УДК 533.95:537.84:551.510.535

ВАРИАЦИИ СТАТИСТИЧЕСКИХ ПАРАМЕТРОВ ЗИМНЕЙ АНОМАЛИИ *NmF*2 С ШИРОТОЙ И СОЛНЕЧНОЙ АКТИВНОСТЬЮ

© 2012 г. А. В. Павлов, Н. М. Павлова

ФГБУ науки Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН, г. Троицк (Московская обл.), e-mail: pavlov@izmiran.ru Поступила в редакцию 07.05.2010 г.

После доработки 27.07.2010 г.

Рассчитаны максимальные отношения *R* зимнего к летнему значению *NmF*2 одного и того же ионозонда для данного UT при геомагнито-спокойных дневных условиях и примерно одном и том же уровне солнечной активности по данным измерений *foF*2 98-ми ионозондов средних и низких широт северного и южного полушарий за период с 1957 по 2009 г. Условная вероятность *P*(*R* > 1) наблюдать зимнюю аномалию *NmF*2, наиболее вероятное *R_{MP}* и среднее $\langle R \rangle$ значения *R* вычислены для низкой, умеренной и высокой солнечной активности по измерениям *foF*2 в течение периодов 22 декабря ± 30 дней и 21 июня ± 30 дней. Изучены вариации *P*(*R* > 1), *R_{MP}* и $\langle R \rangle$ с широтой и солнечной активностью.

1. ВВЕДЕНИЕ

В зимних геомагнито-спокойных дневных условиях концентрация электронов *NmF2* максимума слоя *F2* ионосферы часто выше, чем геомагнито-спокойное значение *NmF2* в летних условиях при близких значениях уровней солнечной активности при том же значении местного времени и над той же точкой поверхности Земли. Это явление известно как зимняя аномалия *NmF2* (см., например, [Боенкова, 1969; Фаткуллин и др., 1973, 1974; Брюнелли и Намгаладзе, 1988; Павлов и др., 2008 a, 6; Torr and Torr, 1973; Zou et al., 2000; Pavlov and Pavlova, 2005, 2009]).

Для изучения явления зимней аномалии NmF2 в работе [Боенкова, 1969] проведено глобальное сравнение ежечасных медианных значений критических частот foF2 слоя F2 ионосферы, измеренных ионозондами северного и южного полушарий в январе и июле 1958, 1962 и 1963 гг. В исследовании [Torr and Torr, 1973] зимней аномалии NmF2 использовались средние арифметические значения месячных медиан foF2 за ноябрь-февраль и май-август, вычисленные по данным 140 ионозондов вблизи полудня за 1958, 1969 и 1964 гг. Однако, по определению, месячная медиана ионосферного параметра не связана с уровнем геомагнитной активности [Пиггот и Равер, 1978]. Таблица 3 работы [Pavlov and Pavlova, 2005] показывает, что день месяца, в который вычисляется медиана ионосферного параметра, может быть как геомагнито-спокойным, так и геомагнито-возмущенным. Использование геомагнитовозмущенных значений NmF2 вместо геомагнито-спокойных NmF2 может привести к неверным результатам и выводам. Поэтому достоверность результатов и выводов работ [Боенкова, 1969; Torr and Torr, 1973] неясна. Кроме того, использование в работе [Torr and Torr, 1973] усредненных за четыре месяца значений *foF2* дает слишком грубую оценку явления зимней аномалии *NmF2*.

Изучение вариаций ионосферных параметров примерно над одной и той же точкой поверхности Земли в фиксированные день года и момент местного времени (или при близких значениях местного времени и номера дня в году) при геомагнито-спокойных условиях и примерно одинаковом уровне солнечной активности выявило значительную изменчивость NmF2, возможные источники которой обсуждаются в работах [Forbes et al., 2000; Rishbeth and Mendillo, 2001]. Эта изменчивость зимних и летних NmF2 вызывает изменчивость отношения зимнего значения NmF2 к летней величине NmF2, определяющего зимнюю аномалию NmF2. Поэтому для изучения зимней аномалии NmF2 необходимо использовать статистические методы, описанные, например, в монографии [Джонсон и Лион, 1980], и впервые примененные в работе [Pavlov and Pavlova, 2008] для изучения зимней аномалии NmF2 по данным ионозонда Argentine Islands. Цель настоящей работы – применить этот статистический подход для изучения вариаций статистических параметров зимней аномалии NmF2 с широтой и солнечной активностью по данным измерений foF2 98ми ионозондов средних и низких широт северного и южного полушарий за период с 1957 по 2009 г.

2. ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ И МЕТОД ИХ АНАЛИЗА

В работе используются часовые значений foF2, измеренные 98-ю ионозондами с 1957 по 2009 г. и взятые по Интернету из базы данных геофизического центра данных Боулдер, США. Географические и геомагнитные координаты ионозондов приведены в табл. 1. При вычислении геомагнитных координат геомагнитное поле аппроксимируется полем эксцентричного магнитного диполя с учетом несовпадения географического и геомагнитного полюсов Земли и различия между центром вращения Земли и центром геомагнитного диполя с учетом годовых вариаций параметров эксцентричного магнитного диполя от 1955 до 1995 г. с шагом в 5 лет [Деминов и Фищук, 2000]. Используя коэффициенты Гаусса [Lanza and Meloni, 2006], параметры эксцентричного магнитного диполя были вычислены для 2000 и 2005 г. Эти значения позволяют определить параметры эксцентричного магнитного диполя для каждого года путем линейной интерполяции, а для 2006-2009 гг. используется линейная экстраполяция с использованием параметров 2000 и 2005 г.

В геомагнито-спокойных условиях ионосфера средних широт расположена в промежутках изменения геомагнитных широт $30-55^{\circ}$ и от -30° до -55° , а ионосфера низких широт находится между -30° и 30° геомагнитной широты [Брюнелли и Намгаладзе, 1988]. Исходя из средних значений геомагнитных широт ионозондов табл. 1, 59 и 14 ионозондов расположены на средних широтах северного и южного географических полушарий соответственно, 15 ионозондов – на низких широтах северного географического полушария от 12.2° до 27.2° геомагнитной широты и 10 ионозондов – на низких широтах южного географического полушария от –13.9° до –28.2° геомагнитной широты.

