УДК 551.510:523

СВЯЗЬ МАГНИТОСФЕРНЫХ ВОЗМУЩЕНИЙ С ИОНОСФЕРНЫМИ В АВРОРАЛЬНОЙ И СУБАВРОРАЛЬНОЙ ЗОНАХ

© 2012 г. Л.В.Егорова

Арктический и Антарктический научно-исследовательский институт, г. Санкт-Петербург

e-mail: eglar@aari.nw.ru

Поступила в редакцию 02.08.2010 г. После доработки 08.02.2012 г.

Совместный анализ вариаций ионосферных параметров на трех станциях вертикального зондирования (о. Хейса, Диксон и Соданкюла) с характеристиками плазмы солнечного ветра, а именно, магнитного индекса *PC*, характеризующего геоэффективную часть ММП показал, что *PC* индекс может являться предиктором для диагностики уровня электронной концентрации полярной ионосферы. Рост уровня *PC* индекса соответствуют как положительным, так и отрицательным градиентам в ходе критических частот *F*-области. При увеличении *PC* > 1.5 в зимний сезон в ночные часы наблюдается прирост уровня электронной концентрации, летом же в течение суток, а зимой в дневные часы, наоборот, происходит ее снижение. Задержка отклика ионосферы *F*-области на вариации *PC* зависит от широты станции: на ст. о. Хейса – не превышает одного ч, на ст. Диксон – двух ч, на ст. Соданкюле может составлять более 6 ч летом, зимой 0–1 ч. Рост амплитуды *PC* соответствует, как правило, аномальному увеличению *foEs* относительно медианных значений на указанных станциях с задержкой в 1 ч.

1. ВВЕДЕНИЕ

Традиционным методом исследования ионосферы является наблюдение на глобальной сети ионозондов вертикального зондирования (ВЗ). Наиболее важные результаты этих наблюдений это обнаружение различных ионосферных возмущений (внезапных ионосферных возмущений, ионосферных бурь в *F*-области ионосферы), связанных с проявлениями солнечной и геомагнитной активности. Ионосферные бури регистрируются по резкому изменению критических частот foF2, полученных при ВЗ ионосферы. Во время ионосферной бури, обычно, наблюдается как увеличение (положительная фаза), так и уменьшение (отрицательная фаза) foF2 a, следовательно, и вариации электронной концентрации в максимуме слоя F2 [Ионосферно-магнитная ..., 1987; Danilov, 2001; Еселевич, 2007; Ионосферномагнитные ..., 1986; Дэвис, 1987]. Поскольку ионосферная буря часто происходит одновременно с магнитной бурей и длится от нескольких часов до нескольких суток, есть возможность рассмотреть, как связаны вариации магнитных индексов и ионосферных характеристик во время положительных и отрицательных ионосферных возмущений, что может помочь решению вопроса диагностики и прогнозирования изменений электронной плотности в авроральных широтах.

С возмущениями в геомагнитном поле Земли связаны и такие явления, как спорадический слой *E* или *Es*. Вторжение заряженных частиц в *D* и *E*-области ионосферы приводит к появлению

полярных сияний, геомагнитных возмущений, а также спорадических слоев *Es* [Кашпар и Никитин, 2006; Жеребцов и др., 2006; Благовещенская и др.,1997].

Сложность диагностики и прогнозирования параметров ионосферы состоит в том, что на фоне относительно спокойного регулярного хода ионосферных параметров временами наблюдаются аномалии или возмущения, которые существенно меняют распределение характеристик полярной ионосферы. Совместный анализ критических частот ионозондов и индексов, характеризующих геомагнитную возмущенность, помогает в решении задач диагностики и прогнозирования характеристик полярной ионосферы. Наша цель – показать, что РС индекс может являться предиктором для диагностики уровня электронной концентрации авроральнойной ионосферы.

2. СОПОСТАВЛЕНИЕ ПАРАМЕТРОВ АВРОРАЛЬНОЙ *F*-ОБЛАСТИ ИОНОСФЕРЫ И ГЕОМАГНИТНОЙ АКТИВНОСТИ ПО ДАННЫМ *PC* ИНДЕКСА

Чтобы анализировать связь вариаций ионосферных параметров с характеристиками плазмы солнечного ветра был выбран магнитный индекс *PC*, характеризующий геоэффективную часть межпланетного магнитного поля (ММП), [Janzhura et al., 2007]. Важным аргументом в пользу этого выбора является тот факт, что для расчета

Рис. 1. Усредненный суточный ход критических частот *foF2* (кривая *1*) и их медиан (кривая *2*) ст. Диксон 1979–1980 гг. для зимних событий – сверху, для летних – снизу; a – при PC < 1, $\delta - PC > 1.5$.

