УДК 550.388.2

# МОРФОЛОГИЯ И ПРИЧИНЫ АНОМАЛИИ МОРЯ УЭДДЕЛЛА

© 2011 г. А. Т. Карпачев, Н. А. Гасилов, О. А. Карпачев

Учреждение РАН Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова, Троицк (Московская обл.)

> *e-mail: karp@izmiran.ru* Поступила в редакцию 14.04.2010 г. После доработки 12.06.2010 г.

По данным спутника Интеркосмос-19 в южном полушарии выделена зона аномальных суточных вариаций *foF*2, которая характеризуется превышением ночных значений *foF*2 над дневными. В англоязычной литературе она обычно определяется как аномалия моря Уэдделла (Weddell sea anomaly, WSA). Аномалия наблюдается в условиях местного лета, т.е. в период зимнего солнцестояния. Аномалия занимает долготы западного полушария  $180-360^{\circ}$  Е, широты  $40-80^{\circ}$  S, максимальный эффект (до ~5 МГц) наблюдается на долготах  $255-315^{\circ}$  Е и широтах  $60-70^{\circ}$  S ( $50-55^{\circ}$  ILAT). Аномалия наблюдается при всех уровнях солнечной активности. На основе расчетов и качественного анализа рассмотрены причины образования аномалии. Для этого детально проанализированы долготные вариации параметров ионосферы и термосферы в южном полушарии для околополуденных и околополуночных условий. Анализ показывает, что днем *foF*2 понижена в западном полушарии по сравнению с восточным, а ночью наоборот — сильно повышена, что и приводит к аномальным суточным вариациям *foF*2. Такой характер долготного эффекта определяется в основном вертикальным дрейфом плазмы под действием нейтрального ветра и солнечной ионизацией. Рассмотрены также и другие причины: состав и температура атмосферы, потоки из плазмосферы, электрические поля, высыпания частиц, связь с экваториальной аномалией и главным ионосферным провалом.

#### 1. ВВЕДЕНИЕ

На ионосферных станциях Halley Bay (75.6° S, 333.4° E, 65.8° GMLAT) и Argentine Island (65.3° S, 295.7° E, 53.8° GMLAT) довольно давно было обнаружено аномальное поведение foF2 - во время декабрьского солнцестояния, т.е. в период местного лета, ночные значения превышают дневные [Bellchambers and Piggott, 1958; Pendorf, 1965; Dungey, 1961; Clilverd et al., 1991]. По названию ближайшего моря этот эффект был назван "аномалия моря Уэдделла" (Weddell Sea Anomaly, WSA). Поскольку других ионосферных станций рядом нет, выделить зону аномалии и определить, насколько она связана с морем Уэдделла долгое время не представлялось возможным. Область, в которой при низкой солнечной активности в летнем южном полушарии ночью наблюдаются повышенные значения полного содержания электронов (ТЕС) была впервые определена в эксперименте TOPEX/Poseidon [Horvath and Essex, 2003]. Она оказалась значительно шире моря Уэдделла, так что авторы даже предлагали назвать явление "аномалия моря Беллинсгаузена". На самом деле эта область занимает очень широкий диапазон долгот от 200 до 300° Е и широт по крайней мере до 66° S. Максимальные значения *TEC* по данным ТОРЕХ наблюдались в интервале долгот 250-270° Е и широт 50-60° S. Затем исследования характеристик WSA были продолжены по данным TOPEX/Poseidon для всех уровней солнечной активности и всех сезонов [Horvath, 2006; Jee et al., спутника DMSP 850 км [Horvath and Lovell, 2009a], a также по данным затменных измерений на спутниках эксперимента COSMIC [Burns et al., 2008; Lin et al., 2009; He et al., 2009]. Было показано, что аномальные суточные вариации электронной концентрации наблюдаются в течение всего зимнего солнцестояния – с ноября по февраль. Максимального развития WSA достигает в околополуночные часы, аномально высокие значения Ne в области аномалии существуют до утра. WSA, по-видимому, более ярко выражена в минимуме солнечной активности, чем в максимуме. По 3-мерным данным COSMIC/ Formosat-3 для декабря 2007 г., т.е. для низкой солнечной активности, область повышенных значений Ne в южном летнем полушарии для 22 LT находилась в пределах 180-360° по долготе и 55-90° S по широте с максимумом около  $270^{\circ}$  E,  $60^{\circ}$  S [Lin et al., 2009]. Максимальные значения Ne достигались на высоте 300 км, отметим, однако, что это гораздо ниже максимума слоя F2 для рассматриваемых условий, как будет показано ниже по данным ИК-19. Таким образом, морфология WSA более или менее представлена по данным разных экспериментов, хотя эти данные зачастую противоречат друг другу и требуют дополнительной проверки. Сказанное относится ко всем вариациям в области аномалии суточным, сезонным, в цикле солнечной активности, с высотой, долготой и широтой.

2009], по данным прямых измерений  $N_1$  на высоте

Гораздо хуже дело обстоит с пониманием механизма образования аномалии. Для объяснения WSA выдвигался целый ряд причин: ионизация солнечным излучением и ветер нейтральной атмосферы [Dudeney and Piggott, 1978], перенос плазмы с дневной стороны высокоширотной конвекцией [Pendorf, 1965], склонение, наклонение и расходимость силовых линий магнитного поля [Horvath and Essex, 2003; Horvath, 2006], большая разница между географическим и геомагнитным полюсами [Lin et al., 2009], горизонтальные потоки плазмы в области Южно-атлантической геомагнитной аномалии [Horvath and Lovell, 2009а], приток плазмы из плазмосферы [Burns et al., 2008], тесная связь с экваториальной аномалией [Burns et al., 2008; Lin et al., 2009], высыпания частиц [Pavlov and Pavlova, 2007], электрические поля [Burns et al., 2009; Horvath, Lovell, 2009b]. Мало того, в работе [Horvath and Lovell, 2009а] главный ионосферный провал на долготах WSA наблюдался экваториальнее ее, так что аномалия, согласно [Pendorf, 1965], оказывается в области действия конвекции высокоширотной плазмы.

