УДК 534.222.2; 533.6.011.72

АНАЛИТИЧЕСКАЯ МОДЕЛЬ ВЗРЫВА В РАЗРЕЖЕННОЙ АТМОСФЕРЕ

© 2012 г. И. Ю. Сергеев

ФГБУ науки Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН, г. Троицк (Московская обл.)

> *e-mail: fje@mail.ru* Поступила в редакцию 09.11.2009 г. После доработки 19.04.2012 г.

В работе представлена новая модель разлета продуктов взрыва в разреженном газе. В ней используется подход, основанный на учете процессов диссипации энергии в модели "снежного плуга", что позволяет получить, во-первых, точное аналитическое решение, а, во-вторых, результаты, хорошо согласующиеся с экспериментальными данными. Сравнение представленной модели с существующими в настоящее время (Простой моделью "снежного плуга", моделью Стюарта и моделью Холвея) показывает, что последние могут быть описаны в рамках новой модели. Вместе с тем она способна учесть еще ряд процессов, не рассмотренных в них. Сравнение с экспериментом Сполох-1 показывает хорошее соответствие результатов расчетов наблюдаемым характеристикам.

1. ВВЕДЕНИЕ

Процессы взрывного типа в околоземном космическом пространстве приводят к разлету продуктов горения и направленному движению окружающей среды. К процессам такого типа относятся как активные эксперименты, так и различные взрывы ракетно-космической техники. Разлет плазмы в магнитном и электрическом поле Земли приводит к образованию токов и возмущению полей. В результате ионосферно-магнитосферного взаимодействия такие возмущения стимулируют развитие различных геофизических процессов в ионосфере и магнитосфере. К ним можно отнести электромагнитные колебания в КНЧ-диапазоне и геомагнитные пульсации, образование плазменных неоднородностей, высыпание частиц, свечение и различные вторичные эффекты.

В работе [Метелкин и Сорокин, 1996] был произведен расчет низкочастотного электромагнитного импульса, генерируемого в ионосферной плазме сферически симметричным током, в случае нулевой проводимости Холла. Функция Грина электромагнитного поля для произвольных значений поперечных проводимостей получена в статье [Сергеев и др., 2000]. На основе этих результатов в работах [Сергеев и др., 2003; Sorokin et al., 2006] получены приближенные оценки некоторых характеристик электромагнитного импульса, сопровождающего взрыв в ионосферной плазме. Более точные расчеты произвести не представлялось возможным, поскольку плохо известны закономерности движения возмущенного газа. Для проведения таких расчетов, равно как и для анализа указанных выше явлений, необходимо знать характеристики разлета возмущенной среды, чему и посвящена настоящая работа.

Модель взрыва в разреженном газе отличается от широко известных моделей для плотной атмосферы, разработанных Седовым, Тейлором, Коробейниковым и др. Взрыв в разреженном газе, как правило, характеризуется условиями, при которых средняя длина свободного пробега молекул и атомов внутри возмущенной области существенно меньше ее размера, тогда как вне этой области превосходит или соизмерима с ним. При таких условиях частицы покоящегося окружающего газа застревают в расширяющейся области, увеличивая ее массу - так называемый эффект "снежного плуга". В ходе этого процесса происходит перераспределение кинетической энергии, что приводит к уменьшению скорости движения газа внутри возмущенной области.

За последние 10–15 лет был опубликован целый ряд работ, посвященных численному расчету взрыва в газе (см., например, [Kato et al., 2006; Liang et al., 2002; Cieslak et al., 2001; Ofengeim and Drikakis, 1997]). Как правило, они плохо учитывают специфику процесса в разреженной атмосфере, а их адаптация не дает желаемого результата, поскольку использование численных моделей вынуждает и все последующие расчеты проводить численно. Во многих случаях, например, при расчете электромагнитных эффектов, из-за сложности дифференциальных уравнений такие расчеты не могут быть доведены до конца. Вместе с тем, как отмечалось в работе [Kato et al., 2006], данные модели часто обладают неустойчивостью, а отклонение некоторых параметров на начальных стадиях всего на 0.1% может существенно повлиять на результат.

Что же касается аналитических моделей, то на сегодняшний день существуют три основные мо-

Рис. 1. Схема модели взрыва.

