УДК 551.511.3

БЕЗОТРАЖАТЕЛЬНЫЕ АКУСТИКО-ГРАВИТАЦИОННЫЕ ВОЛНЫ В АТМОСФЕРЕ ЗЕМЛИ

© 2012 г. Н. С. Петрухин¹, Е. Н. Пелиновский^{1,2}, Е. К. Бацына¹

¹Национальный исследовательский университет Высшая школа экономики, г. Нижний Новгород ²ФГБУ науки Институт прикладной физики РАН, г. Нижний Новгород

> *e-mail: npetruhin@hse.ru* Поступила в редакцию 23.03.2011 г. После доработки 23.01.2012 г.

Вертикальное распространение волн в неоднородной сжимаемой атмосфере изучено в рамках линейной теории. Показано, что при определенных условиях, налагаемых на параметры атмосферы, удается найти решения в виде распространяющихся волн с переменной амплитудой и волновым числом, которые не отражаются в атмосфере, несмотря на ее сильную неоднородность. Найдены модельные представления для скорости звука, при которых возможно "безотражательное" распространение волн в атмосфере. Поток волновой энергии на таких безотражательных профилях сохраняется, что и доказывает возможность переноса энергии на большие высоты. Число таких модельных представлений достаточно велико, что позволяет аппроксимировать реальные вертикальные распределения скорости звука в земной атмосфере кусочно безотражательными профилями. Показано, что Стандартная Атмосфера Земли хорошо аппроксимируется четырьмя безотражательными профилями со слабыми скачками градиента скорости звука. В результате получено, что для рассматриваемых в работе вертикальных акустических волн в широком диапазоне частот Стандартная Атмосфера Земли является почти полностью прозрачной, что подтверждается данными наблюдений и выводами, сделанные на основе численных решений в рамках исходных уравнений.

1. ВВЕДЕНИЕ

В настоящее время существование акустикогравитационных волн в атмосфере Земли можно считать доказанным [Голицын, 2004; Григорьев, 1999; Fritts, Alexander, 2003; Гохберг, Шалимов, 2008; Durran, 1999]. На важность исследования акустико-гравитационных волн указывает, в частности, то обстоятельство, что потоки энергии, переносимые этими волнами из нижних слоев атмосферы в верхние, сравнимы с теми, которые поступают от солнечного излучения [Гохберг, Шалимов, 2008], оказывая тем самым существенное влияние на энергетический и динамический баланс атмосферы, и, как следствие, на погодные условия. Акустико - гравитационные волны влияют на распространение радиоволн в широком диапазоне частот [Гершман и др., 1984; Huang, Sofko, 1998].

Атмосфера Земли является сильно неоднородной и неизотермической, а, как известно, волны в неоднородной среде, как правило, отражаются [Бреховских, 1973]. Поэтому из результатов численных исследований не всегда видно, какие же слои в атмосфере способствуют прохождению волновой энергии на большие высоты, а какие отражают ее. Так, например, простейшая модель изотермической атмосферы, в которой плотность меняется по экспоненциальному закону, допускает распространение безотражательных волн, хотя их амплитуда и меняется с высотой [Эккарт, 2004; Госсард, Хук, 1978]. При этом акустические волны могут распространяться вертикально, в то время как гравитационные - только под углом к вертикали. Считается, что это единственный пример безотражательного распространения акустико-гравитационных волн, поэтому общепринято мнение, что в неизотермической атмосфере, в частности, с монотонным изменением температуры, акустико-гравитационные волны не могут распространяться на большие высоты, что и подтверждали результаты некоторых аналитических и численных расчетов [Петрухин, 1983а, б; 1988; Malins, Erdelye, 2007]. Безусловно, этот фактор оказывает влияние на энергетический баланс среды. В связи с этим становится важным, на наш взгляд, поиск условий, при которых отражение волн минимально, или отсутствует полностью.