Такой большой список причин свидетельствует о том, что о единой, общепринятой точке зрения на формирование WSA пока говорить не приходится. Поэтому главной целью данной работы является анализ причин аномалии на основе количественных расчетов и качественных рассуждений, основанных на этих расчетах. Причины аномального поведения ионосферы будут исследованы при помощи аналитической модели ионосферы, на основе методики, разработанной в работе [Карпачев и др., 2010]. Экспериментальной основой работы являются данные внешнего зондирования (NmF2 и hmF2) на спутнике Интеркосмос-19 (ИК-19). Данные затменных наблюдений на COSMIC в принципе позволяют определить параметры максимума слоя F2 [Burns et al., 2008]. Однако авторы работы потратили немало усилий на доказательство адекватности полученного распределения NmF2. Большой массив данных спутника ИК-19, полученный за последнее время, позволяет получать адекватное глобальное распределение NmF2 и hmF2 для любых условий, в том числе и для условий, при которых существует WSA. Однако они были получены для высокой солнечной активности, поэтому для проверки адекватности и для полноты картины будет проведено сравнение с данными, полученными для низкой солнечной активности на спутнике СНАМР.

## 2. ОБЛАСТЬ АНОМАЛЬНЫХ СУТОЧНЫХ ВАРИАЦИЙ ЭЛЕКТРОННОЙ КОНЦЕНТРАЦИИ В ЛЕТНЕМ ЮЖНОМ ПОЛУШАРИИ

На рисунке 1*a* приведено глобальное распределение *foF*2 в летнем южном полушарии, полученное по данным спутника ИК-19 в периоды зимних солнцестояний 1979/80 и 1980/81 г. с 15 ноября по

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 51 № 6 2011

15 февраля. Они относятся к высокой солнечной активности (F10.7 = 170 - 230) и спокойным геомагнитным условиям ( $Kp \leq 3$ ). Всего было использовано около 400 пролетов ИК-19 в южном полушарии, или 12.000 значений *foF*2. Данные довольно равномерно распределены по долготе и местному времени, так что на интервал местного времени 2 часа, для которого строились LT-карты, приходится около 1000 значений foF2. Распределение foF2 на рис. 1a построено для интервала местного времени 00-02 LT, когда аномалия проявляется наиболее ярко. Основной особенностью распределения электронной концентрации на рис. 1а являются чрезвычайно высокие значения foF2 (до 12 МГц) на высоких широтах в долготном секторе 240-300°. Они главным образом и определяют наличие аномалии. Чтобы показать это, сравним распределение foF2 для послеполуночных часов на рис. 1а с распределением для околополуденных часов местного времени (11-13 LT) рис. 16. Из рис. 16 видно, что днем на высоких широтах в долготном секторе  $240-300^{\circ}$  значения foF2 не превышают 8 МГц, что на ~4 МГц ниже, чем ночью.

Распределение foF2 в области WSA для высокой солнечной активности по данным ИК-19 получено впервые, поскольку данные эксперимента COSMIC относятся к условиям низкой солнечной активности. Данные ИК-19 на рис. 1 и данные COSMIC, представленные в работах [Burns et al., 2008; Lin et al., 2009], сравнивать довольно трудно. Поэтому сравним данные ИК-19 с данными спутника CHAMP для низкой солнечной активности. СНАМР функционирует с 2000 г. до настоящего времени и его данные доступны в Интернет на сайте: http://op.gfz-potsdam.de/champ. CHAMP проводит измерения электронной концентрации на высоте 370 км, которая находится вблизи высоты максимума слоя F2 в ночных условиях. Эти измерения приводились к высоте слоя F2 по модели IRI [Bilitza and Reinisch, 2008], так что фактически мы опять же имеем дело с распределением NmF2 (foF2). Для сравнения с ИК-19 были отобраны данные, полученные на спутнике СНАМР с 22 декабря 2005 г. по 3 января 2006 г. Данные относятся к околополуночным (00-01 LT), спокойным (Kp < 3) условиям низкой солнечной активности ( $F_{10.7} = 85 - 95$ ). Всего было использовано около 150-ти пролетов СНАМР, удовлетворяющих этим условиям. Распределение электронной концентрации, полученное для низкой солнечной активности представлено на рис. 1в. Для удобства сравнения оно представлено в терминах критической частоты слоя F2.

Как и следовало ожидать, сравнение рис. 1*а* и рис. 1*в* показывает, что средний уровень электронной концентрации при низкой солнечной активности намного меньше, чем при высокой солнечной активности. Однако основные характеристики глобального распределения электронной концентрации, несмотря на сильные различия в солнечной активности, практически идентичны. Это касается



**Рис. 1.** Глобальное распределение *foF2* в летнем южном полушарии по данным ИК-19 для 00–02 LT (*a*) и 11–13 LT ( $\delta$ ), а также по данным CHAMP для 00–01 LT ( $\epsilon$ ). Верхние штриховые кривые соответствуют 52.5° ILAT, нижние штриховые кривые на рис. 1*a* и рис. 1*b* показывают положение минимума ГИП, а на рис. 1 $\delta$  – экваториальной границы дневного каспа.

локализации минимумов и максимумов, положения гребня экваториальной аномалии, долготных вариаций концентрации, и самое главное — аномально высокой концентрации на широтах 60—70° S и долготах 270—300°. Сказанное справедливо и для околополуденных часов (эти данные на рис. 1 не приведены). Следовательно, характеристики аномалии, во всяком случае ее локализация, практически не зависят от уровня солнечной активности. Штриховыми кривыми на рис. 1 показано положение инвариантной широты 52.5° ILAT. Прослеживая долготные изменения *foF2* можно отметить, что они имеют как при высокой, так и при низкой солнечной активности максимальную амплитуду примерно на этой широте. Аномалия также сильнее проявляется в геомагнитной системе координат, чем в географической. Поэтому на рис. 2*a* приведены суточные вариации *foF2* для фиксированной

широты 52.5° ILAT, полученные усреднением данных ИК-19 в "нормальном" долготном секторе 30-60° и в аномальном секторе 240-270°. Суточные вариации foF2 в этих секторах имеют противоположный характер — обычный в секторе 30-60° и необычный в секторе 240-270°, в котором ночные значения превышают дневные. При этом околополуденные значения foF2 на разных долготах различаются примерно на 2 МГц, а ночные на целых 7 МГц. Таким образом, аномальное поведение ионосферы характеризуется, в основном, резким увеличением ночной ионизации на долготах западного полушария. Наконец штрих-пунктирная кривая представляет долготный сектор 180-210°. Суточные вариации в этом секторе также имеют специфический характер — во второй половине дня foF2 практически не изменяется, и только утром, в 04 LT наблюдается небольшой локальный минимум.