Рис. 2. Зависимость радиуса области взрыва от времени в безразмерных переменных. 1 -Простая модель "снежного плуга"; 2 - Модель Стюарта; 3 - Модель Холвея при l = 2.8 (что соответствует $X \approx 0.66$; определение l см. в [Holway, 1969]). Штриховая линия – обезразмеренные данные эксперимента Сполох-1 (в области разрыва кривой достоверные экспериментальные данные отсутствуют).

дели взрыва в разреженном газе: Простая модель "снежного плуга", модель Стюарта и модель Холвея [Stuart, 1965; Holway, 1969]. (Необходимо также отметить интересную модель, представленную в работе [Bienkowski, 1964]. Однако ее затруднительно использовать при проведении практических расчетов.) Рассмотрим более подробно три первых модели.

Простая модель "снежного плуга" [Stuart, 1965] использует эффект "снежного плуга" в чистом виде, что описывается уравнением сохранения кинетической энергии

$$\int_{0}^{R} \frac{1}{2} \nabla^{2} \rho(r,t) 4\pi r^{2} dr = T_{0}, \qquad (1)$$

где T_0 – начальная кинетическая энергия, v – скорость возмущенного газа, ρ – плотность газа, R – радиус области взрыва, r – радиус точки наблюдения (см. рис. 1). Левая часть уравнения (1) представляет собой полную кинетическую энергию возмущенной области. Такой подход соответствует действительности только в том случае, если отсутствуют процессы диссипации кинетической энергии. В действительности каналов диссипации достаточно много: трение и внутренняя энергия, ударная волна, электромагнитное излучение и т.д. Основные из них – это трение, давление на поверхности возмущенной области и движение газа вне этой области, включая ударную и акустическую волны. Решение Простой модели "снежного плуга" приведено на рис. 2, где \tilde{R} – обезразмеренный радиус, \tilde{t} – обезразмеренное время (см. (9)). Рисунок показывает, что данная модель не соответствует физике реальных процессов, поскольку область взрыва бесконечно расширяется. В действительности же любое движение с течением времени останавливается из-за процессов диссипации.

Модель Стюарта [Stuart, 1965] основана на Простой модели "снежного плуга", но дополнительно рассматривает процесс диссипации энергии – трение расширяющегося через внешнюю атмосферу газа, что описывается следующим уравнением:

$$\tilde{R}\left(1+\frac{1}{3}\tilde{R}^{3}\right)\frac{d^{2}\tilde{R}}{d\tilde{t}^{2}}+\left[\frac{3}{2}(\gamma-1)+\frac{1}{2}(\gamma+1)\tilde{R}^{3}\right]\left(\frac{d\tilde{R}}{d\tilde{t}}\right)^{2}=1.(2)$$

Здесь γ – показатель адиабаты, по смыслу величина равная $\gamma = 1 + 2/f_s$, где $f_s = f_1 + f_2 + 2f_3 + f_4 - эф$ фективное число возбужденных степеней свобо $ды, состоящее из поступательных <math>f_1$, вращательных f_2 , колебательных f_3 и электронных f_4 компонент. Численное решение уравнения представлено на рис. 2. Из графика видно, что скорость расширения области взрыва убывает сильнее, чем в предыдущем случае, однако модель все еще не соответствует реальным процессам.

Модель Холвея является развитием модели Стюарта и учитывает еще один канал диссипации энергии [Holway, 1969]. Ее численное решение также изображено на рис. 2, который показывает, что расширение в конечном итоге почти останавливается. Однако громоздкость уравнения и невозможность получения аналитического результата делает ее малопригодной для решения ряда задач. Вместе с тем, модель Холвея также проявляет некоторую нефизичность. В частности, численное решение уравнения (20) из работы [Holway, 1969] дает для величины \tilde{R} при $\tilde{t} = 100$ следующие значения 2.47; 0.97; 0.45; 0.22, при Х (определение Хсм. ниже) соответственно равном 0.9; 0.99; 0.999; 0.9999. То есть, при стремлении распределения плотности в области взрыва к бес-

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 52 № 6 2012

конечно тонкой сфере (что то же самое, при $X \rightarrow 1$) "конечный" радиус приближается к нулю, что противоречит физическому смыслу. Слово "конечный" взято в кавычки, поскольку в данной модели радиус, строго говоря, продолжает бесконечно увеличиваться, хотя темпы его роста и становятся очень малы на больших временах.