Между тем, недавно было показано, что в сильно неоднородной среде при определенных профилях неоднородности возможно распространение волн на большие расстояния без отражения, и даны конкретные примеры из динамики длинных поверхностных и внутренних волн в мелководном океане переменной глубины [Диденкулова и др., 2008; Пелиновский, Диденкулова, 2009; Didenkulova et al., 2009; Didenkulova and Pelinovsky, 2009]. Особенно отметим работы [Талипова и др., 2009; Grimshaw et al., 2010; Пелинов-

ский, Талипова, 2010], в которых рассматривается прохождение внутренних гравитационных волн на большие глубины в толщу океана, стратифицированного по плотности и течению. Показано, что реальные профили стратификации вод океана обеспечивают слабое отражение волн в толще океана (за исключением термоклина), что и объясняет результаты численных экспериментов и данные наблюдений. В настоящей работе эти идеи используются для изучения вертикального распространения акустических волн в сильно неоднородной атмосфере Земли. Сначала будут найдены все профили скорости звука, которые обеспечивают безотражательное распространение акустических волн в сжимаемой атмосфере, находящейся в поле тяжести. Затем будут рассмотрены приложения развитой теории к волнам, распространяющимся вертикально вверх в так называемой Стандартной Атмосфере Земли. Как будет показано, реальный профиль скорости звука в атмосфере Земли может быть аппроксимирован четырьмя безотражательными слоями со слабыми скачками градиентов скорости звука. Это позволит объяснить хорошее прохождение акустических волн в атмосферу в наблюдениях и численных экспериментах.

2. УРАВНЕНИЯ АКУСТИКО-ГРАВИТАЦИОННЫХ ВОЛН В НЕОДНОРОДНОЙ СЖИМАЕМОЙ АТМОСФЕРЕ

Для анализа условий распространения акустических волн в плоскослоистой атмосфере, находящейся в постоянном поле тяжести, воспользуемся системой уравнений газодинамики для адиабатических возмущений, распространяющихся по вертикали [Лайтхилл, 1981]

$$\rho\left(\frac{\partial V}{\partial t} + V\frac{\partial V}{\partial z}\right) + \frac{\partial p}{\partial z} + \rho g = 0, \qquad (1)$$

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial z} (\rho V) = 0, \qquad (2)$$

$$\frac{dp}{dt} - c^2 \frac{d\rho}{dt} = 0, \tag{3}$$

где p – давление; ρ – плотность газа; V – вертикальная скорость частиц; g – ускорение силы тяжести и $c = (\gamma p / \rho)^{1/2}$ – адиабатическая скорость звука (γ – постоянная адиабаты). Ось z направлена вертикально вверх. Разделяя основное состояние неоднородной атмосферы и волновые составляющие

$$p(z,t) = p_0(z) + p'(z,t), \quad p(z,t) = p_0(z) + p'(z,t)$$

и считая волновые возмущения малыми, получаем линеаризованную систему (1)–(3) в виде

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 52 № 6 2012

$$\rho_0(z)\frac{\partial V}{\partial t} + \frac{\partial p'}{\partial z} + g\rho' = 0, \qquad (4)$$

$$\frac{\partial \rho'}{\partial t} + V \frac{d\rho_0}{dz} + \rho_0(z) \frac{\partial V}{\partial z} = 0,$$
(5)

$$\frac{\partial p'}{\partial t} - g\rho_0(z)V - c^2(z) \left[\frac{\partial \rho'}{\partial t} + V \frac{d\rho_0}{dz} \right] = 0.$$
(6)

Здесь теперь $c(z) = (\gamma p_0 / \rho_0)^{1/2}$ – невозмущенная скорость звука. Равновесные значения давления и плотности атмосферы определяются вертикальным распределением температуры в атмосфере $T_0(z)$

$$p_{0}(z) = p(0) \exp\left[-\int_{0}^{z} \frac{dz'}{H(z')}\right];$$

$$\rho_{0}(z) = \rho(0) \frac{T(0)}{T(z)} \exp\left[-\int_{0}^{z} \frac{dz'}{H(z')}\right],$$
(7)

где p(0), $\rho(0)$ и T(0) – давление, плотность и температура соответственно на некотором фиксированном уровне (z = 0), и $H(z) = c^2(z)/\gamma g$ – высота эквивалентной однородной атмосферы на горизонте z.

Система линейных уравнений (4)–(6) легко сводится к волновому уравнению для функции $\chi(z, t) = dV/dz$ – одномерной дивергенции скорости [Ламб, 1947]

$$\frac{\partial^2 \chi}{\partial t^2} = c^2(z) \frac{\partial^2 \chi}{\partial z^2} + \left[\frac{dc^2(z)}{dz} - \gamma g \right] \frac{\partial \chi}{\partial z}.$$
 (8)

Коэффициенты этого уравнения определяются вертикальным распределением скорости звука c(z).

