УДК 550.388.2

ВОЗМОЖНОСТЬ РАДИОЗОНДИРОВАНИЯ ИОНОСФЕРЫ В ДЕКАМЕТРОВОМ ДИАПАЗОНЕ С БОРТА ГЕОСТАЦИОНАРНОГО ИСЗ

© 2012 г. Г. В. Гивишвили¹, Н. П. Данилкин², Г. А. Жбанков³, И. В. Крашенинников¹

 ¹ФГБУ науки Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова, РАН, г. Троицк (Московская область)
 ²ФГБУ Институт прикладной геофизики им. Е.К. Федорова, Росгидромета г. Москва ³НИИ физики Южного федерального университета, г. Ростов-на-Дону

> *e-mail: givi@izmiran.ru* Поступила в редакцию 03.10.2010 г. После доработки 13.04.2011 г.

Показано, что кроме известного метода внешнего зондирования ионосферы в декаметровом диапазоне с помощью низкоорбитальных пролетных ИСЗ (ВнЗ) тот же диапазон частот может быть использован для ее диагностики, но уже с помощью геостационарных ИСЗ – метод многочастотного радиопросвечивания (МРП). Обсуждаются траекторные и энергетические особенности, связанные с применением этого метода в прямой задаче трансионосферного зондирования ионосферы.

1. ВВЕДЕНИЕ

Метод внешнего зондирования ионосферы, реализуемый с помощью низкоорбитальных ИСЗ, давно и успешно применяется в ионосферных исследованиях, зарекомендовав себя одним из эффективных инструментов экспериментального изучения околоземного космического пространства [Warren, 1962; Васильев и Кушнеревский, 1980; Данилкин, 1974]. Однако методу присущи определенные ограничения, связанные с большой скоростью перемещения и смещением орбиты низкоорбитальных ИСЗ вдоль земной поверхности. Следствием является:

 невозможность строгого разделения пространственных и временных характеристик изменчивости диагностируемой среды;

 – большое время задержки между измерением параметров среды и выдачей результатов обработки и анализа данных измерений;

 – сложности контроля состояния внутренней ионосферы, лежащей ниже высоты главного максимума ионосферы – *hmF*2.

Указанные ограничения могут в значительной степени сняты при использовании либо системы из 12-ти (24-х) низкоорбитальных ИСЗ, либо одного—трех ИСЗ с геостационарной орбитой [Гивишвили и Иванов-Холодный, 1991; Гивишвили, 1994]. Решить часть проблем можно путем разнесения положений излучателя и приемника сигналов переменной частоты зондирования. Например, излучатель расположить на ИСЗ, а сеть приемных устройств, перестраиваемых синхронно с бортовым излучателем, — на земной поверхности. В этом случае носителями информации о локаль-

ном и/или региональном состоянии среды являются трансионосферные сигналы, прошедшие сквозь ионосферу на границе радиопрозрачности ионосферы — т. е. на частотах отсечки f_c , определяемых, главным образом, зависимостью критической частоты слоя F2-foF2 в плоскости распространения [Данилкин, 1974]. Однако при использовании низкоорбитальных ИСЗ этот метод, именуемый прямым трансионосферным зондированием (ТИЗ), не дает заметных преимуществ перед ВнЗ, при том, что ему присущи все вышеперечисленные недостатки последнего. Альтернативный подход состоит в использовании в качестве несущей платформы для излучателя сигналов переменной частоты ИСЗ с геостационарной орбитой. Назовем его методом многочастотного радиопросвечивания (МРП). Его недостаток состоит в том, что из-за большой высоты орбиты (*z* ~ 36 тыс. км) область формирования физического луча $2\sqrt{\lambda_0 z/n}$, где *n* – показатель преломления, а λ_0 – длина волны достигает в поперечнике 60-80 км, что не позволяет выявлять мелкомасштабную структуру ионосферы.

Цель настоящей работы состоит в выяснении особенностей формирования и принципиальной возможности регистрации указанным методом частотной зависимости группового запаздывания и амплитуды зондирующих сигналов, особенно в окрестности частоты отсечки, как в естественных ионосферных условиях, так и при наличии в окрестности главного ионосферного максимума на пути переноса энергии волнового поля локализованных крупномасштабных неоднородностей.