В печати опубликовано еще несколько работ, посвященных взрыву в разреженном газе. Однако они носят либо сугубо методический характер, как, например, [Klein, 1968], либо несколько уточняют существующие модели, при этом сохраняя основные их недостатки (например, [Brode and Enstrom, 1972]).

Все вышесказанное показывает необходимость создания новой модели, которая с одной стороны давала бы аналитическое решение, а с другой — соответствовала экспериментальным данным.

2. ПОСТРОЕНИЕ НОВОЙ АНАЛИТИЧЕСКОЙ МОДЕЛИ ВЗРЫВА В РАЗРЕЖЕННОМ ГАЗЕ

Основываясь на анализе существующих моделей, построим новую. Будем отталкиваться от Простой модели "снежного плуга". Учтем диссипацию кинетической энергии в уравнении (1), для чего в правой части начальное значение кинетической энергии T_0 заменим на текущее T. Введем коэффициент $\mu = T/T_0$. Тогда в качестве исходного уравнения получаем:

$$\int_{0}^{R} \frac{1}{2} \nabla^{2} \rho(r,t) 4\pi r^{2} dr = \mu T_{0}.$$
(3)

Данный подход учитывает все процессы диссипации энергии. По своему смыслу $\mu(t)$ — монотонно убывающая от времени функция такая, что $\mu(0) = 1$, $\mu(\infty) = 0$.

Пусть Q = dT/dt – скорость диссипации кинетической энергии по всем каналам. Тогда Q пропорциональна величине кинетической энергии: $Q = -\alpha T (\alpha -$ положительный коэффициент пропорциональности). Это предположение представляется обоснованным, поскольку, во-первых, большинство процессов в природе, связанных с диссипацией, имеют такую зависимость, например, остывание нагретого тела - скорость уменьшения температуры нагретого тела, т.е. внутренней энергии, пропорциональна величине самой температуры. (Если говорить строго, то пропорциональна разности температур нагретого тела и окружающей среды, однако в условиях данной задачи $\mu(\infty) = 0$). Во-вторых, приведенная зависимость может быть рассмотрена как линейное приближение. Однако окончательно подтвердить или опровергнуть выдвинутое предположение можно будет, сравнив результаты модели с экспериментальными данными.

Параметр а может быть вычислен как теоретически, так и получен на основе наблюдаемых на эксперименте величин. В последнем случае, как будет показано ниже, представленная модель дает даже более точный результат, чем модель Холвея.

С учетом вышесказанного получаем

$$\frac{dT}{dt} = -\alpha T. \tag{4}$$

Решением уравнения (4) является функция $T = T_0 \exp(-\alpha t)$ или, что то же самое, $\mu = \exp(-\alpha t)$.

Далее, так же как и в работе [Stuart, 1965], будем полагать, что $v = \xi V$ и $\rho(r, t) = K(t)\rho_r(\xi)$, где $\xi = r/R$, V = dR/dt — скорость движения границы области взрыва, K(0) = 1. $\rho_r(\xi)$ может быть рассмотрено как постоянное распределение плотности, а K(t) — как зависящий от времени коэффициент. Справедливость указанных предположений обсуждается в работе [Holway, 1969]. К этому лишь добавим, что детальные численные расчеты, проведенные в [Brode, 1959], подтверждают предположение о линейной зависимости скорости газа в области взрыва от радиуса.