Рис. 2. Усредненный временной ход вариаций *PC* индексов (сверху) и соответсвующих им критических частот *foF*2 зимой 1979 г. (снизу) на о. Хейса (выборка из 20 событий) – *a* и на ст. Диксон (5 событий) – *б*.

PC требуются данные магнитометра всего одной станции, находящейся вблизи геомагнитного полюса, а именно ст. Восток в Антарктиде или Туле

в Гренландии, причем, данные *PC* индекса мы получаем со ст. Восток в реальном времени. Известно, что ионосферные возмущения распространя-

6 ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 52 № 6 2012

Рис. 3. Вариации геомагнитных параметров *Dst* (сверху), *PC* индексов (средняя часть) и соответсвующих им критических частот *foF2* на ст. (нижняя часть) 24 февраля – *a* и 28 июня 1979 г. – δ .

ются из высоких широт в средние, поэтому для оценки динамики электронной концентрации в меридиональном направлении [Ионосферномагнитные ..., 1986; Жеребцов и др., 2006] были выбраны три пункта ВЗ: о. Хейса в приполюсной части авроральной зоны, геомагнитная широта $\Phi = 78^\circ$, ст. Диксон в зоне, $\Phi = 69^\circ$ и ст. Соданкюле в субавроральной зоне, $\Phi = 64^{\circ}$. Интересно выяснить, может ли РС индекс являться предиктором для диагностики уровня электронной концентрации в этих широтах. Для анализа используем данные за годы максимума СА, ибо в такие годы происходит большее число возмущений в солнечном ветре.

На рисунке 1 приведен усредненный суточный ход критической частоты foF2 (кривая *1*) и ее медианы (кривая *2*) ст. Диксон для разного уровня *PC* индексов для лет максимума солнечной активности 1979 и 1980 гг. Левая часть рисунка (*a*) соответствует уровню *PC* < 1, правая (δ) – *PC* > 1.5.

Верхняя часть представляет зимний сезон: январь 1979 (*W* = 166), январь 1980 (*W* = 159) и февраль 1980 (*W*=155) число случаев *n* = 26 и *n* = 28, соответственно. Нижняя часть — лето: июнь 1979 (W == 150), июль 1979 (W = 160) и июнь 1980 (W == 157), число случаев n = 14 и n = 10, соответственно. Видим, что при PC < 1 суточный ход foF2, практически, совпадает с медианным зимой и мало отличается от медианного летом, поэтому в дальнейшем будем использовать данные ВЗ для возмущенного уровня PC > 1.5. На рисунке также видно, что суточный ход foF2 в годы высокой CA ведет себя по-разному в зависимости от уровня амплитуды РС индекса: зимой при высоких РС > > 1.5 критические частоты в ночные часы выше, а днем, как и летом в течение суток – *foF*2 ниже медианных значений (при PC < 1). Таким образом, зимой ночью, как правило, мы наблюдаем положительную фазу ионосферной бури, днем и летом в течение суток – отрицательную. Надо заметить, что при PC > 1.5 не всегда наблюдаются магнитные бури.

Для анализа вариаций *foF2* в период положительной фазы ионосферной бури зимой были использованы ежечасные данные критических частот *foF2* за ночное время. Анализ проводился методом наложенных эпох, за ключевой час брался час, когда положительные градиенты частоты составляли величину Δ *foF2* > 2 МГц, где Δ *foF2* = = *foF2*1 - *foF2*0.