Рис. 1. Широтный ход части базового $N_e(h)$ -профиля на долготе 37.5° Е для 12:00 LT 09.07.2010 г. и лучевые траектории сигналов НЧ, распространяющихся с геостационарного КА, рассчитанные с шагом 500 км.

Рис. 2. Широтное распределение критических частот *foF2* и НЧ для $N_e(h)$ -профиля из рис. 1.

Рис. 3. Зависимость группового пути сигналов, распространяющихся с геостационарного КА, от расстояния до экватора.

2. СИНТЕЗ И АНАЛИЗ ТРАНСИОНОГРАММ

Как показывают экспериментальные и теоретические исследования, поле волны, прошедшей через ионосферную плазму, формируется, главным образом, механизмом геометрической оптики. Так, например, при многочастотном наклонном радиозондировании ионосферы можно выделить только очень узкий частотный интервал, в котором волновое поле определяется дифракционным эффектом — затекание поля в область геометрооптической тени в окрестности каустической области [Еременко и др., 2007]. Синтез ионограмм многочастотного радиопросвечивания будет выполняться в такой же постановке задачи, как и для наклонного радиозондирования ионосферы [Крашенинников и др., 2004], т.е. точкой трансионограммы является решение краевой задачи для системы лучевых уравнений в неоднородной плазме. Хотя в работе [Крашенинников и др., 2004] рассматривается общий случай анизотропной ионосферы, здесь исследования будут проводиться в изотропном приближении, поскольку важен принципиальный результат оценки возможностей предлагаемого способа дистанционного зондирования.

Расчет лучевых траекторий выполняется в двумерно-неоднородном сечении плоскости распространения от ИСЗ до точки приема, формируемом комбинированными высотными профилями электронной концентрации. До высоты 2000 км $N_e(h)$ берется из модели IRI [Bilitza, 1990] и далее "сшивается" с моделью NeQuick [Nava et al., 2008] так, чтобы к высоте 36000 км концентрация электронов сходила к нулю. Пример такого двумернонеоднородного сечения до высоты 1000 км показан на рис. 1 для 09.07.2010 г. 12:00 LT в значениях плазменных частот ($f_n \simeq 8.98 \times 10^{-3} N_e^{1/2}$, где $N_e - в$ эл/см³), а также приведены примеры лучевых траекторий для частот в близкой окрестности частоты отсечки синтезированных трансионограмм (наинизших частот, излучаемых с борта ИСЗ и принимаемых на земной поверхности в данной точке – НЧ). Расчеты выполнены с учетом сферичности ионосферы для точек приема, расположенных вдоль меридиана до расстояния в 7000 км от экватора с шагом 500 км. Видно, что в силу сферичности Земли, с увеличением расстояния от экватора, они все более искривляются вблизи максимума слоя F2, отклоняясь от близкой к прямолинейной (квазиоптической) траектории на экваторе, почти не испытывающей рефракции. Это приводит к тому, что с увеличением расстояния от экватора значения НЧ все больше превышают локальные значения частоты *foF*2 в точках приема — рис. 2. А отношение k = H H/foF2 меняется от ~1 на низких широтах до ~1.6-2.0 на широтах ~50° и более.

Зависимость группового пути – P_{gr} как функции частоты зондирования для точек, отстоящих от экватора на расстояниях: X = 0, 2000; 4000 и 6000 км, показана на рис. 3. Вследствие локальной нелинейной продольной неоднородности электронной плотности в максимуме слоя F2 она может, для некоторых точек, иметь неоднозначный характер. Так, дополнительные хвосты справа вблизи НЧ для X = 4000 и 6000 км связаны с возможностью формирования "квази-педерсеновских" лучей. Примеры траекторий сигналов, приходящих на X = 0 и 6000 км, показаны на рис. 4 *a*, *б*. Таким образом, с ростом широты точки приема лучевые траектории для частот, приближающихся к частоте отсечки, все более отклоняются от прямолиней-