Как будет показано ниже, существуют определенные профили скорости звука, при которых решения уравнения (8) описывают бегущие волны с переменной амплитудой и фазой, не отражающиеся в толще атмосферы.

3. ВЕРТИКАЛЬНЫЕ РАСПРЕДЕЛЕНИЯ СКОРОСТИ ЗВУКА, ДОПУСКАЮЩИЕ БЕЗОТРАЖАТЕЛЬНОЕ РАСПРОСТРАНЕНИЕ ВОЛН В АТМОСФЕРЕ

В общем случае решение линейного уравнения (8) описывает процесс трансформации падающей волны в отраженную на неоднородностях среды, которое не распадается на два независимых значения, соответствующих бегущим волнам в противоположных направлениях. Существование бегущих волн тривиально в случае уравнений с постоянными коэффициентами, поэтому попробуем найти преобразования, сводящие уравнение (8) к уравнению с постоянными коэффициентами.

Будем искать решение уравнения (8) в виде, похожем на выражение волнового поля в ВКБ приближении

855

Рис. 1. Безотражательные профили скорости звука $(\beta = 0)$.

$$\chi(z,t) = A(z)\Phi(\tau,t), \quad \tau = \tau(z), \tag{9}$$

где все функции подлежат определению. После подстановки выражения (9) в (8) получаем уравнение Клейна–Гордона с переменными коэффициентами

$$A(z)\left[\frac{\partial^2 \Phi}{\partial t^2} - c^2(z)\left(\frac{d\tau}{dz}\right)^2 \frac{\partial^2 \Phi}{\partial \tau^2}\right] - \left[\frac{d}{dz}\left(c^2 A \frac{d\tau}{dz}\right) + \left(c^2 \frac{dA}{dz} - \gamma g A\right)\frac{d\tau}{dz}\right]\frac{\partial \Phi}{\partial \tau} - \frac{d}{dz}\left(c^2 \frac{dA}{dz} - \gamma g A\right)\Phi = 0.$$

Это уравнение преобразуется в уравнение Клейна-Гордона с постоянными коэффициентами

$$\frac{\partial^2 \Phi}{\partial t^2} - \frac{\partial^2 \Phi}{\partial \tau^2} = P\Phi, \qquad (10)$$

если наложить следующие условия:

$$\mathbf{t}(z) = \int \frac{dz}{c(z)}, \quad A(z) \sim \frac{1}{\sqrt{c(z)}} \exp\left[\int \frac{dz}{2H(z)}\right], \quad (11)$$

$$P = \frac{1}{A} \frac{d}{dz} \left[c^2(z) \frac{dA}{dz} - \gamma g A(z) \right].$$
(12)

Физический смысл функции $\tau(z)$ очевиден, это есть время распространения волны в неоднородной атмосфере. Обратим внимание, амплитуда волны задается тем же выражением, что и в рамках ВКБ — подхода для плавно меняющейся среды, хотя у нас неоднородность произвольная. Это дает дополнительные аргументы для обоснования получаемых решений в виде безотражательных волн. Итак, в результате преобразований исходное уравнение (8) с переменными коэффициентами свелось к уравнению (10) с постоянными коэффициентами. Его решения в виде бегущих волн будут рассмотрены в следующем параграфе. Здесь мы исследуем решения уравнения (12), которое с учетом (11) представляет собой искомое обыкновенное дифференциальное уравнение второго порядка для нахождения "безотражательных" профилей скорости. Перепишем его в безразмерном виде

$$\frac{d^2 u^2}{dh^2} - \frac{1}{4u^2} \left(\frac{du^2}{dh}\right)^2 + \frac{1}{u^2} = \beta,$$
 (13)

$$u(x) = c(x)/c_0, \quad h = z/H_0, \quad H_0 = \gamma g/c_0^2, \\ \beta = -P/\omega_0^2, \quad \omega_0 = \gamma g/2c_0.$$

Здесь c_0 – значение скорости звука на некоторой высоте z = 0, H_0 – высота однородной атмосферы для этой же высоты, ω_0 – частота отсечки акустических волн, соответствующая изотермической атмосфере, скорость звука в которой равна c_0 . Уравнение (13) сводится к квадратурам

$$h = \pm \int \frac{u du}{\sqrt{\beta u^2 + \alpha u + 1}},\tag{14}$$

где α и β — две произвольные постоянные, которые могут меняться в широких пределах, как по величине, так и по знаку. Интеграл в выражении (14) вычисляется аналитически при любых значениях этих коэффициентов.