Из второго предположения следует: $X = \int_0^1 \xi^4 \rho(\xi, t) d\xi / \int_0^1 \xi^2 \rho(\xi, t) d\xi$, где X – константа, зависящая только от распределения газа внутри сферы. X равно 3/5 для однородной плотности и 1 для бесконечно тонкой сферы ($\rho_r(\xi) = \delta(\xi - 1)$). Используя выражение для X, получаем: $\frac{1}{2} \int_0^R v^2 \rho(r, t) \times x 4\pi r^2 dr = Xm V^2/2$. Откуда из уравнения (3) следует:

$$V^2 m = \mu(t) V_0^2 m_0, \quad m = m_0 + \frac{4}{3} \pi R^3 \rho_1,$$
 (5)

где m_0 — масса продуктов взрыва, m — полная масса вещества, вовлеченного в движение, с учетом захваченного газа, $V_0 = V(0)$ — начальная скорость движения границы возмущенной области, ρ_1 плотность окружающего газа. Необходимо отметить, что масса продуктов взрыва может отличаться от массы заряда. Так, например, во многих ионосферных экспериментах к взрывчатому веществу добавлялись легкоионизирующиеся металлы. В некоторых случаях необходимо также частично учитывать массу контейнера.

Полагаем, что в начальный момент времени вся химическая энергия заряда E_0 переходит во внутреннюю энергию продуктов взрыва. Далее энергия поступательных степеней свободы молекул трансформируется в кинетическую энергию

газа. Поскольку
$$\gamma = 1 + 2/f_s$$
 , то $T_0 = \frac{3}{2}(\gamma - 1) E_0$. От-

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 52 № 6 2012

сюда с учетом выражений для *X* и кинетической энергии находим

$$V_0 = \sqrt{\frac{2}{X} \frac{T_0}{m_0}} = \sqrt{\frac{3(\gamma - 1)}{X} \frac{E_0}{m_0}}$$
(6)

или, если масса продуктов взрыва равна массе заряда,

$$V_0 = \sqrt{3(\gamma - 1)q/X},\tag{7}$$

где *q* — удельная теплота сгорания. То есть, в таком случае начальная скорость не зависит от массы заряда.

Переходя к безразмерным переменным в выражениях (5), получаем нелинейное уравнение:

$$\left(1+\frac{1}{3}\tilde{R}^3\right)\left(\frac{d\tilde{R}}{d\tilde{t}}\right)^2 = \mu(\tilde{t}), \qquad (8)$$

$$\tilde{R} = \sqrt[3]{4\pi\rho_1/m_0} R, \quad \tilde{t} = V_0\sqrt[3]{4\pi\rho_1/m_0} t,$$

$$\mu(\tilde{t}) = \exp(-\tilde{\alpha}\tilde{t}), \quad \tilde{\alpha} = \left(V_0\sqrt[3]{4\pi\rho_1/m_0}\right)^{-1} \alpha.$$
(9)

t – время, отсчитываемое от момента взрыва. Уравнение (8) может быть решено аналитически. Точное аналитическое решение имеет вид:

$$\begin{split} \tilde{t} &= -\frac{2}{\tilde{\alpha}} \ln \left\{ 1 - \tilde{\alpha} \frac{\sqrt[3]{3}}{10} \right[\sqrt[4]{27} F \left(\frac{2\sqrt[4]{3}\sqrt{1 + \tilde{R}/\sqrt[3]{3}}}{\sqrt{3} + 1 + \tilde{R}/\sqrt[3]{3}}, k \right) \times \\ &\times \operatorname{sgn} \left(\sqrt{3} - 1 - \frac{\tilde{R}}{\sqrt[3]{3}} \right) + 2\sqrt[4]{27} \eta \left(\frac{\tilde{R}}{\sqrt[3]{3}} + 1 - \sqrt{3} \right) \times \\ &\times F(1,k) + \frac{2\tilde{R}}{\sqrt[3]{3}} \sqrt{1 + \left(\frac{\tilde{R}}{\sqrt[3]{3}} \right)^3} - \sqrt[4]{27} F \left(\frac{2\sqrt[4]{3}}{\sqrt{3} + 1}, k \right) \bigg] \bigg\}, \end{split}$$
(10)

где

$$k = \sin(75^{\circ}) \equiv \frac{\sqrt{2} + \sqrt{3}}{2},$$
$$F(x,k) = \int_{0}^{x} \frac{dx'}{\sqrt{(1 - x'^{2})(1 - k^{2}x'^{2})}}$$

– неполный эллиптический интеграл первого рода, sgn – функция знака вещественной переменной (sgn(x) = 1 при x > 0 и sgn(x) = –1 при $x \le 0$), η – функция "ступеньки" ($\eta(x) = 1$ при x > 0 и $\eta(x) = 0$ при $x \le 0$). Границы применимости формулы (10) кроме стандартных ограничений модели "снежного плуга" [Holway, 1969] включают в себя условие линейности процессов диссипации кинетической энергии.