ной, а само значение НЧ, соответственно, от локального *foF2*. Это равнозначно тому, что на расстояниях, превышающих 3000 км от экватора, значение максимума N_e соответствует foF2 не над головой (вблизи точки выхода сигнала из ионосферы), а значению foF2, соответствующему более низким широтам (точке приближения сигнала к максимуму N_e). Иначе говоря, изображение ионосферы в параметрах НЧ деформируется – оно растягивается к высоким широтам. В этой связи представляет интерес проследить, как сказывается этот эффект при наличии крупномасштабных неоднородностей ионосферы. Для анализа их влияния на прохождение трансионосферных сигналов распределение N_e вдоль долготы задается в виде $N_e = N_e^0(1 + \delta)$, где N_e^0 – базовая, невозмущенная часть электронной концентрации, а дополнительное возмущение задается в виде:

$$\delta = dN_e \exp\left\{-\left(\frac{x-x_0}{L_x}\right)^2 - \left(\frac{z-z_0}{L_z}\right)^2\right\}.$$
 (1)

Параметры $dN_e = 25\%$, $L_x = 500$ км, $L_z = 100$ км оставались постоянным, z_0 выбиралось на уровне высоты максимума слоя, а x_0 являлось переменной величиной. Результаты расчетов НЧ и значения критических частот для трех наборов параметров (x_0 , z_0): (0 км, 325 км); (2000 км, 400 км); (4000 км, 300 км) приведены на рис. 5. Аналогичные данные для $L_x = 1000$ км, $L_z = 150$ км и набора (x_0 , z_0): (1000 км, 390 км); (3000 км, 330 км); (5000 км, 350 км) представлены на рис. 6.

Нетрудно видеть, что возмущения НЧ при неоднородностях N_e указанных масштабов отчетливо проявляются на их невозмущенном фоне даже на средних широтах, где коэффициент k заметно превышает единицу. Вместе с тем, неоднородности масштабов, сравнимых с масштабами перемещающихся ионосферных возмущений (ПИВ), слабо сказываются на пространственной структуре НЧ даже в низких широтах. В самом деле, представив ПИВ в виде гармонической волны вдоль всего сечения

$$N_e(r,\theta,t) =$$

$$= N_e^0(r,\theta,t) \left\{ 1 + \delta(r) \cos\left[-\frac{2\pi}{T}t + \frac{2\pi}{\lambda}R_0\theta + \Phi_0 \right] \right\}$$
(2)

с типичным возмущением $\delta = 10\%$, $\lambda = 250$ км и максимумом на высоте 300 км, контуры профилей f_n и искомые траектории получим в виде рис. 7. При этом следует отметить, что широтный ход НЧ практически не отличается от такового из рис. 2. Заметное влияние ПИВ оказывает только на область, расположенную под спутником.

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 52 № 4 2012

Рис. 4. Траектории сигналов НЧ, приходящих на экватор (a) и на расстоянии 6000 км от экватора (δ). Удвоение сигналов (многолучевость) возникает вследствие наличия горизонтальных градиентов электронной плотности в области максимума слоя F2 ионосферы.

Рис. 5. Широтное распределение *foF2* и НЧ для $N_e(h)$ -профиля из рис. 1 и наличия локализованной крупномасштабной неоднородности с параметрами: $\delta N_e = 25\%$ вблизи максимума слоя и характерным горизонтальным размером 500 км.

Рис. 6. Широтное распределение *foF2* и НЧ для $N_e(h)$ -профиля из рис. 1 и наличия локализованной крупномасштабной неоднородности с параметрами: $\delta N_e = 25\%$ вблизи максимума слоя и характерным горизонтальным размером 1000 км.

Рис. 7. Широтный ход лучевых траекторий НЧ для случая возмущений $N_e(h)$ -профиля из рис. 1 перемещающимися ионосферными возмущениями с длиной волны 250 км и $\delta N_e = 10\%$.