Рассмотрим, прежде всего, решения уравнения (14) при $\beta = 0$, когда P = 0, и уравнение (10) сводится к волновому уравнению. Мы будем назвать такие профили "недисперсионными". Здесь существуют два профиля: при $\alpha = 0$

$$u = \sqrt{2|h|},\tag{15}$$

при $\alpha \neq 0$

$$h = \pm \frac{2}{3\alpha^2} \sqrt{1 + \alpha u} (\alpha u - 2).$$
(16)

Характер безотражательных профилей, описываемых (15) и (16) при $\beta = 0$, показан на рис. 1. Таким образом, при нулевом *P* мы имеем всего два различных профиля для скорости звука: все они начинаются с нуля и стремятся с возрастанием высоты к конечному или бесконечному значениям.

При ненулевом P получаются три различные формы решения уравнения (14) в зависимости от знака β . При $\alpha = 0$

$$h^2 - \beta u^2 = 1,$$
 (17)

и в зависимости от знака β функция u(h) есть гипербола или эллипс.

При β > 0 безотражательные профили скорости звука описываются выражением

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 52 № 6 2012

$$\pm h = \frac{1}{\beta} \sqrt{\beta u^2 + \alpha u + 1} - \frac{\alpha}{2\beta^{3/2}} \ln \left[2\sqrt{\beta \left(\beta u^2 + \alpha u + 1\right)} + 2\beta u + \alpha \right],$$
(18)

а при β < 0 -

$$\pm h = -\frac{1}{|\beta|} \sqrt{-|\beta| u^2 + \alpha u + 1} + \frac{\alpha}{2|\beta|^{3/2}} \arcsin\left[\frac{-2|\beta| u + \alpha}{\sqrt{\alpha^2 + 4|\beta|}}\right].$$
(19)

Один из таких профилей приведен на рис. 2.

4. ВОЛНОВОЕ ПОЛЕ В БЕЗОТРАЖАТЕЛЬНОЙ АТМОСФЕРЕ

Уравнение Клейна–Гордона (10) в случае P = 0, как уже говорилось, совпадает с волновым уравнением. Его решения, описывающие бегущие волны, есть

$$\chi(t,z) = GA(z)\Phi\left[t - \int \frac{dz}{c(z)}\right],$$

где $\Phi(t)$ описывает волновое поле на излучателе и *G* – произвольная постоянная. При $P \neq 0$ решение уравнения (10) находится для монохроматической волны

$$\chi(t,z) = GA(z) \exp\left[i\left(\omega t - K\int\frac{dz}{c(z)}\right)\right]$$
(20)

с дисперсионным соотношением

$$K=\pm\sqrt{\omega^2+P}.$$

Если P > 0, то волны любых частот распространяются вверх в атмосферу; если же P < 0, то распространяющимися являются только высокочастотные волны с частотой

$$\omega > \sqrt{\beta}\omega_0 = \frac{\sqrt{\beta}\gamma g}{2c_0}.$$

Частота отсечки волн в "безотражательной" атмосфере может быть как больше, так и меньше частоты отсечки акустико-гравитационных волн в эквивалентной изотермической атмосфере.

Используя соотношение (20), можно найти все компоненты волнового поля. Так, скорость частиц *V* и волновая часть давления есть [Ламб, 1947]

$$V = -\frac{1}{\omega^2} \left[c(z)^2 \frac{\partial \chi}{\partial z} + \gamma g \chi \right],$$

$$p' = \frac{i\rho_0}{\omega^3} \left[g c^2(z) \frac{\partial \chi}{\partial z} + \left(\gamma g^2 - \omega^2 c^2 \right) \chi \right].$$
(21)

Легко вычислить также плотность потока энергии по вертикали [Лайтхилл, 1981]

Рис. 2. Безотражательные профили скорости звука ($\alpha \neq 0, \beta = 1$).

$$\Pi = \frac{1}{2} \left[p' V^* + V p'^* \right],$$

где (*) означает комплексное сопряжение. Подставляя сюда выражение (21) с учетом (7), получаем

$$\Pi = -\frac{\gamma |G|^2 p(0)}{2\omega^3},\tag{22}$$

и, следовательно, поток энергии не зависит от z и сохраняется, несмотря на сильную неоднородность атмосферы. В результате, монохроматическая волна может распространяться на большие высоты без потери энергии. Этот вывод справедлив для волн на любом из рассмотренных безотражательных профилей, вне зависимости от величины и знака параметра P.