Дни декабрьского и июньского солнцестояния — центральные дни зимнего и летнего сезонов северного географического полушария и летнего и зимнего сезонов южного географического полушария. Исходя из этого, в настоящей работе проводится сравнение NmF2, измеренных в течение периодов 22 декабря \pm 30 дней и 21 июня \pm \pm 30 дней для данного значения мирового времени UT или солнечного местного времени

$$SLT = UT + \lambda/15,$$
 (1)

где λ — географическая долгота в градусах, а единицы измерения SLT и UT — часы.

Времена восхода и захода Солнца зависят от высоты [Павлов и Павлова, 2010], но для преобладающего большинства ионозондов табл. 1 отсутствуют измерения высот максимума слоя F2, на которых эти времена должны вычисляться. Поэтому времена восхода и захода Солнца опре-

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 52 № 3 2012

деляются с помощью алгоритмов, приведенных в работе [Павлов и Павлова, 2010], на высотах 220, 270 и 320 км для условий низкой, средней и высокой солнечной активности.

Известно, что NmF2 зависит от потока ионизирующего солнечного излучения в рассматриваемый день, величина которого коррелирует с индексом солнечной активности F10.7 для исследуемого дня и средним значением F10.7 индекса F10.7 за 81 день с центром в рассматриваемый день [Richards et al., 1994]. Вариации NmF2 также связаны с изменениями температуры и концентраций нейтральных компонентов, зависимость которых от солнечной активности описывается зависимостью этих параметров от *F*10.7*p* (индекс F10.7 за день, предшествующий рассматриваемому дню) и F10.7 [Hedin, 1987; Picone et al., 2002]. Поэтому зависимость NmF2 от солнечной активности можно приближенно описать в терминах изменений индексов F10.7, F10.7p и F10.7.

В настоящей работе при вычислении каждого отношения зимнего значения NmF2 к летней величине NmF2 рассматриваются только те пары зимнего и летнего дней, индексы солнечной активности которых близки:

$$|F10.7(W) - F10.7(S)| \le 20,$$

$$|F10.7p(W) - F10.7p(S)| \le 20,$$

$$|\overline{F10.7}(W) - \overline{F10.7}(S)| \le 20,$$

(2)

где буквами *W* и *S* отмечаются зимние и летние дни соответственно.

Измеренные зимние и летние значения *NmF2* сортируются на три группы, соответствующие низкому, умеренному и высокому уровню солнечной активности, для изучения вариаций параметров зимней аномалии *NmF2* с солнечной активностью. Низкая солнечная активность определяется условиями

$$F10.7 < 100, F10.7p < 100, F10.7 < 100.$$
 (3)

При умеренной солнечной активности

$$100 \le F10.7 \le 170, \ 100 \le F10.7p \le 170,$$
(4)

$$100 \le F10.7 \le 170.$$

Для высокой солнечной активности

$$F10.7 > 170, F10.7p > 170, F10.7 > 170.$$
 (5)

Релаксация состава нейтральной верхней атмосферы от возмущенных к спокойным условиям происходит примерно за 7–12 ч в среднем [Hedin, 1987], при этом время полного восстановления состава нейтральной верхней атмосферы на всех высотах выше 120 км может составлять несколько суток [Richmond and Lu, 2000]. Поэтому, если в момент измерения *NmF*2 значение трехчасового индекса *Кр* геомагнитной активности не превы-

ПАВЛОВ, ПАВЛОВА

Таблица 1. Географические широта φ и долгота λ и геомагнитные широта Φ и долгота Λ ионозонда, условная вероятность P(R > 1) наблюдать зимнюю аномалию, наиболее вероятное значение R_{MP} отношения R и среднее значение $\langle R \rangle$ отношения R за период измерений с 1957 г. по 2009 г. Первая, вторая и третья цифры соответствуют условиям низкой, умеренной и высокой солнечной активности. Прочерк соответствует условиям, когда расчеты не проводятся из-за отсутствия или малого количества данных