3. ЭНЕРГЕТИЧЕСКИЙ ПОТЕНЦИАЛ ТРАССЫ ГЕОСТАЦИОНАР – ЗЕМНАЯ ПОВЕРХНОСТЬ

При трансионосферном зондировании "геостационарный ИСЗ – наземный приемный пункт" принципиальным моментом является оценка необходимой мощности радиопередающего устройства и, как следствие, выбор вида рабочего сигнала для уверенной регистрации следов трансионограммы. В настоящее время практика зондирования ионосферы имеет в своем распоряжении три вида сигналов: простой гладкий импульс, линейно-частотно модулированный (ЛЧМ) и фазо-кодо манипулированный (ФКМ) сигналы. Два последних относятся к классу широкополосных сложных сигналов и при равной эффективности с классическим гладким импульсом позволяют, как опять же показывает практика, значительно снизить мощность излучателя.

Для уверенного выделения сигнала необходимо, чтобы соотношение сигнал/шум с учетом коэффициента усиления приемной антенны, по крайней мере, составляло ~20 дБ. Предположим, что в качестве приемных антенн в точках приема будут использоваться слабонаправленные вертикальный или горизонтальный диполи. Излучение также осуществляется посредством антенны дипольного типа. Для короткого диполя, находящегося в свободном пространстве, напряженность волнового поля может быть представлена соотношением [Maslin, 1987]

$$E_0 \simeq 210 P_0^{1/2} / d$$
, (3)

где E_0 имеет размерность в мВ/м, P_0 – в кВт и d – в км. Следовательно, при отсутствии поглощения и учете только фактора расходимости в свободном пространстве, величина напряженности поля составила бы ~6 мкв/м на поверхности Земли для мощности стандартного излучателя 1 кВт. На рисунке 8 представлены две синтезированные в изотропном приближении распространения радиоволн трансионограммы для модели ионосферы СМИ-88 [Часовитин и др., 1988] при приеме в двух точках вдоль нулевого меридиана: вблизи экватора (широта – 5°) и на широте 55°. Уровень солнечной активности — средний (K = 50) и время локальный полдень. Видно, что дополнительная рефракция и поглощение поля волны за счет передачи энергии среде через частоту соударений электронов с ионами и нейтральными молекулами азота, кислорода и атомарного кислорода, рассчитываемой в модели, приводит к существенному уменьшению напряженности поля. Характер уменьшения волнового поля от частоты нелинеен. Особенно быстрое спадание поля имеет место вблизи частоты отсечки, вследствие большой расходимости при прохождении антиволноводного участка траектории в окрестности главного ионосферного максимума. В таблицах 1 и 2 представлены результаты оценки соотношения сигнал/шум (SNR = S/N) в базовом решении (для мощности излучателя в 1 кВт) для 3-х частот: 12, 20 и 30 МГц. В данном случае рассматривался

Рис. 8. Синтезированные ионограммы трансионосферного зондирования ионосферы с геостационарного ИСЗ в глобальной модели ионосферы СМИ-88 для локального полудня сентября месяца и широт приема: 5° N (*a*) и 55° N (*b*).

ВОЗМОЖНОСТЬ РАДИОЗОНДИРОВАНИЯ ИОНОСФЕРЫ

<i>f</i> , кГц	<i>E</i> ₀ , мкВ/м	<i>Р</i> ^{<i>e</i>} _{<i>N</i>} , дБ	<i>Е_N</i> , дБмкВ/м	<i>Е_N</i> , мкВ/м	<i>S/N</i> , дБ
12000	2.7	45	1.9	1.2	7
20000	4.1	40	1.6	1.2	10
30000	4.5	27	-8.7	0.4	20

Таблица 1. Энергетический потенциал (широта – 5° N)

Таблица 2. Энергетический потенциал (широта – 55° N)

<i>f</i> , кГц	<i>E</i> ₀ , мкВ/м	P^e_N , дБ	<i>Е_N</i> , дБмкВ/м	<i>Е_N</i> , мкВ/м	<i>S/N</i> , дБ
12000	2.0	39	-3.9	0.6	10
20000	3.6	32	-7.0	0.4	19
30000	4.1	27	-8.9	0.4	20