На рисунке 2 снизу приведен осредненный по 20 случаям ход foF2 о. Хейса (рис. 2a) и по 5 случаям ст. Диксон (рис. 26) для зимнего периода 1979 г., года максимума солнечной активности, W = 155, и соответствующий им ход РС (верхняя часть). Значительные скачки Δ *foF*2 = 2.8 МГц ст. Хейса и Δ foF2 = 3.5 МГи ст. Диксон соответствуют приросту PC с 2 до 3, при этом, скачок foF2 на Диксоне запаздывает на два часа (рис. 26). К сожалению, во время геомагнитных возмущений *F*-область ионосферы ст. Диксон, находящаяся в центре аврорального овала, часто не наблюдается из-за поглощения в области D (условие В) или экранирования спорадическим слоем Es (условие A), поэтому не удалось выделить значительное число случаев увеличения критической частоты при большом скачке в ходе РС. Поскольку мы имеем только ежечасные данные критических частот, то отзыв ионосферы на вариации электрического поля (РС) получается кратным 1 часу, так для о. Хейса сдвиг равен нулю (рис. 2а), для Диксона – два часа (рис. 26). Нужны данные с меньшим шагом, чтобы судить о задержке более точно.

В летний сезон лет максимума солнечной активности гораздо чаще на обеих станциях наблюдается отрицательная фаза ионосферной бури, что соответствует рис. 1.

Рис. 4. Вариации *PC* индексов – сверху, соответствующих им отклонений критических частот от медианы $\Delta f oF2$ – средняя часть и $\Delta f oEs$ – снизу в зимний сезон – слева, летний – справа; кривая 1 для ст. Диксон; 2 – о. Хейса.

Были рассмотрены отдельные случаи вариаций *foF*2 на ст. Диксон: в зимний сезон – 24 февраля, за 0 час взят 07 LT (рис. 3*a*), в летний сезон – 28 июня 1979 г. 0–01 LT (рис. 3*b*) – нижняя часть рис. 3. В верхней части рис. 3 представлен ход *Dst*, в средней – *PC*, ход геомагнитных параметров соответствует ходу ионосферных параметров. 24 февраля *PC* растет от 0.3 до 3.5 в унисон с началом магнитной бури (*Dst* = 60 нТл), через 2 часа происходит скачок в ходе *foF*2 на 3 МГц. 28 июня амплитуда *Dst* плавно снижается до 20 нТл, скачок в ходе *PC* с 2.2 до 3.5 опережает на один час постепенное снижение критической частоты с 5.9 до 4.6 МГц.

Нельзя утверждать, что уровень электронной плотности на высотах *F*2 связан однозначно с уровнем *PC*, но, как правило, возмущение в электрическом поле сопровождается последующим усилением вариаций в ходе критических частот авроральной ионосферы.

3. АНАЛИЗ ЗАВИСИМОСТИ СОСТОЯНИЯ КАК *F*, ТАК И *E* ОБЛАСТИ ИОНОСФЕРЫ ОТ ВАРИАЦИЙ *PC* ИНДЕКСА

Ионосфера над ст. о. Хейса и ст. Диксон редко находятся в авроральной зоне одновременно, по-

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 52 № 6 2012

этому трудно выбрать случаи возмущения в ходе *PC* индекса, при которых можно проследить реакцию на них критических частот для обеих станций. Тем не менее, такие случаи встречаются. На

Время начала магнитных бурь

№ п/п	Зима	Лето
1	12 UT 17.02.1998 г.	20 UT 01.05.1998 г.
2	12 UT 10.12.1998 г.	04 UT 20.08.1998 г.
3	00 UT 18.02.1999 г.	06 UT 08.07.1999 г.
4	12 UT 28.02.1999 г.	08 UT 28.07.1999 г.
5	12 UT 12.12.1999 г.	12 UT 22.08.1999 г.
6	12 UT 28.11.2000 г.	00 UT 26.06.2000 г.
7	04 UT 22.01.2004г.	20 UT 11.08.2000 г.
8	16 UT 24.01.2004 г.	08 UT 09.05.2001 г.
9	12 UT 28.12.2004 г.	06 UT 12.05.2001 г.
10	12 UT 21.01.2005 г.	06 UT 28.05.2001 г.
11		12 UT 20.08.2002 г.
12		12 UT 22.07.2004 г.
13		06 UT 24.07.2004 г.
14		18 UT 26.07.2004 г.

Рис. 5. Усредненный по 14 летним событиям временной ход вариаций *foF2* (*a*) и *foEs* (δ) – кривая *1*, их медиан – кривая *2* – сверху; ход разности между текущими часовыми значениями и медианой Δ *foF2* и Δ *foEs* – снизу ст. Соданкюле 1998–2005 гг.