Ионозонд	φ (°)	λ (°)	Φ (°)	Λ (°)	P(R > 1)(%)	R _{MP}	$\langle R \rangle$
Yakuts	62.0	129.6	54.0 ± 0.5	192.0 ± 0.9	90, 98, 95	1.3, 1.9, 2.9	1.5, 2.3, 2.7
Podkamennaya	61.6	90.0	52.8 ± 0.6	159.9 ± 0.1	66, 98, 98	1.3, 2.1, 3.1	1.2, 2.1, 3.3
Magadan	60.0	151.0	54.3 ± 0.7	211.9 ± 1.4	95, 99, 100	1.5, 2.1, 3.3	1.7, 2.5, 3.7
Tomsk	56.5	84.9	47.6 ± 0.6	155.1 ± 0.3	89, 100, 100	1.3, 1.5, 2.5	1.4, 1.9, 2.7
Sverdlovsk	56.4	58.6	48.7 ± 0.2	133.2 ± 0.2	82, 100, 99	1.3, 1.9, 2.5	1.3, 1.9, 2.7
Gorki	56.1	44.3	49.6 ± 0.1	121.0 ± 0.2	69, 89, 100	1.1, 1.9, 2.3	1.2, 1.8, 2.8
Moscow	55.2	37.3	49.9 ± 0.2	114.5 ± 0.6	82, 100, 97	1.3, 1.7, 2.7	1.3, 2.0, 2.9
Kaliningrad	54.7	20.6	51.2 ± 0.2	99.9 ± 0.3	95, 100, 98	1.3, 1.5, 2.5	1.5, 2.0, 2.4
Juliusruh	54.6	13.4	52.2 ± 0.4	92.9 ± 0.8	76, 98, 100	1.1, 1.9, 2.7	1.2, 2.0, 2.8
Novosibirsk	54.6	83.2	45.6 ± 0.5	153.8 ± 0.1	89, 86, 86	1.3, 1.9, 2.3	1.4, 1.9, 2.1
St Peter-Ording	54.3	8.6	52.3 ± 0.1	88.8 ± 0.2	87, -, -	1.5, -, -	1.6, -, -
Petropavlovsk	53.0	158.7	48.0 ± 0.7	221.6 ± 1.7	88, 97, -	1.3, 2.5, -	1.5, 2.3, -
Irkutsk	52.5	104.0	43.1 ± 0.5	171.5 ± 0.7	95, 97, 91	1.5, 1.9, 2.3	1.5, 1.9, 2.2
Miedzeszyn	52.2	21.2	48.8 ± 0.2	99.7 ± 0.2	68, 97, -	1.3, 1.9, –	1.1, 2.0, -
De Bilt	52.1	5.2	51.1 ± 0.3	85.1 ± 0.2	97, -, 100	1.5, -, 2.5	1.6, -, 3.0
Adak	51.9	183.4	49.6 ± 0.1	242.0 ± 0.4	99, -, -	1.5, -, -	1.8, -, -
Lindau	51.6	10.1	49.9 ± 0.3	89.4 ± 0.2	92, 98, -	1.3, 1.7, -	1.4, 2.0, -
Chilton	51.6	358.7	50.8 ± 0.2	78.1 ± 0.4	88, 100, -	1.3, 1.9, –	1.3, 2.3, -
Slough	51.5	365.4	50.4 ± 0.5	84.9 ± 0.3	88, 97, 100	1.3, 1.9, 2.3	1.4, 2.0, 2.7
Kiev	50.5	30.5	45.8 ± 0.1	107.3 ± 0.2	95, 98, -	1.3, 1.7, -	1.5, 1.8, -
Dourbes	50.1	4.6	49.2 ± 0.4	83.7 ± 0.2	86, 91, 100	1.3, 1.7, 2.5	1.3, 1.8, 2.7
Pruhonice	50.0	14.6	47.6 ± 0.4	92.6 ± 0.5	67, 93, -	1.1, 1.3, -	1.2, 1.3, -
Karaganda	49.8	73.1	40.8 ± 0.2	144.5 ± 0.2	93, 97, -	1.3, 1.5, -	1.4, 1.6, –
Khabarovsk	48.5	135.1	40.4 ± 0.5	199.8 ± 1.0	77, 84, 92	1.3, 1.9, 1.9	1.4, 1.7, 2.5
Paris-Saclay	48.1	2.3	47.9 ± 0.1	80.9 ± 0.2	72, 85, -	1.3, 1.5, -	1.2, 1.5, -
Freiburg	48.1	7.6	47.0 ± 0.2	85.8 ± 0.2	73, 94, -	0.9, 1.7, -	1.8, 2.9, -
Rostov	47.2	39.7	41.4 ± 0.2	114.5 ± 0.3	72, 92, 95	1.1, 1.5, 1.9	1.2, 1.6, 1.9
Graz	47.1	15.5	44.8 ± 0.3	92.8 ± 0.2	72, 97, 98	1.1, 1.9, 1.9	1.2, 1.8, 1.9
Bekescsaba	46.7	21.2	43.4 ± 0.2	97.9 ± 0.1	84, 100, -	1.3, 1.7, –	1.4, 1.9, –
Poitiers	46.6	0.3	46.5 ± 0.6	78.5 ± 0.3	88, 98, 88	1.5, 1.7, 2.7	1.5, 1.9, 2.0
Schwarzenburg	46.6	6.7	45.8 ± 0.2	84.5 ± 0.2	81, 96, -	1.3, 1.7, –	1.2, 1.7, -
Novokazalinsk	45.5	62.1	37.3 ± 0.1	134.2 ± 0.2	91, 95, -	1.3, 1.3, –	1.4, 1.5, –
Wakkanai	45.4	141.7	37.9 ± 0.7	206.8 ± 1.6	94, 97, 98	1.5, 1.9, 1.9	1.6, 2.0, 2.3
Ottawa	45.4	284.1	53.4 ± 0.9	357.7 ± 1.5	98, 100, 100	1.7, 2.7, 3.9	1.7, 2.8, 3.5
Alma Ata	43.2	76.9	33.8 ± 0.2	146.9 ± 0.4	75, 94, 97	1.3, 1.3, 1.5	1.2, 1.4, 1.6
Sofia	42.7	23.4	39.2 ± 0.3	98.7 ± 0.3	84, 87, 98	1.3, 1.5, 2.1	1.4, 1.6, 2.2
MillstoneHill	42.6	288.5	49.5 ± 0.5	3.7 ± 0.3	91, 100, -	1.5, 2.5, -	1.6, 3.3, –
Rome	41.8	12.5	40.0 ± 0.5	88.4 ± 0.4	71, 95, 97	1.1, 1.5, 1.5	1.2, 1.7, 1.8
Tbilisi	41.7	44.8	35.3 ± 0.1	118.0 ± 0.2	75, 83, -	1.3, 1.3, -	1.2, 1.4, –
Tashkent	41.3	69.6	32.6 ± 0.3	140.2 ± 0.3	79, 88, 91	1.3, 1.5, 1.3	1.4, 1.4, 1.4
Del'ebre	40.8	0.3	40.9 ± 0.7	76.7 ± 0.3	49, 81, 87	0.7, 1.5, 1.5	1.1, 2.2, 2.3
SanVito	40.6	17.8	37.7 ± 0.0	92.9 ± 0.1	93, 100, -	1.5, 1.7, -	1.7, 2.0, -
Tortosa	40.4	0.3	40.5 ± 0.7	76.6 ± 0.3	76, 96, 98	1.3, 1.5, 1.7	1.3, 1.8, 1.9
Fort Monmouth	40.4	285.9	49.3 ± 0.1	358.4 ± 0.3	96, -, -	1.7, -, -	1.6, -, -
Beijing	40.0	116.3	30.4 ± 0.6	183.9 ± 0.6	88, -, -	1.5, -, -	1.6, -, -
Boulder	40.0	254.7	47.0 ± 1.0	325.0 ± 2.4	91, 98, 99	1.5, 2.1, 2.3	1.5, 2.3, 2.8
Akita	39.7	140.1	31.7 ± 0.1	206.7 ± 0.2	96, -, -	1.7, -, -	1.8, -, -
Washington	38.7	282.9	47.6 ± 0.2	355.1 ± 0.5	98, 100, -	1.7, 2.7, -	1.7, 2.4, -