Рассмотрим поведение параметров максимума слоя F2 с долготой. На рис. 26 представлены долготные вариации *foF2* на фиксированной широте  $52.5^{\circ}$  ILAT для околополуденных и околополуночных часов местного времени. Хорошо видно, что в восточном полушарии дневные значения *foF2* больше ночных, а в западном полушарии – наоборот, меньше. Таким образом, обсуждение аномальных суточных вариаций *foF2* можно перевести в плоскость сильных вариаций *c* долготой. Сказанное, в общем, относится и к высоте максимума слоя F2 – рис. 26. На долготах западного полушария ночные значения *hmF2* гораздо больше дневных, а на долготах 30–  $100^{\circ}$  они несколько ниже дневных значений.

Выделим область аномального поведения летней ионосферы (в терминах инвариантной широты). Для этого на всех широтах и долготах южного полушария определим разницу между значениями foF2 для послеполуночных (00-02 LT) и околополуденных (11-13 LT) часов местного времени. Область, где эта разница положительная отображена на рис. 3. Она занимает на высоких широтах все западное полушарие. При этом максимум эффекта наблюдается в долготном секторе 255-315° на широтах 49-56° ILAT. Для сравнения на рис. 3 приведено примерное положение моря Уэдделла. Аномальная зона гораздо больше и моря Уэдделла, и моря Беллинсгаузена. и. безусловно, не связана с ними. Таким образом, название "аномалия моря Уэллелла" затемняет суть проблемы и поэтому является не совсем удачным. На наш взглял лучше говорить об "области аномальных суточных вариаций электронной концентрации" или сокращенно ACBK.

## 3. ПРИЧИНЫ ОБРАЗОВАНИЯ АНОМАЛИИ

Попытаемся понять причины ACBK. Для этого рассмотрим долготные вариации параметров ионосферы и термосферы, поскольку именно разница по долготе определяет наличие аномалии. Это в



**Рис. 2.** Суточные вариации *foF2* в разных долготных секторах (*a*); долготные вариации *foF2* (*b*) и *hmF2* (*b*) для 12 LT и 01 LT на широте  $52.5^{\circ}$  ILAT.

особенности относится к ночным условиям. Долготный эффект (ДЭ) рассмотрим в географической и геомагнитной системах координат, поскольку их анализ дополняет друг друга и позволяет более точно определить причины ACBK. Анализ проведем как на основе расчетов, так и на основе качественных рассуждений, базирующихся на расчетах, сделанных ранее.

## 3.1. Причины ДЭ в околополуденной ионосфере

Анализ причин аномалии начнем с дневных условий. На рис. 4 приведены долготные вариации *NmF2* и *hmF2* для фиксированной широты 52.5 ILAT, для которой аномалия наиболее ярко выражена. В работе [Карпачев и др., 2010], было показано, что долготные вариации параметров максимума слоя

#### КАРПАЧЕВ и др.



Рис. 3. Область аномальных суточных вариаций foF2 в летней ионосфере южного полушария.

F2 в спокойной среднеширотной ионосфере определяются ионизацией солнечным излучением, вертикальным дрейфом плазмы, рекомбинацией и температурой термосферы. Чтобы проиллюстрировать действие этих параметров, на рис. 4 приведены также изменения с долготой зенитного угла Солнца, вертикального дрейфа плазмы Шпод действием нейтрального ветра, температуры термосферы *Tn*, а также концентрации О и N<sub>2</sub>. Методика анализа долготных вариаций параметров ионосферы (термосферы) детально описана в работе [Карпачев и др., 2010]. Из экспериментальных значений NmF2 и hmF2 рассчитываются вариации скорости W вертикального дрейфа плазмы, обусловленного нейтральным ветром. Для этого используется модель дневной ионосферы [Ситнов и др., 1992], которая также представлена в работе [Карпачев и др., 2010]. Значения Tn, [O] и [N<sub>2</sub>] задаются по модели MSIS [Hedin, 1991]. Результаты расчетов скорости вертикального дрейфа из концентрации W(Nm) и высоты W(hm) максимума слоя F2 приведены на рис. 4 сплошной и штриховой кривыми соответственно. Как видно, они довольно хорошо согласуются друг с другом, что является косвенным свидетельством адекватности модели. Сплошной тонкой кривой приведены вариации W(HWM), полученные из модели нейтрального ветра HWM93 [Hedin et al., 1991]. Известно, что модель нейтрального ветра HWM93 далеко не всегда адекватно воспроизводит вариации скорости ветра. Однако в данном случае наблюдается очень хорошее согласие между модельными и теоретическими вариациями скорости вертикального дрейфа, что, конечно, не случайно.

Из рисунка 4 даже на качественном уровне четко видно, что средние значения NmF2 определяются солнечной ионизацией Q и дрейфом W, а локальные минимумы и максимумы NmF2 связаны, в основном, с действием дрейфа W. Видно также, что долготные вариации отношения  $[O]/[N_2]$  определяются, в основном, изменениями концентрации кислорода. Влияние температуры атмосферы на долготные вариации NmF2 определяется множителем 1/Tn [Карпачев и Гасилов, 2010], и оно, в общем, противоположно действию остальных факторов, как видно из рис. 4. В целом вклад состава и температуры атмосферы не превышает нескольких процентов и им можно пренебречь в первом приближении. Таким образом, основной вклад в долготные вариации NmF2 вносят вертикальный дрейф плазмы и солнечная ионизация в примерном соотношении 82:18.

Вклад вертикального дрейфа в долготные вариации hmF2 также является основным, что хорошо видно из сравнения hmF2 и  $hm_0$ . Высота  $hm_0$  рассчитывается для W = 0 и она определяет вклад состава и температуры атмосферы в долготные вариации hmF2 [Карпачев и Гасилов, 2010]. Амплитуда долготных вариаций  $hm_0$  (7.5 км) намного меньше, чем hmF2 (65 км), таким образом вклад состава и температуры атмосферы в долготные вариации hmF2 составляет около 10%, остальное приходится на вертикальный дрейф плазмы.

Рассмотрим вариации *foF2* в географической системе координат. Уровень солнечной ионизации вдоль фиксированной географической широты не меняется, поэтому в долготных вариациях *foF2* должно сильнее проявиться влияние других причин, в первую очередь нейтрального ветра. Сравним долготные вариации *foF2* с модельными вариациями *W* вдоль фиксированных географических широт 50° S и 65° S. Такой выбор определяется тем, что широта 50° S относится к полосе типичных средних широт, а на широте 65° S ярко проявляется аномалия.