5. БЕЗОТРАЖАТЕЛЬНОЕ РАСПРОСТРАНЕНИЕ ВОЛН ЧЕРЕЗ ЗЕМНУЮ АТМОСФЕРУ

Исследование распространения волновых возмущений в земной атмосфере представляет собой обычно довольно сложную задачу, поскольку ее параметры изменяются с высотой. Для неизотермических моделей атмосферы с близким к реальному распределению температуры, обычно не удается получить аналитических решений волнового уравнения. Исключение составляет исследование коротких акустических волн, для которых справедливо приближение ВКБ [Госсард, Хук, 1978]. Особо следует отметить работу [Савина, 1996], в которой получено аналитическое решение для внутренних гравитационных волн в несжимаемом слое с монотонно изменяющейся температурой. Фактически автором получен один из безотражательных профилей для внутренней волны в несжимаемой неоднородной жидкости. Поэтому в большинстве случаев распространение волновых возмущений в земной атмосфере ис-

Рис. 3. Аппроксимация профиля звука в Стандартной Атмосфере Земли четырьмя безотражательными профилями.

следовалось численно. Земная атмосфера в большинстве работ представлялась набором плоскопараллельных слоев, в каждом из которых атмосфера считалась изотермической [Yeh and Liu, 1975; Fransis, 1974]. Сейчас ведутся расчеты распространения акустико-гравитационных волн в земной атмосфере путем непосредственного численного интегрирования исходных уравнений гидродинамики [Ахмедов, Куницын, 2003; 2004]. Результаты всех этих работ указывают на то, что акустико-гравитационные волны относительно свободно проходят через земную атмосферу. Вместе с тем, в этих работах нет ответа на вопрос, почему в атмосфере, параметры которой существенно неоднородны, а градиенты температуры значительны, возможно слабое отражение волн?

На наш взгляд, ответ связан с возможностью аппроксимации реального распределения параметров земной атмосферы безотражательными профилями. Распределение скорости звука в так называемой Стандартной Атмосфере Земли [Атмосфера, 1981] иллюстрируется на рис. 3. Здесь высота нормирована на высоту изотермической атмосферы $H_0 = 8.4$ км и скорость звука на c(0) == 330 м/с (оба параметра соответствуют поверхности Земли). Наблюдаемое распределение скорости звука в земной атмосфере очень хорошо аппроксимируется четырьмя безотражательными профилями (18) с различными значениями параметров α и β, смотри рис. 3. Если в точках сшивки 1 и 2 заметен скачок градиента скорости звука, то в точке 3 фактически происходит скачок второй производной. Малость скачков градиента скорости звука на границах безотражательных слоев свидетельствует о малости отражения волновой энергии и эффективному проникновению волн в верхнюю атмосферу.

Рассмотрим более подробно трансформацию волны на границе сшивки безотражательных про-

филей. Граничные условия на границе выражают непрерывность вертикальной скорости движения газа и давления

$$V_{z}]]_{-}^{+} = 0, \ [p]]_{-}^{+} = 0,$$
 (23)

где [] означает разность величин по обе стороны скачка. Используя выражения (21), условия (23) сводятся к

$$\left[\chi\right]_{-}^{+} = 0, \quad \left[\frac{\partial\chi}{\partial z}\right]_{-}^{+} = 0. \tag{24}$$

Учитывая, что точках сопряжения скорость звука u(h) остается непрерывной, а ее производная du/dh разрывна (как и параметры α и β), находим из (24) комплексные коэффициенты отражения R и прохождения T для монохроматической волны (рассматривается волновая переменная χ), проходящей границу, разделяющую два слоя *j* и *s*

$$R_{js} = \frac{2i(l_j - l_s) - (u'_j - u'_s)}{(u'_j - u'_s) + 2i(l_j + l_s)},$$
$$T_{js} = \frac{4il_j}{(u'_j - u'_s) + 2i(l_j + l_s)}.$$

Здесь

 $l = \sqrt{\sigma^2 - \beta}, \quad l = K/\omega_0, \quad \sigma = \omega/\omega_0, \quad u' = du/dh.$

Используя представленную выше модель, оценим коэффициент прохождения волны через атмосферу Земли (0 < z < 130 км). Данные высо́ты выбраны потому, что именно в этом слое в основном и наблюдаются акустические волны, при этом влиянием электромагнитных факторов еще можно пренебрегать [Гохберг, Шалимов, 2008]. Как уже отмечалось, потери энергии могут происходить только в точках 1, 2, и 3 на графике рис. 3, но никак на самих "безотражательных" слоях. При распространении волны через границу *js* энергетический коэффициент прохождения волны будет определяться коэффициентом

$$V_{js} = \frac{\prod_{s}}{\prod_{j}} = \frac{l_{s} |T_{js}|^{2}}{l_{j}},$$
(25)

где Π_j — поток энергии волны в слое *j*, определенный выражением (22).