Таблица 1. Окончание

Ионозонд	φ (°)	λ (°)	Φ (°)	Λ (°)	P(R > 1)(%)	R _{MP}	$\langle R \rangle$
Athens	38.0	23.5	34.7 ± 0.3	97.6 ± 0.2	50, 83, -	0.9, 1.7, -	1.1, 1.8, -
Ashkhabat	37.9	58.3	30.1 ± 0.2	129.4 ± 0.4	63, 89, 87	0.9, 1.3, 1.5	1.2, 1.5, 1.4
Wallops IS	37.8	284.5	45.4 ± 1.2	358.4 ± 1.1	97, 100, 100	1.7, 2.3, 3.3	1.8, 2.4, 3.0
Gibilmanna	37.8	14.0	35.6 ± 0.2	89.0 ± 0.1	85, -, -	1.3, -, -	1.5, -, -
El Arenosillo	37.1	353.3	38.2 ± 0.4	69.3 ± 0.1	87, -, -	1.3, -, -	1.4, -, -
Kokubunji	35.7	135.0	27.2 ± 0.4	202.6 ± 0.6	71, -, -	0.9, -, -	1.5, -, -
Point Arguello	35.6	239.4	41.3 ± 0.6	309.3 ± 1.8	94, 99, 100	1.7, 1.5, 1.9	1.9, 2.1, 2.0
Dyess	32.4	260.3	39.3 ± 0.4	333.2 ± 0.5	83, 94, -	1.3, 2.1, -	1.4, 2.0, -
White Sands	32.3	253.5	40.0 ± 0.3	333.4 ± 1.1	82, 99, -	1.3, 1.5, -	1.4, 1.8, -
Yamagawa	31.3	130.6	22.0 ± 0.4	198.8 ± 0.5	99, -, -	1.9, -, -	2.2, -, -
Eglin AFB	30.4	273.3	37.7 ± 0.5	347.2 ± 0.4	82, 97, -	1.7, 1.9, –	1.5, 2.3, -
Delhi	28.6	77.2	18.7 ± 0.1	145.8 ± 0.5	50, 71, 53	0.9, 0.9, 0.9	1.1, 1.3, 1.4
Grand Bahama	26.6	281.8	35.8 ± 0.2	353.9 ± 0.6	90, 94, -	1.5, 1.3, -	1.6, 1.6, -
Okinawa	26.3	127.8	16.1 ± 0.0	195.9 ± 0.1	100, -, -	3.1, -, -	2.9, -, -
Taipei	25.0	121.5	14.3 ± 0.3	189.2 ± 1.0	95, 100, 100	1.9, 2.5, 2.3	2.4, 2.3, 2.3
Chung-Li	24.9	121.2	14.4 ± 0.2	189.7 ± 0.4	98, -, -	2.3, -, -	2.6, -, -
Ahmedabad	23.0	72.6	13.5 ± 0.2	141.0 ± 0.7	88, 98, 90	1.3, 1.9, 1.3	1.9, 2.0, 1.8
Calcutta	23.0	88.6	12.2 ± 0.1	156.2 ± 0.5	72, 63, -	0.9, 0.9, -	2.0, 1.4, -
Havana	23.0	277.6	31.4 ± 0.9	350.6 ± 1.1	89, -, -	1.5, -, -	1.8, -, -
Maui	20.8	203.5	21.3 ± 0.1	273.4 ± 1.6	95, 100, 100	1.7, 1.7, 1.9	2.1, 2.0, 1.9
Niue Island	19.1	169.9	13.9 ± 0.9	241.5 ± 0.0	51, -, -	0.9, -, -	1.1, -, -
Puerto Rico	18.5	292.8	27.0 ± 1.2	6.0 ± 1.2	85, -, -	1.5, -, -	1.7, -, -
Dakar	14.8	341.6	19.5 ± 0.6	53.4 ± 0.6	96, 96, 98	2.7, 2.5, 2.1	2.7, 2.4, 1.9
Quagadougou	12.4	358.5	14.5 ± 0.4	69.3 ± 0.3	97, 100, 96	1.5, 1.7, 1.3	1.6, 1.8, 1.9
Bogota	4.5	285.8	14.7 ± 0.1	357.9 ± 0.4	94, -, -	2.3, -, -	2.3, -, -
Vanimo	-2.7	141.3	-13.9 ± 0.1	213.1 ± 0.3	92, -, -	1.5, -, -	1.6, -, -
Cocos Island	-12.2	96.8	-24.9 ± 0.2	163.4 ± 0.7	81, -, -	1.1, -, -	1.5, -, -
Darwin	-12.5	131.0	-25.2 ± 0.2	202.7 ± 0.6	68, 59, -	1.1, 0.9, -	1.3, 1.5, -
Tahiti	-17.7	210.7	-16.4 ± 0.1	288.9 ± 0.6	49, -, 100	0.9, -, 1.5	1.1, -, 1.7
Townsville	-19.3	146.7	-30.8 ± 0.2	220.8 ± 1.6	57, 71, 77	0.9, 0.9, 0.9	1.2, 1.5, 1.5
La Reunion	-21.1	55.9	-28.0 ± 0.0	117.8 ± 0.1	33, -, -	0.7, -, -	0.9, -, -
Rarotonga	-21.2	200.2	-22.1 ± 0.1	278.5 ± 0.8	24, -, -	0.7, -, -	0.9, -, -
Learmonth	-21.9	114.0	-35.7 ± 0.0	183.1 ± 0.2	57, -, -	0.9, -, -	1.1, -, -
Madimbo	-22.4	30.9	-24.4 ± 0.0	93.6 ± 0.1	31, -, -	0.7, -, -	0.9, -, -
Johannesburg	-26.1	28.1	-26.7 ± 0.4	89.0 ± 0.7	7, 27, 75	0.7, 0.9, 1.1	0.7, 0.9, 1.5
Brisbane	-27.5	152.9	-38.4 ± 0.2	229.6 ± 1.6	27, 67, 80	0.9, 0.9, 1.3	0.9, 1.2, 1.3
Louisvale	-28.5	21.2	-28.2 ± 0.1	83.0 ± 0.1	12, -, -	0.5, -, -	0.7, -, -
Norfolk	-29.0	168.0	-37.2 ± 0.1	247.6 ± 1.3	39, 47, 74	0.9, 0.9, 1.1	1.0, 1.1, 1.2
Mundaring	-32.0	116.4	-46.3 ± 0.2	185.3 ± 1.5	34, 67, 89	0.9, 0.9, 1.5	1.0, 1.2, 1.7
Grahamstown	-33.3	26.5	-33.4 ± 0.3	86.1 ± 0.6	13, 52, 86	0.7, 0.9, 1.1	0.8, 1.1, 1.3
Camden	-34.0	150.7	-45.5 ± 0.2	229.6 ± 0.7	50, 78, -	0.9, 1.1, -	1.2, 1.4, -
Capetown	-34.1	18.3	-32.0 ± 0.4	77.7 ± 0.6	11, 28, -	0.7, 0.7, -	0.7, 0.9, -
Salisbury	-34.7	136.8	-48.1 ± 0.0	211.6 ± 0.4	52, -, -	0.9, -, -	1.1, -, -
Canberra	-35.3	149.1	-47.1 ± 0.2	227.0 ± 1.6	47, 78, 77	0.9, 1.1, 1.3	1.1, 1.6, 1.6
Conception	-36.6	287.0	-24.5 ± 0.2	0.0 ± 0.0	17, 14, –	0.7, 0.7, -	0.8, 0.8, -
Auckland	-37.0	175.0	-43.7 ± 0.0	257.7 ± 0.3	15, -, -	0.9, -, -	0.8, -, -
Christchurch	-43.6	172.8	-50.7 ± 0.1	258.0 ± 1.5	22, 70, 98	0.7, 1.3, 1.7	0.8, 1.3, 1.7
Port Stanley	-51.7	302.2	-39.1 ± 0.6	12.6 ± 1.0	21, 17, 38	0.7, 0.7, 0.7	1.0, 0.8, 1.0
South Georgia	-54.3	323.5	-42.3 ± 0.1	28.1 ± 0.2	11, -, -	0.7, -, -	0.7, -, -
Argentine Islands	-65.2	295.7	-51.7 ± 0.3	7.8 ± 0.8	5, 19, 58	0.7, 0.7, 0.9	0.7, 0.8, 1.3