Формула (10) обладает интересным свойством. Она позволяет вычислить параметр $\tilde{\alpha}$ по известному конечному радиусу продуктов взрыва \tilde{R}^* . Из нее следует, что конечный радиус определяется условием равенства нулю выражения, стоящего под знаком логарифма. Таким образом, $\tilde{\alpha}$ может быть получено из формулы

$$\begin{split} \tilde{\alpha} &= \frac{10}{\sqrt[3]{3}} \Biggl[\sqrt[4]{27} F \Biggl(\frac{2\sqrt[4]{3}\sqrt{1 + \tilde{R}^*/\sqrt[3]{3}}}{\sqrt{3} + 1 + \tilde{R}^*/\sqrt[3]{3}}, k \Biggr) \operatorname{sgn} \Biggl(\sqrt{3} - 1 - \frac{\tilde{R}^*}{\sqrt[3]{3}} \Biggr) + \\ &+ 2\sqrt[4]{27} \eta \Biggl(\frac{\tilde{R}^*}{\sqrt[3]{3}} + 1 - \sqrt{3} \Biggr) F (1, k) + \\ &+ \frac{2\tilde{R}^*}{\sqrt[3]{3}} \sqrt{1 + \left(\frac{\tilde{R}^*}{\sqrt[3]{3}} \right)^3} - \sqrt[4]{27} F \Biggl(\frac{2\sqrt[4]{3}}{\sqrt{3} + 1}, k \Biggr) \Biggr]^{-1}. \end{split}$$

Рассмотрим выражение (10) в предельных случаях. При $\tilde{t} \rightarrow 0$ из (10) получаем $R = V_0 t$, что как совпадает с результатом других моделей, основанных на принципе "снежного плуга" (см. следующий раздел), так и соответствует физике реальных процессов. В обратном предельном случае $\tilde{t} \to \infty$ из формулы (10) следует, что скорость расширения охваченной взрывом области уменьшается, а ее радиус стремится к конечной величине, что также соответствует физике реальных процессов [Groves, 1963; Brode, 1959]. Таким образом, новая модель правильно описывает основные закономерности разлета. Что же касается количественного описания, то в данном случае точность зависит от того, насколько верно предположение о линейности процессов диссипации энергии, а также другие предположения модели "снежного плуга" (об этом см. ниже).

3. СРАВНЕНИЕ НОВОЙ МОДЕЛИ С СУЩЕСТВУЮЩИМИ

Ранее было сделано утверждение, что подход, используемый для построений данной модели, учитывает все линейные процессы диссипации энергии. Проверим, способна ли новая модель описать процессы, учтенные в уже существующих моделях. Для этого сравним их.

Для начала отметим, что при $\tilde{\alpha} = 0$ (т.е. $\mu = 1$), новая модель тождественно переходит в Простую модель "снежного плуга".

Для сравнения с моделью Стюарта установим некоторые аналитические свойства уравнения (2). В предельных случаях имеем: $T/T_0 = 1$ при $\tilde{t} \to 0$ и $T/T_0 = (\gamma - 1)/\gamma$ при $\tilde{t} \to \infty$. Таким образом, для сравнения с моделью Стюарта представляется разумным использовать для µ убывающую экспоненциальную функцию, смещенную на $(\gamma - 1)/\gamma$, которая равна 1 при $\tilde{t} = 0$ и $(\gamma - 1)/\gamma$ при $\tilde{t} \to \infty$. В качестве таковой выберем $\mu = \frac{\gamma - 1}{\gamma} + \frac{1}{\gamma} \exp(-\tilde{t}/3)$. Очевидно, данная зависимость не соответствует общему принципу диссипации энергии до нуля,

общему принципу диссипации энергии до нуля, но она используется исключительно в целях сравнения.