рисунке 4 представлен ход РС индекса (сверху), отклонений от медианы параметров как foF2 (средняя часть), так и foEs (снизу) для зимнего события (20 февраля 1979 г.) – слева и летнего (27 июня 1979 г.) – справа. Зимой рост РС индекса начинается в 15 UT, Δ foF2 на ст. о. Хейса (кривая 1) принимает отрицательное значение 3.5 МГц в тот же час, через час – положительное 3 МГц, Δ foF2 на ст. Диксон (кривая 2) возрастает через два часа до уровня 3.9 МГц. В работе [Ионосферно-магнитные ..., 1986] было показано, что в высоких широтах имеется область как положительной, так и отрицательной связи появления Es ионизации с магнитной активностью, согласно с этим Δ foEs ведет себя на станциях о. Хейса и Диксон зимой противоположным образом (нижняя часть рис. 4). Одномоментно с началом возмущения Δ foEs на ст. о. Хейса резко возрастает и достигает максимума 3 МГц, на ст. Диксон $\Delta foEs$ начинает расти и увеличивается в течение 3 часов до величины 1.5 МГц.

Летом с самого начала роста PC с 7 UT $\Delta foF2$ на обеих станциях имеют отрицательные значения (за исключением одной точки в 18 UT ст. о. Хейса) все 18 ч наблюдения. Через 2 ч после начала резкого роста PC в 11 UT $\Delta foEs$ над ст. о. Хейса превышает медиану на 2.8 МГц в течение двух часов. Ход $\Delta foEs$ ст. Диксон ведет себя в унисон с ходом PC, и в течение 7 ч превышает медиану. Был вычислен коэффициент корреляции по 18 точкам одномоментных измерений между $\Delta foEs$ Диксона и *PC*, он составил r = 0.89 при высокой статистической значимости ss = 0.99. Конечно, нельзя судить о связи между возмущениями в ходе *PC* индекса и электронной плотностью авроральной ионосферы по отдельным событиям, однако, приведенные случаи подтверждают закономерности, выявленные выше (рис. 1–3). Они также не противоречат выводам, сделанным в работе [Danilov, 2001]. Зимой ночью (17 UT на о. Хейса соответствуют 20 LT, на Диксоне – 00 LT следующих суток) отклонения от медианы *foF*2 во время возмущения в геомагнитном поле имеют положительные значения в течение 6 ч. Летом же – эти отклонения отрицательны в течение 17 ч.

Во время магнитных бурь (Dst < -60 нТл), как правило, индекс PC > 2, а данные на станциях B3 о. Хейса и Диксон отсутствуют по причине поглощения радиосигнала в D-области. Поэтому для анализа влияния магнитной бури на полярную ионосферу были привлечены почасовые данные B3 субавроральной ст. Соданкюле. За период 1998–2005 гг. были выделены две группы магнитных бурь: 14 – летних и 10 – зимних, даты и время начала которых представлены в таблице. Время начала магнитных бурь приведено с точностью до одного ч, так как при совместном анализе почасовых данных B3 и *PC* важно только время суток, когда началась буря – днем или ночью, большая точность не нужна. Анализ проводился методом

Рис. 6. Усредненный по зимним событиям ход отклонений критических частот Δ *foF2* (слева) и Δ *foEs* (справа) на ст. о. Соданкюле для 7 магнитных бурь, начавшихся днем – сверху и 3, начавшихся ночью – снизу.

наложенных эпох, за ключевой был взят час начала магнитной бури, продолжительность наблюдений составляла 42 ч, 6 ч до начала бури и 36 — после, ибо часть бурь имела продолжительность не более 36 ч.

На рисунке 5 (верхняя часть) представлен усредненный по 14 летним событиям ход как параметров *foF2* (рис. 5*a*) и *foEs* (рис. 5*b*) – кривая 1, так и их медиан – кривая 2. На нижней части рис. 5 представлен ход Δ *foF2* и Δ *foEs*, то есть ход разности между текущими часовыми значениями *foF2* и медианой.

Видим, что в час начала бури $\Delta foF2$ принимает отрицательное значение, через 7 ч после начала бури $\Delta foF2$ становится меньше медианы приблизительно на 0.7 МГц, рис. 5*a*. $\Delta foEs$ одновременно с началом бури принимает положительное значение и сохраняет этот знак в течение суток, причем, через 9 ч после начала величина $\Delta foEs$ существенно увеличивается до 1.2 МГц.