электромагнитный шум, состоящий из трех компонент: атмосферного, галактического и антропогенного происхождения. Уровень антропогенного шума выбирался для загородной зоны расположения приемной станции, что естественно для ионосферных обсерваторий. Количественно суммарную среднеквадратичную величину шума (дБВт) в частотной полосе Δf можно оценить по методике, принятой МККР (CCIR-International Radio Consultative Committee) [Spaulding and Stewart, 1987] в виде [Maslin, 1987]

$$P_N = P_N^e + B - 204$$

где $P_N^e(f)$ – эффективное среднеквадратичное значение шума (дБ), суммированное по всем компонентам, в полосе 1 Гц [Spaulding and Stewart, 1987] по отношению к тепловому шуму, B = $= 10\log(\Delta f)$ и последнее слагаемое — тепловой шум электронов $10\log kT_0 = -204, T_0 - 290 \text{ K}, k - посто$ янная Больцмана. В таблицах 1 и 2 представлены результаты оценки общего шума по отношению к фоновой компоненте - тепловому шуму электронов для выбранных частот в тех же точках приема, что и синтезированы трансионограммы (рис. 8) в единицах дБВт для полосы в 1 кГц. Хорошо видно, что для низкочастотной части трансионограмм интенсивность шума на экваторе несколько выше, чем на средних широтах, что объясняется более высокой грозовой активностью в тропической зоне, формирующей атмосферную компоненту шума. Среднеквадратичная напряженность поля шума для частоты *f* в мегагерцах выражается через мощность, частоту и частотную полосу Δf в герцах как [Maslin, 1987]

$$E_N = P_N^e + 20\log f + B - 95,$$

и соответствующие значения в логарифмическом и линейном масштабах приведены в таблицах 1 и 2, как и итоговое отношение сигнала к шуму. Иными словами, можно сказать, что для импульсного сигнала длительностью ~100 мкс (что необходимо для разрешения магнитоионных компонет) при мощности излучения в 1 кВт и приеме на изотропную антенну без потерь уже возможен прием зондирующего сигнала. Тем не менее, следует отметить, что для нижней, наиболее информативной части трансионограммы, это соотношение невелико. (Необходимо также иметь в виду, что в реальной ионосфере имеет место магнитоионное расщепление сигналов. Поэтому для каждой ком-

поненты поле уменьшится, как минимум, в $\sqrt{2}$ раз, а соотношение сигнал/шум — на 3 дБ). Однако, серьезным препятствием для излучения импульсных сигналов указанной мощности с борта ИСЗ являются проблемы их электромагнитной совместимости с прочими измерительными и штатными системами. Например, снижение мощности излучения на порядок приведет к низкому качеству трансионограмм.

Альтернативный подход состоит в использовании сложных широкополосных сигналов. В настоящее время в практике наклонного радиозондирования ионосферы, включая диагностику волнового поля, рассеянного на искусственных неоднородностях, генерируемых при воздействии мощного радиоизлучения на ионосферу, апробированным средством является использование ЛЧМ-сигнала [Вертоградов и др., 2010]. В этих экспериментах уверенно регистрировалось рассеянное на неоднородностях поле зондирующих волн, которое на ~40 дБ ниже уровня прямого сигнала на расстоянии ~1000 км при мощности излучения в 400 Вт. При этом существенно (до 3-5 мин) увеличивается время зондирования. Тем не менее, принимая во внимание, что положение геостационарного ИСЗ над земной поверхностью не меняется, подобное удлинение сеанса зондирования не является неприемлемым. Правда, в этом случае несколько уменьшается частотное разрешение. Так, при работе с наиболее употре-

бительными параметрами ЛЧМ-сигнала: скорости перестройки 100 кГц/сек и временем интегрирования для оценки спектра 1 с, частотное разрешение составит 100 кГц. Изменение соотношения *S*/*N* для мощности излучения 100 Вт и указанных выше параметрах можно оценить из соотношения энергии ЛЧМ-сигнала к энергии, переносимой в импульсе за 1 с, и оно составит $\Delta SNR = \Delta E_s^2 = P_s \Delta t_s / (P_i \Delta t_i) = (100 \times 1) / (1000 \times 100 \times 10^{-6}) = 10^3$, где индекс *s* относится к ЛЧМ, а *i* – к импульсному сигналу. Разумеется, эта оценка энергетического выигрыша довольно груба. Но даже уменьшая ее на порядок величины, можно рассчитывать на увеличение соотношения S/Nна 20 дБ, что вполне достаточно для надежного приема сигнала. Дальнейшее увеличение этого параметра возможно уже только за счет коэффициента усиления приемной антенны и, возможно, уменьшения частотной полосы приемного устройства.