**Рис. 4.** Долготные вариации на широте 52.5° ILAT для 12 LT следующих параметров: NmF2 и hmF2 по данным ИК-19, скорости вертикального дрейфа W, рассчитанные из NmF2 и hmF2, а также по модели HWM93, высоты  $hm_0$  слоя F2 при W = 0, зенитного угла Солнца  $Z_S$ , концентрации [O] и [N<sub>2</sub>], а также температуры термосферы Tn.

Долготные вариации foF2 и W на широте 50° S приведены на рис. 5a. Трудно найти соответствие между этими вариациями, и причина, по-видимому, не связана с неадекватностью модели ветра HWM93. Следовательно, должны существовать какие-то другие причины ДЭ, для определения которых необходимо провести дополнительный анализ.

Обратимся к рис. 16. На нем штриховой кривой показано примерное положение экваториальной границы дневного каспа для спокойных условий [Meng, 1979]. В долготном секторе 90-150° касп наиболее близко расположен к географической широте 50° S. Известно, что экваториальнее каспа часто наблюдается провал ионизации (см., например, [Karpachev and Afonin, 1998] и ссылки в ней). Не вдаваясь в причины образования этого провала, которые еще плохо изучены, отметим только, что этот провал может быть довольно глубоким. На рисунке 6 приведен широтный разрез foF2, полученный 19 января 1980 г. по данным ИК-19 в долготном секторе 135°. На нем ярко выделяется плазменный пик, обусловленный высыпаниями мягких электронов в области каспа и глубокий провал экваториальнее

каспа с минимумом на широте около –50°. Таким образом, уменьшение электронной концентрации в долготном секторе 120–150° связано с образованием провала.

Снова обратимся к рис. 16 и рассмотрим ситуацию в долготном секторе 300°. В этом секторе геомагнитный экватор, сдвинут относительно географического далеко к югу, поэтому южный гребень экваториальной аномалии оказывается на географических широтах 27-28° S и его влияние простирается вплоть до средних широт. Кроме того, нейтральный ветер в этом долготном секторе оказывает двойное действие на электронную концентрацию. Он создает сильный дрейф вниз (см. рис. 5), который уменьшает концентрацию плазмы, но в то же время усиливает "фонтан"-эффект, помогая диффузии переносить концентрацию с экваториальных широт к низким, а в данном случае к средним широтам. При помощи качественного анализа трудно оценивать действие конкурирующих процессов, но в данном случае их результат проявляется в виде максимума *foF2* в долготном секторе  $300^{\circ}$ .



**Рис. 5.** Долготные вариации для 11-13 LT на широтах 50° S (*a*) и 65° S (*б*) скорости вертикального дрейфа *W* по модели HWM93 и *foF*2 по данным спутника ИК-19, а также отношения [O]/[N<sub>2</sub>] по модели MSIS и *foF*2 по данным спутника CHAMP (*б*).



Рис. 6. Широтные вариации *foF2* в долготном секторе  $135^{\circ}$ , полученные на спутнике ИК-19 для спокойных условий 19 января 1980 г.

Характер ДЭ резко меняется при переходе от  $50^{\circ}$  S к  $65^{\circ}$  S, при этом электронная концентрация в максимуме слоя F2 в широком интервале долгот па-

дает с ростом широты, а в интервале 60-150° она наоборот возрастает – рис. 56. В результате амплитуда ДЭ резко уменьшается. Амплитуда вариаций W и [O]/[N<sub>2</sub>] наоборот сильно увеличивается к высоким широтам. Эти вариации конкурируют в ДЭ, и, по-видимому, неглубокий минимум foF2 на долготе 270° связан с преобладающим действием вертикального дрейфа плазмы, направленного вниз. Увеличение *foF2* в долготном секторе 60–150° очевидно связано с высыпаниями электронов в области каспа – рис. 16. Это убедительно демонстрируют данные спутника СНАМР – самая нижняя кривая на рис. 5. При низкой солнечной активности электронная концентрация гораздо ниже, чем при высокой, высыпания в области каспа на низком фоновом уровне проявляются сильнее, в результате чего в данных СНАМР четко выделяется максимум в долготном секторе 60-180°.

#### 3.2. Причины ДЭ в околополуночной ионосфере

Проанализируем долготные вариации параметров околополуночной ионосферы. Начнем с фиксированной широты  $52.5^{\circ}$  ILAT — рис. 7. Для расчетов скорости вертикального дрейфа плазмы из долготных вариаций *NmF2* и *hmF2* снова воспользуемся моделью дневной ионосферы [Ситнов и др., 1992], поскольку на широте  $52.5^{\circ}$  ILAT большая часть долгот западного полушария освещена Солнцем даже в полночь. Это хорошо видно на рис. 7 из вариаций зенитного угла Солнца  $Z_S$  для 01 LT. Ионизация солнечным излучением начинается на зенитных углах меньше 95°. Долготные вариации функции ионизации *Q* для близких условий обсуждаются в работе [Карпачев и др., 2010].

Результаты расчетов скорости вертикального дрейфа W(Nm) и W(hm) приведены на рис. 7 сплошной и штриховой кривыми соответственно. Они довольно хорошо согласуются между собой, если учитывать тот факт, что вариации hmF2 связаны с почти мгновенным действием дрейфа, а вариации NmF2 определяются интегральным эффектом в течение некоторого времени. Поэтому кривая W(Nm) на самом деле представляет некий усредненный дрейф за предшествующий период времени. Хорошее согласие W(hm) и W(Nm) определяется тем, что в околополуночные часы система ветров довольно стабильна.

На рисунке 7 приведены также вариации W, полученные из модели нейтрального ветра HWM93 (тонкая кривая). В отличие от дневных условий, они довольно сильно отличаются от вариаций, полученных расчетами из NmF2 и hmF2. К сожалению, точность модели ветра HWM93 невелика, особенно в южном полушарии. Это особенно хорошо видно по вариациям зональной компоненты ветра, которые в некоторые моменты времени носят настолько нерегулярный характер (и суточные и долготные), что



**Рис.** 7. Долготные вариации на широте 52.5° ILAT для 01 LT следующих параметров: NmF2 и hmF2 по данным ИК-19, скорости вертикального дрейфа плазмы W, полученного расчетами из NmF2, hmF2, модели HWM93 и HWM07, и под действием только меридионального ветра -0.5V cosDsin2I (жирная кривая), зенитного угла Солнца  $Z_S$ , температуры термосферы Tn, а также концентрации O и N<sub>2</sub>.