Вначале проведем аналитическое сравнение моделей в предельных случаях. При $\tilde{t} \to \infty$ для мо-

дели Стюарта из уравнения (2) получаем: $R = \sqrt[5]{\frac{75\gamma - 1}{8\pi} \frac{E_0}{\gamma}} t^{2/5}$. Такое же выражение дает и пре-

дел формулы (10). Для случая $\tilde{t} \to 0$ из обеих моделей следует $R = V_0 t$. Таким образом, в предельных случаях обе модели дают одинаковый результат. Численное сравнение во всех областях представлено на рис. 3. (При $\mu = (\gamma - 1)/\gamma + \exp(-\tilde{t}/3)/\gamma$ уравнение (8) также имеет точное аналитическое решение, очевидно, отличное от (10).) Из приведенного анализа и численного сравнения видно, что новая модель способна описать модель Стюарта, по крайней мере, с достаточно высокой точностью.

Сравнение с моделью Холвея также представлено на рис. 3. Графики показывают, что новая модель способна описать с хорошей степенью точности процессы диссипации энергии, учтенные и в этой модели, тем самым подтверждая, что они близки к линейным.

4. СРАВНЕНИЕ С ЭКСПЕРИМЕНТОМ СПОЛОХ-1

Сравним полученную модель с данными эксперимента Сполох-1 [Ружин, 1992], в котором на высоте 170 км ($\rho_1 = 8.2 \times 10^{-10}$ кг/м³) был подорван заряд массой 12 кг, при этом энергия взрыва равнялась 6.5×10^7 Дж. Масса бария составляла 1.2 кг [Ружин и Скомаровский, 1978]. Для сравнения необходимо знать величину *Х*либо *V*₀.

Рассмотрим распределение плотности газа в области взрыва. Сразу после прохождения детонационной волны плотность вещества примерно однородна. Затем, разлетаясь, молекулы выстраиваются в соответствии с распределением скоростей, при этом максимум плотности находится где-то внутри возмущенной области [Brode, 1959]. Как указывалось выше, длина свободного пробега в области взрыва значительно меньше ее размеров. Это означает, что частицы окружающего газа будут застревать преимущественно во внешних слоях, вызывая их интенсивное торможение, так как в них сосредоточена относительно небольшая масса. При этом внутренние слои будут догонять внешние, что приведет к перераспределению плотности. Однако вскоре этот процесс начнет замедляться. Когда основная масса продуктов взрыва приблизится к границе области, процесс перераспределения почти остановится. Таким образом, за короткий промежуток времени большая часть массы сосредоточится в некотором слое вблизи внешней границы [Brode, 1959; Kato et al., 2006; Bienkowski, 1964]. Чем больше плотность окружающего газа, тем тоньше этот слой. Приведенные рассуждения подтверждаются как результатами подробных численных расче-

Рис. 3. Сравнение представленной модели с другими теоретическими моделями. *1* – при $\tilde{\alpha} = 0$ (она же Простая модель "снежного плуга"); *2* – при $\mu = (\gamma - 1)/\gamma + \exp(-\tilde{t}/3)/\gamma$ (окружности – модель Стюарта); *3* – при $\tilde{\alpha} = 3/4$ (окружности – модель Холвея при *l* = 20).

Рис. 4. Зависимость радиуса области взрыва от времени. Штриховая линия — данные эксперимента Сполох-1 (в области разрыва кривой достоверные экспериментальные данные отсутствуют); сплошная линия представленная модель при $\tilde{\alpha} = 0.12$ и $V_0 = 3$ км/с.

тов, изложенных в публикациях [Kato et al., 2006; Brode, 1959], так и данными кинограммы эксперимента Сполох-1 [Ружин, 1992].

Проведем оценку толщины слоя. На начальной стадии взрыва установившаяся скорость разлета в эксперименте Сполох-1 составляла ~3 км/с. Для двухатомного газа из формулы (7) получаем X = 0.66. Тогда, используя выражение для X, можно установить, что основная масса газа в области взрыва сосредоточена вблизи ее границы в слое с характерной шириной $\Delta \xi \approx 0.5$, что соответствует данным кинограммы.

На рисунке 4 изображен результат сравнения представленной аналитической модели с экспериментом Сполох-1, из которого следует, что экспериментальные данные с достаточной степенью точности описываются данной моделью.