Для получения оценки потока энергии, проходящего через все три границы слоев безотражательных профилей, необходимо перемножить величины (25)

$$V = V_{12}V_{23}V_{34}.$$
 (26)

Формула (26) справедлива для случая, когда отражение от границ слабое и многократным переотражением волн от границ можно пренебречь.

Рис. 4. Коэффициенты прохождения волны через атмосферу Земли.

На рисунке 4 представлены графики функций V_{is} и V в зависимости от безразмерной частоты σ. Как следует из рис. 4, для всех волн с $\sigma > 1.5$, или с периодами меньшими 200 с учет вторичных отражений не нужен, и для таких волн атмосфера практически прозрачна. Следует отметить, что акустикогравитационные волны (не только вертикальные, но и наклонные к горизонту) с подобными периодами наблюдались в ионосфере непосредственно над эпицентрами землетрясений [Гохберг и Шалимов, 2008], а также после запусков космических кораблей и ракет и мощных взрывов [Карлов и др., 1980; Нагорский, 1998; Адушкин и др., 2000]. Таким образом, мы по-существу показываем, что в рамках рассматриваемого приближения земная атмосфера имеет параметры, близкие к безотражательным. Подчеркнем, что поток энергии на безотражательных профилях сохраняется здесь для всех частот, а не только для высоких, как это следует обычно из ВКБ метода.

5. ВЫВОДЫ

Вертикальное распространение волн в неоднородной сжимаемой атмосфере изучается в рамках линейной теории идеальной гидродинамики. Найдено семейство профилей скорости звука, при котором волновое поле может быть представлено бегущей волной, которая не отражается в атмосфере, несмотря на ее сильную неоднородность. Поток волновой энергии на таких безотражательных профилях сохраняется, что и доказывает возможность переноса энергии на большие высоты. Число таких профилей достаточно велико, что позволяет аппроксимировать реальные вертикальные распределения скорости звука в земной атмосфере кусочно безотражательными профилями. Показано, что Стандартная Атмосфера Земли хорошо аппроксимируется четырьмя безотражательными профилями и в широком диапазоне частот для вертикальных акустических волн данная модель атмосферы является почти полностью прозрачной.

Работа выполнена при поддержке гранта РФФИ (№ 11-05-00216) и Гос. контракта № 02.740.11.0732.