приходится сомневаться в их реальности. Поэтому мы обратились к новой модели HWM07 [Drob et al., 2008]. Появление этой модели предполагает, что она более адекватно воспроизводит параметры нейтрального ветра. К сожалению, это предположение не оправдалось, по крайней мере, для рассматриваемых условий. Из рисунка 7 видно, что согласно новой модели (штриховая кривая), скорость вертикального дрейфа W(07) гораздо больше, чем по старой модели, но по фазе вариации скорости дрейфа плохо согласуются с вариациями параметров слоя F2. Поэтому мы снова вернулись к модели HWM93 и, отбросив зональную компоненту ветра, рассчитали вариции вертикального дрейфа под действием только меридиональной компоненты  $W = -0.5V \cos D \sin 2I$ . Они гораздо лучше согласуются со значениями W, полученными из вариаций hmF2.

На основании проведенных расчетов, вклад W, Q,  $[O]/[N_2]$  и Tn в долготные вариации NmF2 можно примерно оценить соотношением 51:54:-3:-2. Влияние состава и температуры на долготные вариации NmF2 несколько больше, чем в полдень, но не превышает 5%. Мало того, отрицательный знак указывает на обратный характер влияния состава и температуры атмосферы, что можно увидеть из рис. 7. Вклад солнечной ионизации и вертикального дрейфа примерно одинаковый, в отличие от полуденных условий. Ясно, что это связано с тем, что на фиксированной геомагнитной широте  $52.5^{\circ}$  в околополуночных условиях освещенность резко изменяется при изменениях долготы и влияние солнечной ионизации возрастает.

Что же касается ветра нейтральной атмосферы, то основной вклад вносит его меридиональная компонента. Вклад меридиональной компоненты ветра



**Рис. 8.** Долготные вариации для 00-02 LT на широтах 50° S (а) и 65° S (б) следующих параметров: *foF2* (сплошные кривые), скорости вертикального дрейфа *W* (штриховые кривые) по моделям HWM93 и HWM07, и под действием только меридионального ветра *V*, а также отношения [O]/[N<sub>2</sub>] (штрихпунктирные кривые).

в геомагнитной системе координат определяется в большей степени вариациями ее скорости и в меньшей степени – изменениями геомагнитного склонения [Карпачев и Гасилов, 1998; Karpachev and Gasilov, 2001]. Вклад зональной компоненты также значительный, причем именно в западном полушарии. Вклад зональной компоненты ветра в геомагнитной системе координат связан опять же с долготными вариациями ее скорости и с изменениями склонения геомагнитного поля [Карпачев и Гасилов, 1998; Karpachev and Gasilov, 2001]. Склонение геомагнитного поля на долготах 210-315° положительное (к востоку), поэтому зональный ветер, направленный в околополуночные часы на восток вызывает сильный дрейф вверх на этих долготах. Этот факт хорошо известен и неоднократно отмечался в исследованиях WSA, но только в работах [Карпачев и Гасилов, 1998; Karpachev and Gasilov, 2001] приведены количественные оценки.

Амлитуда ДЭ в  $hm_0$  в околополуночных условиях гораздо больше, чем в околополуденных, поэтому вклад состава и температуры атмосферы в долготные вариации hmF2 возрастает и достигает 1/3. При этом влияние состава несколько больше, чем температуры.

Рассмотрим долготные вариации параметров ночной ионосферы в географической системе ко-

ординат – рис. 8. Поскольку в географической системе координат интенсивность солнечного излучения не меняется с долготой, главной причиной ДЭ здесь становится нейтральный ветер. На рисунке 8 приведены вариации скорости вертикального дрейфа плазмы, полученные из новой модели HWM07 [Drob et al., 2008]. Видно, что этой скорости явно недостаточно для поддержания очень высокой концентрации электронов в долготном секторе 270°. Поэтому мы снова рассчитали вертикальный дрейф под действием только меридиональной компоненты  $W = -0.5V \cos D \sin 2I$ . Он приведен на рис. 8 с небольшим сдвигом по фазе. В таком случае вариации foF2 и W довольно хорошо согласуются. Проведенный анализ показывает наличие больших проблем при использовании моделей нейтрального ветра HWM – в их современном состоянии обе модели ветра трудно использовать для точных количественных расчетов. Хотя с качественной точки зрения, основанной на предыдущих расчетах, можно достаточно уверенно утверждать, что долготные вариации foF2 на средних широтах связаны с действием нейтрального ветра и частично с вариациями отношения [O]/[N<sub>2</sub>], которые для иллюстрации также приведены на рис. 8.

Для широты 65° S также приведены долготные вариации скорости W вертикального дрейфа, полученные по обеим моделям. И снова наблюдается большое расхождение между ними и по амплитуде, и по форме. Скорости вертикального дрейфа ~70 м/с по модели HMW07 вполне достаточно для поддержания высокой концентрации ночной ионосферы, но фазы вариаций *foF2* и W(07) довольно сильно различаются.

На широте 65° S необходимо учитывать также влияние главного ионосферного провала. Положение минимума ГИП по модели [Каграсhev et al., 1998] приведено на рис. 1 штриховой кривой. Из рисунка 1 видно, что широта 65° S сначала пересекает минимум ГИП, затем его полярную стенку (ПСП), а затем снова минимум. (Соответствующие долготы обозначены на рис. 8 тонкой, жирной и снова тонкой кривой.) Очевидно, поэтому в долготном секторе 30–90° значения *foF2* понижены, а в долготном секторе 90–150° повышены в противовес действию нейтрального ветра.

Влияние провала демонстрирует рис. 9. На нем приведены широтные разрезы foF2 по данным спутников ИК-19 и СНАМР для 00-03 LT в долготном секторе 270–330°. К сожалению, данные ИК-19 ограничены широтой 74°, тем не менее, по данным обоих спутников четко фиксируется максимум foF2 в полосе широт 40–80°S. Электронная концентрация резко падает к высоким широтам, что связано с выносом плазмы из ионосферы на широтах внешней плазмосферы [Кринберг и Тащилин, 1984]. Таким образом, в этом долготном секторе провал характеризуется очень крутой экваториальной стенкой, которая гораздо выше полярной. Можно сравнить его с обычным зимним ГИП в северном полушарии — положение его минимума также отмечено стрелкой на рис. 9.