Таблица 2. Коэффициенты линейной корреляции P(R > 1), R_{MP} и $\langle R \rangle$ с геомагнитной Φ и географической φ широтами в северном географического полушарии с использованием данных ионозондов табл. 1, средняя геомагнитная широта которых находится в пределах от 30° до 55°. Первая, вторая и третья цифры соответствуют низкой, умеренной и высокой солнечной активности.

Широта	P(R > 1)	R_{MP}	$\langle R \rangle$
Φ	0.21, 0.46, 0.48	0.08, 0.54, 0.83	0.01, 0.53, 0.85
φ	0.02, 0.17, 0.18	-0.20, 0.16, 0.51	-0.23, 0.08, 0.56

шало 3, то это не всегда означает, что NmF2 соответствует геомагнито-спокойным условиям. В настоящей работе NmF2, измеренное в момент времени UT рассматривается как геомагнито-спокойное значение NmF2, если $Kp \le 3$ в течение 24-часового периода, предшествующего моменту измерении NmF2, включая момент измерения NmF2.

Явление зимней аномалии *NmF*2 определяется отношением

$$r = NmF2(W, UT, F10.7, F10.7p, F10.7)/$$

$$NmF2(S, UT, F10.7, F10.7p, \overline{F10.7} \le 170),$$
(6)

где NmF2(W, UT, F10.7, F10.7p, F10.7) и NmF2(S, UT, F10.7, F10.7p, F10.7) – геомагнито-спокойные значения NmF2 для зимних и летних условий соответственно.

В течение каждого рассматриваемого дневного периода для каждого ионозонда зависимость отношения *r* от UT принимает максимальное значение $R = r_{\text{max}}$. Зимняя аномалия *NmF*2 существует в рассматриваемый дневной период, если R > 1 для этого периода.

Введем интервалы изменения R одной и той же длины $\Delta R = 0.2$ для изучения распределения R по амплитуде. Для данного уровня солнечной активности условная вероятность P(R) появления R в некотором интервале изменения R определяется как отношение числа величин R, попадающих в заданный интервал изменения R, к полному числу величин R, рассматриваемых для данного ионозонда и выбранной солнечной активности. Наиболее вероятное значение R_{MP} отношения R – значение R, при котором вероятность P(R) принимает максимальное значение. Среднее значение R определяется выражением

$$\langle R \rangle = \sum_{k \ge 1} R_k P(R_k),$$
 (7)

где $R_k = (k - 0.5)\Delta R, k = 1, 2, ...$

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В таблице 1 приведены результаты расчетов условной вероятности P(R > 1) наблюдать явление зимней аномалии NmF2, наиболее вероятные и

средние значения *R*. Первая, вторая и третья цифры (или прочерк вместо цифры) соответствуют низкой, умеренной и высокой солнечной активности. Число геомагнито-спокойных зимних N_W и летних N_S дней, используемых для определения *R* для выбранного уровня солнечной активности, должно быть достаточно велико, чтобы результаты статистического анализа были достоверными. В настоящей работе статистическое исследование не проводится (прочерк в табл. 1), если $N_W < 30$ или $N_S < 30$.

Из таблицы 1 следует, что P(R > 1) = 49-100%, $R_{MP} = 0.7 - 3.9$ и $\langle R \rangle = 1.0 - 3.7$ в северном географическом полушарии и P(R > 1) = 5 - 100%, $R_{MP} =$ = 0.5 - 1.7 и $\langle R \rangle = 0.7 - 1.7$ в южном географическом полушарии. В северном географическом полушарии наименьшая вероятность наблюдать зимнюю аномалию и наименьшее значение R_{MP} соответствует условиям низкой солнечной активности по данным ионозонда Del'ebre, а наименьшее значение $\langle R \rangle$ – ионозондам Del'ebre, Miedzeszyn, Athens, Delhi, Niue Island и Tahiti. В южном полушарии наименьшее значение P(R > 1)получено по данным ионозонда Argentine Islands, наименьшее значение R_{MP} – по измерениям ионозонда Louisvale и наименьшее значение $\langle R \rangle$ – по данным ионозондов South Georgia, Capetown и Argentine Islands при низкой солнечной активности. Наибольшие значения $R_{MP} = 3.9$ и $\langle R \rangle = 3.7$ соответствуют условиям высокой солнечной активности для ионозондов северного географического полушария Ottawa и Magadan соответственно. В южном географическом полушарии максимальные значения R_{MP} и $\langle R \rangle$ также получены для условий высокой солнечной активности: R_{MP} = $=\langle R \rangle = 1.7$ для ионозонда Christchurch и $\langle R \rangle = 1.7$ для ионозондов Tahiti и Mundaring. Можно отметить, что для большинства ионозондов значения $P(R > 1), R_{MP}$ и $\langle R \rangle$ не уменьшаются с ростом солнечной активности.

