. Atmos. Terr. Phys. V. 55. P. 525–542. 1993.
- Robinson T. R., Strangeway R., Wright D.M. et al. FAST observations of ULF waves injected into the magnetosphere by means of modulated RF heating of the auroral electrojet // Geophys. Res. Lett. V. 27. P. 3165–3168. 2000.
- Stubbe P. Review of ionospheric modification experiments at Tromsø // J. Atmos. Terr. Phys. V. 58. P. 349–368. 1996.
- Yeoman T.K., Wright D.M., Robinson T.R., Davies J.A., Rietveld M. High spatial and temporal resolution observations of an impulse-driven field line resonance in radar backscatter artificially generated with the Tromso heater // Ann. Geophysicae. V. 15. P. 634–644. 1997.
- Yeoman T.K., Baddeley L.J., Dhillon R.S., Robinson T.R., Wright D.M. Bistatic observations of large and small scale ULF waves in SPEAR-induced HF coherent backscatter // Ann. Geophysicae. V. 26. P. 2253–2263. 2008.