На рисунке 9 не случайно приведено по две кривых для каждого спутника. На одной из них наблюдается южный гребень экваториальной аномалии, а на другой – нет. При усреднении данных итог будет зависеть от того, как часто формируется южный гребень в рассматриваемых условиях. При высокой солнечной активности гребень формируется часто и поэтому он отражен на глобальном распределении *foF2* – рис. 1*a*, а при низкой солнечной активности он формируется реже и не выделяется на карте – рис. 1*в*.

#### 4. ОБСУЖДЕНИЕ

Расчеты, проведенные на основе апробированных в течение многих лет моделей ионосферы и термосферы, однозначно показывают, что главной причиной ACBK является нейтральный ветер. Что касается точной количественной оценки его вклада, то с ней придется подождать до появления более адекватной модели нейтрального ветра. Но в любом случае эффект нейтрального ветра определяется долготными вариациями его скорости и зависимостью от склонения и наклонения геомагнитного поля. Это подробно описано в работах [Карпачев и Гасилов, 1998; Karpachev and Gasilov, 2001, 2006; Карпачев и др., 2010], поэтому здесь не обсуждается.

Солнечная ионизация также вносит большой вклад в формирование ACBK. Во время полярного лета высокие географические широты освещены все сутки, фоновая концентрация довольно высокая, и она еще больше повышается под действием сильного дрейфа, направленного вверх. В геомагнитной системе координат этот эффект усиливается, поскольку ночью средние широты находятся в тени в восточном полушарии и освещены в западном. О совместном эффекте солнечной ионизации и нейтрального ветра известно давно, еще Ришбет объяснял им появление вечернего пика *foF2* в летней ионосфере высоких широт [Rishbeth, 1972].

Состав и температура нейтральной атмосферы участвуют в создании аномалии совместно с нейтральным ветром и солнечной ионизацией. Их вклад в долготные вариации *NmF2* незначительный и в дневных, и в ночных условиях, что согласуется с общепринятым мнением (см, например, [Bellchambers and Piggott, 1958]). Отметим однако, что в долготные вариации высоты максимума ночного слоя *F2*, состав и температура атмосферы вносят значительный вклад.

В работе [Burns et al., 2008] в качестве основной причины резкого увеличения ионизации в области WSA в вечернем секторе выдвигался приток плазмы из плазмосферы. Действительно, хорошо известно,



Рис. 9. Широтные разрезы *foF*2, полученные по данным ИК-19 27 и 28 ноября 1979 г. и по данным СНАМР 22 и 30 декабря 2005 г. для спокойных послеполуночных условий в долготном секторе 270–330°. Стрелкой показано положение минимума ГИП.

что ночная ионосфера поддерживается притоком плазмы, запасенной днем в плазмосфере. Однако этот приток становится существенным только в зимних условиях, когда в течение длинной ночи ионизация чрезвычайно сильно истощается к восходу Солнца [Кринберг и Тащилин, 1984]. На низких широтах, где объем силовых трубок малый, поток вообще идет из летнего полушария в зимнее и поэтому в летнем полушарии на этих широтах создается довольно глубокий минимум. На высоких широтах, где объем силовых трубок большой, поток идет вниз, в ионосферу и в летнем полушарии тоже (см., например, [Evans, 1975]). Однако днем гораздо больше плазмы запасается в восточном полушарии, где концентрация плазмы в слое F2 гораздо выше, чем в западном. Поэтому ночью поток из плазмосферы опять же будет больше в восточном полушарии, чем в западном. И скажется он сильнее на более низком фоновом уровне. Таким образом, влияние потока из плазмосферы на аномалию скорее всего слабое и обратное по знаку.

Выше было показано, что со стороны высоких широт аномалия ограничена главным ионосферным провалом (ГИП). В формировании ГИП участвует несколько процессов. Отметим наиболее важные из них в контексте обсуждаемой проблемы: стагнация плазмы в рамках высокоширотной конвекции, полярный ветер на разомкнутых силовых линиях и опустошение замкнутых силовых линий во время возмущений [Moffett and Quegan, 1983; Кринберг и Тащилин, 1984]. Коль скоро ГИП участвует в формирования аномальной зоны, то и все эти процессы косвенно участвуют в ее образовании. В недавней работе [Horvath and Lovell, 2009а] провал был обнаружен экваториальнее WSA на широте ~40° GMLAT при спокойных геомагнитных условиях. Таким образом, WSA оказалась в области конвекции высокоширотной плазмы со всеми вытекающими отсюда последствиями. Однако ГИП достигает минимальной широты 45° ILAT только в максимуме гигантской магнитной бури при Kp = 9[Деминов и др., 1995]. Следовательно, на самом деле речь идет не о главном ионосферном провале, а о некотором минимуме концентрации, связанным, скорее всего, с выносом плазмы в зимнее полушарие, о чем говорилось выше.

Электрическое магнитосферное поле управляет высокоширотной конвекцией плазмы. Это поле может проникать и на средние широты. Однако это происходит только во время геомагнитных возмущений и только в короткие периоды времени, нет регулярного электрического поля, способного создать значительный дрейф плазмы на средних широтах. Регулярное динамо-поле также слабое на средних широтах (см., например, [Takeda and Yamada, 1987]). Поэтому непонятно, откуда возникает электрическое поле, которое создает дрейф вверх [Burns et al., 2009] или сгоняет плазму вниз, сжимая плазмосферу [Horvath and Lovell, 2009b].

В качестве одной из причин аномалии выдвигаются также высыпания частиц, как в провале [Pavlov and Pavlova, 2007], так и в области Южно-атлантической магнитной аномалии (SAMA) [Horvath and Lovell, 2009а]. Не только высыпания, но и горизонтальные потоки плазмы в области SAMA [Horvath and Lovell, 2009а] предполагались в качестве причины WSA. Однако, как видно из рис. 3, SAMA расположена намного экваториальнее WSA и только косвенно может участвовать в ее создании. Что касается высыпаний в минимуме провала или тем более на его экваториальной стенке, то они очень слабые и эпизодические [Lisakov et al., 1985].