Результаты статистических исследований, представленных в табл. 1, показывают ошибочность вывода работы [Torr and Torr, 1973], основанного на медианном подходе, что при низкой солнечной активности явление зимней аномалии *NmF*2 существует только в северном географическом полушарии выше примерно 45° географиче

ской широты. Медианный подход приводит к выводам, что при высокой солнечной активности зимняя аномалия NmF2 южного полушария наблюдается только в долготном секторе $55-85^{\circ}$ W, а при низкой солнечной активности зимняя аномалия NmF2 отсутствует в южном полушарии и в ряде областей северного полушария [Боенкова, 1969]. Результаты настоящей работы показывают несостоятельность этих выводов и медианного подхода (см., табл. 1). Сравнение средне-месячных зимних и летних значений NmF2, измеренных ионозондом Port Stanley, позволило сделать вывод, что явление зимней аномалии NmF2 не существует при низкой солнечной активности [Zou et al., 2000]. Статистическое исследование, проведенное в настоящей работе, не подтверждает этот вывод, что свидетельствует о некорректности изучения зимней аномалии NmF2 с помощью сравнения зимних и летних среднемесячных значений NmF2.

В качестве примера на рис. 1 приведены результаты расчетов P(R) по данным ионозондов Ottawa (панель a), Christchurch (панель δ), Maui (панель в) и Johannensburg (панель г) для высокой (сплошные кривые), средней (штриховые кривые) и низкой (точечные кривые) солнечной активности. Из рисунка 1 видно, что из сравнения зимнего NmF2 с летним NmF2, взятых при геомагнито-спокойных условиях, одном и том же UT и примерно одинаковом уровне солнечной активности, можно сделать вывод о существовании зимней аномалии NmF2 только для этих двух дней, и это сравнение не может быть использовано для отрицания существования зимней аномалии NmF2. Более того, табл. 1 и рис. 1 показывают, что вывод об отсутствии зимней аномалии NmF2 нельзя сделать даже на основании статистического анализа, дающего значение $\langle R \rangle$ или R_{MP} меньше единицы.

Значения *foF2* зависят от геомагнитной Φ и географической ф широт (см., например, [Керблай, 1960]). Отличие зависимости foF2 от Φ или ф в летних и зимних условиях может оказывать влияние на корреляцию статистических характеристик зимней аномалии NmF2 с Ф или ф. В таблице 2 приведены вычисленные коэффициенты линейной корреляции $P(R > 1), R_{MP}$ и $\langle R \rangle$ с геомагнитной и географической широтами на средних широтах северного географического полушария для низкой (первая цифра), умеренной (вторая цифра) и высокой (третья цифра) солнечной активности. Видно, что P(R > 1), R_{MP} и $\langle R \rangle$ значительно сильнее коррелируют с Ф, чем с ф при умеренной и высокой солнечной активности. При низкой солнечной активности величины P(R > 1), R_{MP} и $\langle R \rangle$ слабо коррелируют с геомагнитной и географическими широтами. Рост солнечной активности вызывает увеличение коэффициентов корреляции $P(R > 1), R_{MP}$ и $\langle R \rangle$ с геомагнитной

Рис. 1. Условная вероятность появления P(R) появления R в промежутке изменения R для высокой (сплошные кривые), средней (штриховые кривые) и низкой (точечные кривые) солнечной активности по данным ионозондов Ottawa (панель a), Christchurch (панель δ), Maui (панель s) и Johannensburg (панель z).

широтой. Из таблицы 2 следует, что корреляция P(R > 1), R_{MP} и $\langle R \rangle$ с Φ ослабевает, если при расчете коэффициентов корреляции учитывать не только средние, но и низкие широты. По-видимому, это связано с нелинейным характером зависимостей P(R > 1), R_{MP} и $\langle R \rangle$ от Φ .

Для изучения зависимостей $P(R > 1), R_{MP}$ и $\langle R \rangle$ от Ф вводится разбиение геомагнитных широт на интервалы одинаковой длины 5°: от 10° до 55° и от -10° до -55°. Для каждого интервала вычисляются арифметически средние значения $P^{a}(R > 1)$, R_{MP}^{a} и $\langle R \rangle^{a}$ величин $P(R > 1), R_{MP}$ и $\langle R \rangle$ и арифметически среднее значение Ф^а геомагнитных широт ионозондов этого интервала. На рисунках 2 и 3 представлены результаты расчетов $P^{a}(R > 1), R^{a}_{MP}$ и $\langle R \rangle^a$, вычисленные для каждого рассматриваемого интервала изменения геомагнитных широт северного (рис. 2) и южного (рис. 3) географических полушарий в зависимости от Φ^a для низкой (квадратики), умеренной (кружки) и высокой (крестики) солнечной активности. Из этих рисунков видно, что величины $P^{a}(R > 1), R^{a}_{MP}$ и $\langle R \rangle^{a}$

Рис. 2. Арифметически средние значения $P^a(R > 1)$, R^a_{MP} и $\langle R \rangle^a$ величин P(R > 1), R_{MP} и $\langle R \rangle$, вычисленные для каждого интервала изменения геомагнитных широт 10–15°, 15–20°, 20–25°, 30–35°, 35–40°, 40–45°, 45–50° и 50–55° как функции арифметически среднего значения Φ^a геомагнитной широты ионозондов каждого интервала для низкой (квадратики), умеренной (кружки) и высокой (крестики) солнечной активности.

увеличиваются с ростом солнечной активности на средних геомагнитных широтах обоих полушарий. Рисунки 2 и 3 показывают, что этот тренд в $P(R > 1), R_{MP}$ и $\langle R \rangle$ нарушается на низких геомагнитных широтах. При низкой солнечной активности значения $P^{a}(R > 1), R^{a}_{MP}$ и $\langle R \rangle^{a}$ слабо изменяются с изменением Φ^{a} на средних геомагнитных широтах, причем отсутствуют ярко выраженные тенденции роста или уменьшения этих величин. Это свойство также видно из табл. 2, показывающей, что величины P(R > 1), R_{MP} и $\langle R \rangle$ слабо коррелируют с Ф при низкой солнечной активности. Из рисунка 2 следует, что на средних широтах северного географического полушария существует тренд увеличения P(R > 1), R_{MP} и $\langle R \rangle$ с ростом Φ для средней и высокой солнечной активности, что также отражается в существовании корреляции P(R > 1), R_{MP} и $\langle R \rangle$ с Φ (см. табл. 2). Переход

Рис. 3. Арифметически средние значения $P^{a}(R > 1)$,

 $R^{\rm a}_{MP}$ и $\langle R \rangle^{\rm a}$ величин P(R > 1), R_{MP} и $\langle R \rangle$, вычисленные для каждого пятиградусного интервала изменения геомагнитных широт от -55° до -50° , ... и от -15° до -10° как функции арифметически среднего значения $\Phi^{\rm a}$ геомагнитной широты ионозондов каждого интервала для низкой (квадратики), умеренной (кружки) и высокой (крестики) солнечной активности.