5. ВЫВОДЫ

1. Анализ Простой модели "снежного плуга" и модели Стюарта показал, что основной причиной, по которой эти модели не соответствуют экспериментальным данным на поздних стадиях разлета, является недостаточный учет процессов диссипации кинетической энергии.

2. В данной работе была построена новая модель взрыва в разреженном газе, учитывающая линейные процессы диссипации кинетической энергии. В модели предполагается, что такие процессы являются определяющими. Разработанная модель имеет точное аналитическое решение.

3. Сравнение новой модели с существующими (Простой моделью "снежного плуга", моделью Стюарта и моделью Холвея) показало, что разработанная модель способна повторить результаты существующих с хорошей степенью точности. Это означает, что она учитывает с той же степенью точности процессы диссипации энергии, рассмотренные в них.

4. Сравнение с экспериментом Сполох-1 показало, что данная модель с достаточной степенью точности способна описать экспериментальные данные.

Автор выражает благодарность докторам физико-математических наук В.М. Сорокину и Ю.Я. Ружину за полезное обсуждение результатов работы.

СПИСОК ЛИТЕРАТУРЫ

- Метелкин Е.В., Сорокин В.М. Возмущения электрического и магнитного полей ударной волной в средней ионосфере // Космич. исслед. Т. 34. № 3. С. 264–270. 1996.
- Ружин Ю.Я. Плазменные возмущения при инжекции энергичных частиц в ионосфере / Автореферат диссертации на соискание ученой степени доктора физ.-мат. наук. Москва: ИЗМИРАН, 40 с. 1992.
- Ружин Ю.Я., Скомаровский В.С. Начальная стадия движения бариевой струи в эксперименте "Спо-

лох-1" // Сб. Физика ионосферы и магнитосферы. Москва, С. 107–115. 1978.

- Сергеев И.Ю., Сорокин В.М., Ященко А.К. Низкочастотное излучение осесимметричного тока в ионосферной плазме // Изв. вузов. Радиофизика. Т. 43. № 8. С. 688–695. 2000.
- Сергеев И.Ю., Сорокин В.М., Ященко А.К. Электромагнитное поле сферически симметричной ударной волны взрыва в ионосфере // Геомагнетизм и аэрономия. Т. 43. № 6. С. 788–798. 2003.
- Bienkowski G. Collisionless expansion of gas cloud in the presence of an ambient gas // Phys. Fluids. V. 7. P. 382– 390. 1964.
- Brode H.L. Blast wave a spherical charge // Phys. Fluids.
 V. 2. P. 217–229. 1959.
- Brode H.L., Enstrom T.E. Analysis of gas expansion in a rarefied atmosphere // Phys. Fluids. V. 15. P. 1913– 1917. 1972.
- Cieslak S., Khelil B.S., Choquet I., Merlen A. Cut cell strategy for 3-D blast waves numerical simulations // Shock Waves. V. 10. № 6. P. 241–249. 2001.
- Groves G.V. Initial expansion to ambient pressure of chemical explosive releases in the upper atmosphere // J. Geophys. Res. V. 68. № 10. P. 3033–3047. 1963.
- Holway L.H. Similarity model of an explosion in a rarefied atmosphere // Phys. Fluids. V. 12. P. 2506–2510. 1969.
- Kato K., Aoki1 T., Kubota S., Yoshida M. A numerical scheme for strong blast wave driven by explosion // Int. J. Numer. Meth. Fluids. V. 51. № 12. P. 1335–1353. 2006.
- Klein M.M. Similarity solution for cylindrical gas cloud in rarefied atmosphere // Phys. Fluids. V. 11. P. 964–965. 1968.
- Liang S.M., Wang J.S., Chen H. Numerical study of spherical blast-wave propagation and refection // Shock Waves. V. 12. № 1. P. 59–68. 2002.
- Ofengeim D.Kh., Drikakis D. Simulation of blast wave propagation over a cylinder // Shock Waves. V. 7. № 5. P. 305–317. 1997.
- Sorokin V.M., Sergeev I.Yu., Yaschenko A.K. Electromagnetic field generation by explosion in the ionosphere // Adv. Space Res. V. 38. № 11. P. 2511–2515. 2006.
- Stuart G.W. Explosions in rarefied atmosphere // Phys. Fluids. V. 8. P. 603–606. 1965.