В работе [Burns et al., 2008] была отмечена связь WSA с экваториальной аномалией (ЭА). Эта связь может быть обусловлена либо имманентным механизмом, создающим ЭА или WSA, либо механизмом, не связанным с ними. Обсудим обе возможности. Ночью на долготах WSA сильный ветер, направленный к экватору, препятствует диффузии выносить электронную концентрацию от экватора, где она увеличена, и создавать гребень ЭА. Поэтому южный гребень ЭА далеко не всегда образуется в этом секторе, как было показано на рис. 9. В результате при усреднении данных для низкой солнечной активности он даже не фиксируется на карте рис. 1в. Следовательно, в этом секторе вынос концентрации под действием "фонтан"-эффекта от экватора к средним широтам не только не увеличен, но даже уменьшен по сравнению с другими долготами. Этот факт был отмечен и в работе [Jee et al., 2009], такое впечатление, что "плазма перекачивается из южного гребня в область аномалии". На внешнем склоне гребня ЭА концентрация резко падает, а в летнем полушарии образуется довольно глубокий минимум на низких средних широтах, связанный с выносом плазмы в зимнее полушарие, о чем говорилось выше. Этот минимум на рис. 1а четко наблюдается на всех долготах, кроме долгот WSA, где уровень концентрации довольно высокий и этот минимум слабо выражен. Отметим, что речь идет как раз о широтах SAMA. Но тогда вполне возможно, что повышенный уровень концентрации здесь поддерживается высыпаниями и горизонтальным дрейфом плазмы, о чем говорилось выше. Итак, скорее всего WSA связана с ЭА не единым физическим механизмом, а "мостом" с высокой концентрацией в области SAMA.

## 5. ЗАКЛЮЧЕНИЕ

Исследованы морфология и причины образования аномалии моря Уэдделла. Для этого по данным спутника Интеркосмос-19 для высокой солнечной активности (1979-1981 г.) впервые построено и проанализировано глобальное распределение foF2для околополуденных и послеполуночных часов в южном летнем полушарии. Для сравнения построено аналогичное распределение плазменной частоты вблизи максимума слоя F2 по данным спутника СНАМР для минимума солнечной активности (2005–2006 г.). Сравнение данных спутников ИК-19 и СНАМР показывает, что, несмотря на то, что с уменьшением F10.7 электронная концентрация довольно сильно уменьшается, основные характеристики глобального распределения концентрации, как в дневных, так и ночных условиях очень похожи. Следовательно, и характеристики аномалии подобны для высокой и низкой солнечной активности.

По данным спутника ИК-19 впервые выделена зона аномального поведения foF2 в летнем южном полушарии. Она занимает практически все долготы западного полушария, при этом максимальное превышение ночных значений foF2 над дневными достигает 4—5 МГц на долготах 255—315° и широтах 50—55° ILAT. Зона аномалии намного больше моря Уэдделла и никак не связана с ним, поэтому более оправдано для нее название зона ACBK — зона аномальных суточных вариаций электронной концентрации.

Аномалия определяется низкими значениями *foF*2 в дневной ионосфере и более высокими значе-

ниями в ночной ионосфере на долготах западного полушария. Поэтому на основе глобального распределения электронной концентрации в летнем южном полушарии были исследованы долготные вариации параметров ионосферы и термосферы, что позволяет говорить о причинах ACBK. Эти причины по разному проявляются в геомагнитной и географической системах координат.

В геомагнитной системе координат (на фиксированной широте 52.5° ILAT) ДЭ определяется изменениями с долготой уровня солнечной ионизации, скорости вертикального дрейфа плазмы, отношения  $[O]/[N_2]$  и температуры термосферы *Tn*. Вариации этих параметров устроены таким образом, что на долготах западного полушария они обеспечивают более высокие значения *foF2* ночью, чем днем. Наибольший вклад в ДЭ вносят солнечная ионизация и нейтральный ветер, определяющий вертикальный дрейф плазмы.

В географической системе координат ситуация сложнее. Долготные вариации *foF2* в дневной высокоширотной ионосфере в большей степени определяются высыпаниями частиц в области каспа и примыкающим к нему провалом ионизации, чем нейтральным ветром. К сожалению, этот качественный вывод трудно проверить расчетами ввиду их сложности. В ночной высокоширотной ионосфере нейтральный ветер безусловно играет доминирующую роль в создании сильнейшего ДЭ с максимумом *foF2* на долготах аномалии. Но необходимо также учитывать и влияние главного ионосферного провала, а следовательно и механизмов, его создающих.

Итак, расчеты и основанный на них качественный анализ показывают, что главной причиной ACBK является нейтральный ветер. Эффект нейтрального ветра определяется долготными вариациями его скорости и зависимостью от склонения и наклонения геомагнитного поля. Что касается точной количественной оценки его вклада, то с ней придется подождать до появления более адекватной модели нейтрального ветра.

Привлечение других механизмов в роли главных причин аномалии, как например, потоков из плазмосферы, электрических полей, процессов в Южно-атлантической аномалии и т.п. нам не представляется оправданным. Однако окончательный ответ на все вопросы, связанные с формированием аномалии, можно будет получить только на основе дальнейших исследований.

## СПИСОК ЛИТЕРАТУРЫ

- —Деминов М.Г., Карпачев А.Т., Афонин В.В., Аннакулиев С.К. Динамика среднеширотного провала в период магнитной бури. Главная фаза // Геомагнетизм и аэрономия. Т. 35. № 6. С. 69–77. 1995.
- –Карпачев А.Т., Гасилов Н.А. Вариации скорости вертикального дрейфа плазмы с долготой в среднеширотной ночной летней ионосфере, рассчитанные

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 51 № 6 2011

по данным измерений *hmF*2 // Геомагнетизм и аэрономия. Т. 38. № 5. С. 89–99. 1998.