от средних к низких геомагнитным широтам вызывает увеличение $P^{a}(R > 1)$, R^{a}_{MP} и $\langle R \rangle^{a}$ в северном географическом полушарии при всех рассматриваемых уровнях солнечной активности.

Проведем сравнение $P^{a}(R > 1)$, R_{MP}^{a} и $\langle R \rangle^{a}$ северного географического полушария с $P^{a}(R > 1)$, R_{MP}^{a} и $\langle R \rangle^{a}$ южного географического полушария, рассчитанные при близких значениях абсолютных величин Φ^{a} . Из этого сравнения следует, что значения $P^{a}(R > 1)$, R_{MP}^{a} и $\langle R \rangle^{a}$ северного географического полушария, превосходят соответствующие величины южного полушария, за исключением следующих случаев, где обнаруживается обратная тенденция: $P^{a}(R > 1)$, R_{MP}^{a} и $\langle R \rangle^{a}$ интервала 50–55° и интервала от -55° до -50° при низкой солнечной активности, $P^{a}(R > 1)$ для условий вы-

сокой солнечной активности при рассмотрении интервала 45–50° и интервала от -50° до -45° и при сравнении этих вероятностей в интервале 10-15° и интервале от -10° до -15°. Значения $\langle R \rangle^{\rm a}$ примерно одинаковы для интервала 15-20° и интервала от -15° до -20° при высокой солнечной активности.

Из ионозондов, приведенных в табл. 1, можно составить пары примерно магнито-сопряженных ионозондов, геомагнитные координаты которых близки по абсолютной величине: Millstone Hill-Argentine Islands, Petropavlovsk-Canberra, Wakkanai-Brisbane, Athens-Grahamstown, Adak-Christchurch, Magadan-Salisbury, Gibilmanna-Capetown, Irkutsk-Mundaring, Ashkhabat-La Reunion, Akita-Townsville, Kokubunji-Darwin и Maui-Rarotonga. За исключением R_{MP} для пары ионозондов Kokubunji-Darwin при низкой солнечной активности, значения $P(R > 1), R_{MP}$ и $\langle R \rangle$ северного географического полушария превосходят соответствующие величины южного географического полушария. Таким образом, сравнение вероятностных характеристик явления зимней аномалии для ограниченного числа примерно магнито-сопряженных ионозондов позволяет сделать вывод, что, как правило, явление зимней аномалии более ярко выражено в северном географическом полушарии в сравнении с южным географическим полушарием при близких значениях абсолютных величин геомагнитных координат ионозондов.

Следует отметить, что возможное существование зависимости P(R > 1), R_{MP} и $\langle R \rangle$ от геомагнитной долготы может быть причиной слабой корелляция P(R > 1), R_{MP} и $\langle R \rangle$ с Φ при низкой солнечной активности и умеренной степени корреляции $P(R > 1), R_{MP}$ и $\langle R \rangle$ с Φ для условий средней солнечной активности и P(R > 1) с Ф при высокой солнечной активности на средних широтах северного полушария (см. табл. 2). Эти же возможные долготные зависимости могут приводить к ослаблению или к исчезновению широтных трендов (см. рис. 2 и 3). К сожалению, ионозонды, указанные в табл. 1, распределены весьма неравномерно по геомагнитной долготе в каждом из определенных выше промежутков изменения Ф в пять градусов, и невозможно провести достоверное статистическое исследование долготных трендов $P(R > 1), R_{MP}$ и $\langle R \rangle$. Расширение же длины широтного промежутка приводит к ошибке определения долготных трендов P(R > 1), R_{MP} и $\langle R \rangle$ из-за широтных трендов этих величин.

Для исследования механизмов формирования вариаций статистических параметров зимней аномалии *NmF2* с широтой и солнечной активностью необходимо проводить сложные численные расчеты структуры и динамики ионосферы и нейтральной атмосферы. Решение этой задачи выходит за рамки целей настоящей работы.

4. ЗАКЛЮЧЕНИЕ

Изучены вариации статистических параметров зимней аномалии NmF2 с широтой и солнечной активностью по данным измерений foF2 73-х ионозондов средних и низких широт северного полушария и 25-ти ионозондов южного полушария за период с 1957 по 2009 г. Использование статистического подхода связано с изменчивостью геомагнито-спокойных значений NmF2 нал одной и той же точкой земной поверхности при примерно одном и том же уровне солнечной активности. Для изучения зимней аномалии NmF2 рассматривается максимальное значение *R* отношения зимнего к летнему значению NmF2 одного и того же ионозонда для данного UT при геомагнито-спокойных дневных условиях и примерно одном и том же уровне солнечной активности. Условная вероятность *P*(*R* > 1) наблюдать зимнюю аномалию NmF2, наиболее вероятное R_{MP} и среднее $\langle R \rangle$ значения *R* вычисляются для низкой, умеренной и высокой солнечной активности по измерениям foF2 в течение периодов 22 декабря ±30 дней и 21 июня ±30 дней.

Расчеты показали, что P(R > I) = 49 - 100%, $R_{MP} =$ =0.7-3.9 и $\langle R \rangle = 1.0-3.7$ в северном географическом полушарии и P(R > 1) = 5 - 100%, $R_{MP} = 0.5 - 100\%$ 1.7 и $\langle R \rangle = 0.7 - 1.7 - в$ южном географическом полушарии. Показано, что для большинства ионозондов значения P(R > 1), R_{MP} и $\langle R \rangle$ не уменьшаются с ростом солнечной активности. Найдено, что на средних геомагнитных широтах северного полушария величины $P(R > 1), R_{MP}$ и $\langle R \rangle$ значительно сильнее коррелируют с геомагнитной широтой Ф, чем с географической широтой ф при умеренной и высокой солнечной активности, в то время как значения P(R > 1), R_{MP} и $\langle R \rangle$ слабо коррелируют с Ф и ф при низкой солнечной активности. Рост солнечной активности вызывает увеличение коэффициентов корреляции P(R > 1), R_{MP} и $\langle R \rangle$ с Φ .