4. ВЫВОДЫ

1. Траекторные расчеты показывают, что метод многочастотного радиопросвечивания (МРП) позволяет отслеживать и уверенно регистрировать пространственно-неоднородную структуру ионосферы, содержащую неоднородности с горизонтальными размерами от 500 км и выше, и возмущениями электронной концентрации от 25% и выше.

2. Энергетические оценки трассы геостационарный ИСЗ – поверхность Земли показывают техническую реализуемость метода и, следовательно, регистрации сигналов декаметрового диапазона, осуществляемой с помощью современной приемо-передающей аппаратуры.

3. Метод МРП представляется перспективным с точки зрения совмещения данных, получаемых с его помощью, с данными мировой и отечественной сети наземного вертикального зондирования, а также зондирования с помощью пролетных спутников.

Работа выполнена при частичной финансовой поддержке Программы Президиума РАН № 22.

СПИСОК ЛИТЕРАТУРЫ

- Васильев Г.В., Кушнеревский Ю.В. Аппаратура для исследования внешней ионосферы. М.: ИЗМИРАН. 248 с. 1980.
- Вертоградов Г.Г., Урядов В.П. Вертоградов В.Г. и др. Диагностика искусственно-возмущенной ионосферы с помощью современной техники зондирования / Электромагнитные волны и электронные системы. Вып. Проблемы космических исследований. Т. 15. С. 22–29. 2010.
- Гивишвили Г.В., Иванов-Холодный Г.С. Способ определения пространственно-временного распределения критических частот foF2 // Б.И. № 23. 1991.
- Гивишвили Г.В. Многочастотное просвечивание ионосферы – новый метод глобальной диагностики ионосферы в реальном времени // Космические исследования. Т. 32. Вып. 4–5. С. 142–149. 1994.
- Данилкин Н.П. О получении и возможном использовании трансионограмм // Геомагнетизм и аэрономия, Т. 24. № 2. С. 369–371. 1974.
- Еременко В.А., Крашенинников И.В., Черкашин Ю.Н. Особенности поведения волнового поля радиоизлучения в окрестности максимально применимой частоты // Геомагнетизм и аэрономия. Т. 47. № 3. С. 407–412. 2007.
- Крашенинников И.В., Егоров И.Б., Коломийцев О.П. и Черкашин Ю.Н. Погрешности прогнозирования ионосферного прохождения радиоволн на основе глобальной ионосферной модели // Геомагнетизм и аэрономия. Т. 44. № 2. С. 221–226. 2004.
- Часовитин Ю.К., Широчков А.В., Беспрозванная А.С. и др. Глобальная эмпирическая модель распределения электронной концентрации, температуры и эффективной частоты соударений электронов в ионосфере // Ионосферные исслед. № 44. М.: МГК. 6–13. 1988.
- Bilitza D. International reference ionosphere 1990. WDC
 -A-R and 90–22. Space Sci. Data Cent. Greenbelt. 1990.
- Maslin N.M. HF Communication: A System Approach. Pitman Publishing. 240 p. 1987.
- Nava B., Coisson P. and Radicella S.M. A new version of the NeQuick ionosphere electron density model // J. Atmos. Solar-Terr. Phys. V. 70. № 15. P. 1856–1862. 2008.
- Spaulding A.D., Stewart F.G. An updated noise model for use in IONCAP. NTIA Report TR-87-212. 72 p. 1987.
- Warren E.S. Sweep frequency radio soundings of the top side of the ionosphere // Canad. J. Phys. V. 40. P. 1692– 1702. 1962.