- -Карпачев А.Т., Гасилов Н.А., Карпачев О.А. Причины долготных вариаций NmF2 на средних и субавроральных широтах в летних ночных условиях // Геомагнетизм и аэрономия. Т. 50. № 4. С. 507–513. 2010.
- -Кринберг И.А., Тащилин А.В. Ионосфера и плазмосфера. М.: Наука. 129 с. 1984.
- -Ситнов Ю.С., Шубин В.Н., Аннакулиев С.К. Аппроксимация электронной концентрации и высоты максимума F2-области дневной среднеширотной ионосферы простыми аналитическими формулами // Геомагнетизм и аэрономия. Т. 32. № 4. С. 128–130. 1992.
- -Bellchambers W.H., Piggott W.R. Ionospheric measurements made at Halley Bay // Nature. V. 182. P. 1596– 1597. 1958.
- -Bilitza D., Reinisch B. International Reference Ionosphere 2007: Improvements and new parameters // Adv. Space Res. V.42. № 4. P. 599–609. 2008.
- -Burns A.G., Zeng Z., Wang W., Lei J., Solomon S.C., Richmond A.D., Killeen T.L., Kuo Y.-H. The behavior of the F2 peak ionosphere over the South Pacific at dusk during quiet summer conditions from COSMIC data // J. Geophys. Res. V. 113, A12305, doi:10.1029/2008JA013308. 2008.
- -Burns A., Solomon S., Wang W., Richmond A., Jee G., Lin C., Rocken C., Kuo B. Can the Weddell Sea anomaly and related phenomena be explained by conjugate effects? / Proc. 4th COSMIC Data Users Workshop, Boulder, CO: University Corporation for Atmospheric Research, 2009.
- -*Clilverd M.A., Smith A.J., Thomson N.R.* The annual variation in quiet time plasmaspheric electron density, determined from whistler mode group delays // Planet. Space Sci. V. 39. P. 1059–1067. 1991.
- -Drob D.P., Emmert J.T., Crowley G. et al. An empirical model of the Earth's horizontal wind fields: HWM07 // J. Geophys. Res. V. 113. A12304, doi: 10.1029/2008JA013668. 2008.
- -Dudeney J.R., Piggott W.R. Antarctic ionospheric research // Upper Atmosphere Research in Antarctica. Antarct. Res. Ser. Washington. AGU. V. 29. P. 200–235. 1978.
- -Dungey J.W. Interplanetary magnetic field and the auroral zones // Phys. Rev. Lett. V. 6. P. 47–48. 1961.
- -Evans J.V. A study of F2 region night-time vertical ionization fluxes at Millstone Hill // Planet. Space Sci. V. 23. № 12. P. 1611–1619. 1975.
- -Hedin A.E. Extension of the MSIS thermosphere model into the middle and lower atmosphere // J. Geophys. Res. V. 96. № 2. P. 1159–1172. 1991.
- -Hedin A.E., Biondi M.A., Burnside R.G. Revised global model of thermospheric winds using satellite and ground-based observations // J. Geophys. Res. V. 96. № 5. P. 7657-7688. 1991.
- -He M., Liu L., Wan W., Ning B., Zhao B., Wen J., Yue X., Le H. A study of the Weddell Sea Anomaly observed by FORMOSAT-3/COSMIC // J. Geophys. Res. V. 114. A12309. doi:10.1029/2009JA014175. 2009.
- -Horvath I., Essex E.A. The Weddell Sea Anomaly observed with the TOPEX satellite data // J. Atmos. Sol.-Terr. Phys.

V. 65. P. 693–706. doi:10.1016/S1364-6826(03)00083-X. 2003.

- *—Horvath I.* A total electron content space weather study of the nighttime Weddell Sea Anomaly of 1996/1997 southern summer with TOPEX/Poseidon radar altimetry // J. Geophys. Res. V. 111. A12317. doi:10.1029/2006JA011679. 2006.
- *Horvath I., Lovell B.C.* Investigating the relationships among the South Atlantic Magnetic Anomaly, southern nighttime midlatitude trough, and nighttime Weddell Sea Anomaly during southern summer // J. Geophys. Res. V. 114. A02306. doi:10.1029/2008JA013719. 2009a.
- -Horvath I., Lovell B.C. An investigation of the northern hemisphere midlatitude nighttime plasma density enhancements and their relations to the midlatitude nighttime trough during summer // J. Geophys. Res. V. 114. A08308. doi:10.1029/2009JA014094. 2009b.
- -Jee G., Burns A.G., Kim Y.H., Wang W. Seasonal and solar activity variations of the Weddell Sea Anomaly observed in the TOPEX total electron content measurements // J. Geophys. Res. V. 114. A04307. doi: 10.1029/2008JA013801. 2009.
- -Karpachev A.T., Deminov M.G., Afonin V.V. Model of the mid-latitude ionospheric trough on the base of Cosmos-900 and Intercosmos-19 satellites data // Adv. Space Res. V. 18. № 6. P. 221–230. 1996.
- -Karpachev A.T., Deminov M.G., Afonin V.V. Two branches of day-time winter ionospheric trough according to Cosmos-900 data at F2-layer heights // Adv. Space Res. V. 22. № 6. P. 877–882. 1998.
- -Karpachev A.T., Gasilov N.A. Zonal and meridional wind components derived from Intercosmos-19 hmF2 measurements // Adv. Space Res. V. 27. № 6/7. P. 1245– 1252. 2001.

- -Karpachev A. T., Gasilov N.A. Causes of longitude-latitudinal variations in the ionospheric F2-layer maximum in summer nighttime conditions // International J. Geomagn. Aeron. V. 6. GI2006. doi:10.1029/2005GI000112. 2006.
- -Lin C. H., Liu J.Y., Cheng C.Z., Chen C.H., Liu C.H., Wang W., Burns A.G., Lei J. Three-dimensional ionospheric electron density structure of the Weddell Sea Anomaly // J. Geophys. Res. V. 114. A02312. doi:10.1029/2008JA013455. 2009.
- -Lisakov Yu., Jorjio V., Nikolaenko N.V., Ainbund L.M. Observations of low intensity particle fluxes inside the region of the ionospheric main trough and their variability // Results of the ARCAD 3 project and of recent programs in magnetospheric and ionospheric physics. Toulouse: Cepadues editions. P. 261–274. 1985.
- -Meng C.I. Diurnal variations of the auroral oval size // J. Geophys. Res. V. 84. P. 5319–5324. 1979.
- *Moffett R.J., Quegan S.* The mid-latitude trough in the electron concentration of the ionospheric *F*-layer: A review of observations and modeling // J. Atmos. Terr. Phys. V. 45. P. 315–343. doi:10.1016/S0021-9169(83)80038-5.1983.
- *Pavlov A.V., Pavlova N.M.* Anomalous nighttime peaks in diurnal variations of *NmF2* close to the geomagnetic equator: A statistical study // J. Atmos. Sol.-Terr. Phys. V. 69. P. 1871–1883. doi:10.1016/j.jastp.2007. 07.003. 2007.
- -Penndorft R. The average ionospheric conditions over the Antarctic in Geomagnetism and Aeronomy // Antarct. Res. Ser. Washington: AGU. V. 4. P. 1–45. DC. 1965.
- -Rishbeth H. Thermospheric winds and the F-region: A review // J. Atmos. Terr. Phys. V. 34. № 1. P. 1–34. 1972.
- -Takeda M., Yamada Y. Simulation of ionospheric electric fields and geomagnetic field variation by the ionospheric dynamo for different solar activity // Ann. Geophysicae. V. 5. № 6. P. 429–433. 1987.

840