Расчеты арифметически средних значений $P^{a}(R > 1)$, R^{a}_{MP} и $\langle R \rangle^{a}$ величин P(R > 1), R_{MP} и $\langle R \rangle$ каждого 5° интервала геомагнитной широты (от 10° до 55° и от -10° до -55°) показали, что величины $P^{a}(R > 1)$, R^{a}_{MP} и $\langle R \rangle^{a}$ увеличиваются с ростом солнечной активности на средних геомагнитных широтах обоих полушарий, но этот тренд нарушается на низких геомагнитных широтах. При низкой солнечной активности значения $P^{a}(R > 1)$,

 R_{MP}^{a} и $\langle R \rangle^{a}$ слабо изменяются с изменением геомагнитной широты на средних геомагнитных широтах, причем отсутствуют ярко выраженные тенденции роста или уменьшения этих величин. На средних широтах северного географического полушария найден тренд увеличения P(R > 1), R_{MP} и $\langle R \rangle$ с ростом геомагнитной широты для средней и высокой солнечной активности. Переход от средних к низким геомагнитным широтам вызывает увеличение $P^{a}(R > 1)$, R^{a}_{MP} и $\langle R \rangle^{a}$ в северном географическом полушарии при всех рассматриваемых уровнях солнечной активности. Показано, что в преобладающем большинстве случаев значения $P^{a}(R > 1), R^{a}_{MP}$ и $\langle R \rangle^{a}$ северного географического полушария превосходят соответствующие величины южного полушария при близких значениях абсолютных величин геомагнитных широт, т.е., как правило, явление зимней аномалии более ярко выражено в северном географическом полушарии в сравнении с южным географическим полушарием. Исключением из этого правила являются $P^{a}(R > 1)$, R^{a}_{MP} и $\langle R \rangle^{a}$ для широтного интервала 50–55° и интервала от -55° до -50° при низкой солнечной активности, $P^{a}(R > 1)$ для условий высокой солнечной активности при рассмотрении широтных интервалов 45-50° и от -50° до -45°, а также при сравнении этих вероятностей в широтных интервалах от 10° до 15° и от -10° до -15° , где обнаружена обратная тенденция. Кроме того, значения $\langle R \rangle^a$ примерно одинаковы для широтных интервалов 15-20° и от -15° до -20° при высокой солнечной активности.

СПИСОК ЛИТЕРАТУРЫ

- Брюнелли Б.Е., Намгаладзе А.А. Физика ионосферы.
 М.: Наука, 527 с. 1988.
- Боенкова Н.М. О планетарном распределении сезонной аномалии слоя F2 ионосферы // Ионосферные исследования. М.: Наука, № 17. С. 87–94. 1969.
- Деминов М.Г., Фищук Я.А. Об использовании аппроксимации геомагнитного поля эксцентричным диполем в задачах моделирования ионосферы и плазмосферы // Геомагнетизм и аэрономия. Т. 40. № 3. С. 119–123. 2000.
- Джонсон Н., Лион Ф. Статистика и планирование эксперимента в технике и науке. Методы обработки данных. М.: Мир, 610 с. 1980.
- Керблай Т.С. Некоторые особенности географического распределения критических частот слоя F2 // Ионосферные исследования. М.: изд-во АН СССР, № 5. С. 74–80. 1960.
- Павлов А.В., Павлова Н.М., Макаренко С.Ф., Шубин В.Н. Аномальные вариации структуры области F2 ионосферы средних геомагнитных широт южного и северного полушарий при переходе от летних к зимним условиям при высокой солнечной активности // Геомагнетизм и аэрономия. Т. 48. № 1. С. 79–92. 2008а.

- Павлов А.В., Павлова Н.М., Макаренко С.Ф., Шубин В.Н. Аномальные вариации структуры области F2 ионосферы средних геомагнитных широт южного и северного полушарий при переходе от летних к зимним условиям при низкой солнечной активности // Геомагнетизм и аэрономия. Т. 48. № 3. С. 340–349. 2008 б.
- Павлов А.В., Павлова Н.М. О влиянии рефракции солнечного излучения на зенитный угол и времена восхода и захода Солнца в атмосфере // Геомагнетизм и аэрономия. Т. 49. № 2. С. 234–241. 2010.
- Пиггот В.П., Равер К. Руководство URSI по интерпретации и обработке ионограмм. М.: Наука, 342 с. 1978.
- Фаткуллин М.Н., Боенкова Н.М., Легенька А.Д., Мурадов А. Высотно-широтное развитие сезонной аномалии в дневной области F2. I // Геомагнетизм и аэрономия. Т. 13. № 4. С. 640–646. 1973.
- Фаткуллин М.Н., Боенкова Н.М., Легенька А.Д., Мурадов А. Высотно-широтное развитие сезонной аномалии в дневной области F2. II // Геомагнетизм и аэрономия. Т. 14. № 4. С. 610–614. 1974.
- Forbes J.M., Palo S.E., Zhang X. Variability of the ionosphere // J. Atmos. Solar-Terr. Phys. V. 62. № 8. P. 685–693. 2000.
- *Hedin A.E.* MSIS-86 thermospheric model // J. Geophys. Res. V. 92. № 5. P. 4649–4662. 1987.
- Lanza R., Meloni A. The Earth's Magnetism. An Introduction for Geologists. Berlin-Heidelberg: Springer-Verlag, 66 p. 2006.
- Pavlov, A.V., Pavlova N.M. Causes of the mid-latitude NmF2 winter anomaly at solar maximum // J. Atmos. Solar-Terr. Phys. V. 67. № 10. P. 862–877. 2005.
- Pavlov A.V., Pavlova N.M. Anomalous variations of NmF2 over the Argentine Islands: a statistical study // Ann. Geophysicae. V. 27. № 4. P. 1363–1375. 2009.
- Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues // J. Geophys. Res. V. 107.
 № 12. P. 1468. doi:10.1029/2002JA009430. 2002.
- *Richards P.G., Fennelly J.A., Torr D.G.* EUVAC: A solar EUV flux model for aeronomical calculations // J. Geophys. Res. V. 99. № 5. P. 8981–8986. 1994.
- *Rishbeth H., Mendillo M.* Patterns of F2-layer variability // J. Atmos. Solar-Terr. Phys. V. 63. № 15. P. 1661–1680, 2001.
- Torr D.G., Torr M.R. The seasonal behaviour of the F2layer of the ionosphere // J. Atmos. Terr. Phys. V. 35.
 № 12. P. 2237–2251. 1973.
- Zou L., Rishbeth H., Müller-Wodarg I.C.F., Aylward A.D., Millward G.H., Fuller-Rowell T.J., Idenden D.W., Moffett R.J. Annual and semiannual variations in the ionospheric F2-layer. I. Modelling // Ann. Geophysicae. V. 18. № 8. P. 927–944. 2000.