На рисунке 6 представлен ход параметров Δ *foF2* (слева) и Δ *foEs* (справа), в верхней части рисунка — для 7 бурь, начавшихся днем, в нижней

для 3 — ночью. Как видим, $\Delta foF2$ для дневных часов имеет отрицательные значения, для ночных положительные, эти знаки сохраняются половину суток. $\Delta foEs$ как для ночных, так и для дневных событий носит, в основном, положительные значения.

Вариации отклика параметров субавроральной ионосферы в Соданкюле на магнитные бури аналогичны вариациям отклика авроральной ионосферы на геомагнитные возмущения меньшей амплитуды.

4. ВЫВОДЫ

1. Рост уровня амплитуды *PC* индекса соответствует как положительным, так и отрицательным градиентам в ходе критических частот *F*-области как авроральной, так и субавроральной ионосферы. При увеличении PC > 1.5 в зимний сезон в ночные часы наблюдается прирост уровня электронной концентрации, летом же в течение суток, а зимой в дневные часы, наоборот, происходит ее снижение как на станциях о. Хейса, Диксон, так и Соданкюле.

2. Задержка отклика ионосферы *F*-области на вариации *PC* зависит от широты станции: на ст. о. Хейса – не превышает одного часа, на ст. Диксон – двух часов, на ст. Соданкюле задержка может составлять летом более 6 часов, зимой 0–1 ч.

3. Рост амплитуды *PC* соответствует, как правило, аномальному увеличению *foEs* относительно медианных значений с различной задержкой: менее 1 часа на ст. о. Хейса, на Диксон и Соданкюля — больше. Сезонных отличий реакции критической частоты *foEs* на вариации *PC* не обнаружено.

Утверждать, что уровень электронной плотности на высотах F2 и E однозначно связан с уровнем амплитуды PC нельзя, однако, как правило, возмущение в электрическом поле сопровождается последующим усилением вариаций в ходе критических частот полярной ионосферы. Этот вопрос нуждается в дальнейшем исследовании.

СПИСОК ЛИТЕРАТУРЫ

– Благовещенская Н.Ф., Вовк В.Я., Корниенко В.А. Волновые процессы в высокоширотной ионосфере по данным комплексных радиофизических наблюдений // Геомагнетизм и аэрономия. Т. 37. № 5. С. 70–78. 1997.

- Дэвис К. Радиоволны в ионосфере. М.: Мир. 496 с. 1978.
- Еселевич В.Г. Физические основы прогнозирования возмущений в околоземной среде по характеристикам Солнца. http://www.Kosmofizika.ru/irkutsk/ eselevich.htm. 30.05.2007.
- Жеребцов Г.А., Бернгардт О.И., Куркин В.И., Медведев А.В., Михайлов А.В., Поддельский И.Н., Потехин А.П., Ратовский В.Н., Смирнов В.Ф., Шевцов Б.И., Шпынёв Б.Г. "Наземный комплекс для исследования атмосферы субавроральных и средних широт"; (ИСЗФ СО РАН, ИКФИА СО РАН, ИРНР ДВО РАН). arc.iki.rssi./ruearth/pres2006/kurkin.pdf
- Ионосферно-магнитные возмущения в высоких широтах. Ред. Трошичев О.А. Л.: Гидрометеоиздат, 255 с. 1986.
- Кашпар Ю.В., Никитин А.А. Состояние области D ионосферы и ее отклик на стандартное воздействие // Матер. Регион. XII конфер. по распространению радиоволн. С.-Пб., 31 окт.—1 нояб. С. 9. 2006.
- Сб. Ионосферно-магнитная служба. Ред. Авдюшина С.И., Данилова А.Д. Л.: Гидрометеоиздат. 243 с. 1987.
- Danilov A.D. F2-region response to geomagnetic disturbances // J. Atmos. Solar-Terr. Phys. V. 63. № 2. P. 441–449. 2001.
- Janzhura A., Troshichev O., Stauning P. Unified PC indices: Relation to the isolated substorms // J. Geophys. Res. V. 112. A09207. doi:10.1029/2006JA012132. 2007.