СПИСОК ЛИТЕРАТУРЫ

- Адушкин В.В., Козлов С.И., Петров А.В. Экологические проблемы и риски воздействий ракетно-космической техники на окружающую среду. М: Анкил, 640 с. 2000.
- Атмосфера Стандартная. Параметры. ГОСТ 4401-81, 1981.
- Ахмедов Р.Р., Куницын В.Е. Численный метод решения задачи распространения акустико-гравитационных волн в атмосфере до ионосферных высот // Вестн. МГУ. Сер. 3. Физика. Астрономия. № 3. С. 38–42. 2003.
- Ахмедов Р.Р., Куницын В.Е. Моделирование ионосферных возмущений, вызванных землетрясениями и взрывами // Геомагнетизм и аэрономия. Т. 44. № 1. С. 1–8. 2004.
- Бреховских Л.М. Волны в слоистых средах. М.: Наука, 341 с. 1973.
- Гериман Б.Н., Ерухимов Л.М., Яшин Ю.Я. Волновые явления в ионосфере и космической плазме. М.: Наука, 392 с. 1984.
- Голицын Г.С. Динамика природных явлений: климат, планетные атмосферы, конвекция. М.: Физматлит, 344 с. 2004.
- *Госсард Э., Хук У.* Волны в атмосфере. М.: Мир, 532 с. 1978.
- Гохберг М.Б., Шалимов С.Л. Воздействие землетрясений и взрывов на ионосферу. М.: Наука, 296 с. 2008.
- Григорьев Г.И. Акустико-гравитационные волны в атмосфере Земли // Изв. вузов Радиофизика. Т. 42.
 № 1. С. 3–25. 1999.
- Диденкулова И.И., Заибо Н., Пелиновский Е.Н. Отражение длинных волн от "безотражательного" донного профиля // Известия РАН. Сер. Механика жидкости и газа. № 4. С. 101–107. 2008.
- Карлов В.Д., Козлов С.И., Ткачев Г.Н. Крупномасштабные возмущения в ионосфере, возникающие при полете ракеты с работающим двигателем (обзор) // Космич. исслед. Т. 18. № 2. С. 266–277. 1980.
- Лайтхилл Д. Волны в жидкостях. М: Мир, 603 с. 1981.
- Ламб Г. Гидродинамика. М-Л.: Гостехиздат, 929 с. 1947.
- Нагорский П.М. Модификация F-области ионосферы мощными импульсными источниками волн в нейтральном газе. Автореферат диссертации на соискание ученой степени доктора физ.-мат. наук. Томск: ТГУ, 31 с. 1998.
- Пелиновский Е.Н., Диденкулова И.И. Распространение волн в сильно неоднородной среде. / Нелинейные волны' 2008. Ред. Гапонов-Грехов А.В., Некоркин В.И. Н. Н.: ИПФ. С. 191–204. 2009.
- Пелиновский Е.Н., Талипова Т.Г. Безотражательное распространение волн в сильно неоднородных

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 52 № 6 2012

средах // Фундаментальная и прикладная гидрофизика. № 3 (9). С. 4–13. 2010.

- Петрухин Н.С. О рефракционных волноводах для акустико-гравитационных волн // Астрон. журн. Т. 60. Вып. 1. С. 122–126. 1983а.
- Петрухин Н.С. Волноводные свойства атмосферы с монотонно изменяющейся температурой // Астрон. журн. Т. 60. Вып. 4. С. 703–708. 19836.
- Петрухин Н.С. Захваченные волны в плоскопараллельной среде с экспоненциальным профилем температуры / Колебания и волны в жидкости. Г.: ГПИ. С. 5–11. 1988.
- Савина О.Н. Акустико-гравитационные волны в атмосфере с реалистичным распределением температуры // Геомагнетизм и аэрономия. Т. 36. № 1. С. 104–110. 1996.
- Талипова Т.Г., Пелиновский Е.Н., Петрухин Н.С. О проникновении длинной внутренней волны в толщу океана // Океанология. Т. 49. № 5. С. 673–680. 2009.
- Эккарт К. Гидродинамика океана и атмосферы. Ижевск: Регулярная и хаотическая динамика, 328 с. 2004.
- Didenkulova I., Pelinovsky E., Soomere T. Long surface wave dynamics along a convex bottom // J Geophys. Res. – Oceans. V. 114, C07006, doi:10.1029/2008JC005027, 2009.

- Didenkulova I., Pelinovsky E. Non-dispersive traveling waves in strongly inhomogeneous water channels // Phys. Lett. A. V. 373. № 42. P. 3883–3887. 2009.
- Durran D. Numerical methods for wave equations in Geophysical Fluid Dynamics. N. Y.: Springer-Verlag, 465 p. 1999.
- Fritts D.C., Alexander M.J. Gravity wave dynamics and effects in the middle Atmosphere // Rev. Geophys. V. 41. № 1. P. 1–64. 2003.
- Fransis S.H. A theory of medium scale travelling ionospheric disturbances // J. Geophys. Res. V. 79. № 34. P. 5245–5260. 1974.
- Grimshaw R., Pelinovsky E., Talipova T. Non-reflecting internal wave beam propagation in the deep ocean // J. Phys. Oceanography. V. 40. № 4. P. 802–813. 2010.
- Huang C.S, Sofko G.J. Numerical simulations of midlatitude ionospheric perturbations produced by gravity waves // J. Geophys. Res. V.103. № A4. P. 6977–6989. 1998.
- Malins C., Erdelye R. Direct propagation of photospheric acoustic *p*-modes into nonmagnetic solar atmosphere // Solar Phys. V. 246. P. 41–52. 2007.
- Yeh K.C., Liu C.H. Acoustic-gravity waves in the upper atmosphere // Rev. Geophys. Space Phys. V. 37. № 6–7. P 1011–1054. 1975.

860