УДК 550.385.4

ВЗАИМОСВЯЗЬ ФИЗИЧЕСКИХ ПРОЦЕССОВ В ПЕРИОДЫ ГЛАВНЫХ ФАЗ ГЕОМАГНИТНЫХ БУРЬ, СВЯЗАННЫХ С *В*_Z-КОМПОНЕНТОЙ ММП, ПО ДАННЫМ КЛАСТЕРНОГО АНАЛИЗА

© 2011 г. И.В.Ковалевский

Учреждение РАН Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова, г. Троицк (Московская обл.)

e-mail: jkoval@izmiran.ru Поступила в редакцию 25.01.2010 г. После доработки 29.09.2010 г.

Исследованы основные причины главных фаз геомагнитосферных бурь ($D_{st}^{min} = -(37-226)$ нТл,) с использованием кластерного анализа в виде метода "ближайшего соседа". На основе двумерной (по *В*₇ компоненте ММП и *D*_{st}-индексу) масштабной кластерной классификации главных фаз бурь выделены слабые, умеренные, сильные и очень сильные бури (выборки), связанные с В_∕-компонентой ММП. Корреляционная кластеризация 32-х взаимосвязанных физических процессов, характеризующих каждую главную фазу, позволила установить наличие общей части внутренней структуры взаимосвязанных физических процессов для всех выборок. В свою очередь, каждая выборка обладает собственной внутренней структурой. Исследуемые выборки главных фаз бурь характеризуются различным физическим развитием, зависящим от масштаба события. Наличие общей части свидетельствует о том, что магнитосферная активность в период главной фазы бурь всех масштабов D_{st}-индекса определяется преимущественно *B*_Z и *B*_Y компонентами ММП и связанными на их основе функциями, а также полной величиной В ММП. Установлено, что наиболее тесные связи присущи $D_{st}(V^2B_S)$ и $D_{st}(VB_S)$, где B_S – южная компонента ММП, V – скорость солнечного ветра. Суббуревая активность (AE), порождаемая $V^2 B_S$ и $V B_S$, играет существенную роль только в периоды главных фаз слабых и умеренных бурь, тогда как группировка по скорости // проявляет существенную активность только в период очень сильных магнитных бурь. Роль параметра Акасофу є оказалась менее выраженной. Показано, что, в первом приближении, функции связи $V^2 B_S$ и $V B_S$ предпочтительны для прогнозирования *D*_{st} – индекса и функции инжекции *Q* в период главных фаз геомагнитосферных бурь.

1. ВВЕДЕНИЕ

Ключевой частью геомагнитосферной бури является геомагнитная буря, представляемая D_{st}-индексом. Ее самая важная характеристика — это главная фаза, характеризуемая резким понижением D_{sr} индекса [Gonzalez et al., 1994]. На этом интервале времени происходят наиболее интенсивные физические процессы. Однако до настоящего времени вопрос о причинах генерации и развития бурь различных интенсивностей остается до конца не решенным [Gonzalez et al., 1994; Kamide et al., 1998]. Так, в работе [Kamide et al., 1998] утверждается, что D_{st} -индекс можно прогнозировать непосредственно по данным измерений солнечного ветра и межпланетного магнитного поля. Это утверждение противоречит традиционной точке зрения, что суббури (АЕ- или АL-индексы) играют существенную роль в развитии D_{st}-вариации в период главной фазы бурь [Gonzalez et al., 1994]. На основе статистического анализа и метода наложенных эпох высказано мнение, что для бурь различной интенсивности существует подмножество различных межпланетных причин [Gosling et al., 1991; Taylor et al., 1994; Yokoyama and Kamide, 1997]. Результаты метода наложенных эпох свидетельствуют также о том, что южная компонента ММП B_S играет решающую роль как в возникновении начала генерации главной фазы бури, так и в определении ее интенсивности [Yokoyama and Kamide, 1997; Loewe and Prolss, 1997].

Это особенно четко проявляется в периоды сильных бурь (например, [Tsurutani et al., 1992]). Более того, в работе [Gonzalez et al, 1994] приведены пороговые значения B_S -компоненты и необходимая ее длительность для реализации бурь различной интенсивности. Пока отсутствует единая точка зрения на возможную взаимосвязь D_{st} -вариации с B_S или B_Z -компонентами ММП [Siscoe, 1982; Иванова и Клейменова, 1994; Порчхидзе и др., 1976].

Однако существует и иной подход к решению обсуждаемой задачи, согласно которому предложены различные функции связи для воспроизведения D_{sf} - вариации (см. например, [Burton et al., 1975; Perrault and Akasofu, 1978; Murayama, 1982; Пудовкин и др., 1985; Gonzalez et al., 1989; Feldstein, 1992; Gonzalez et al., 1994; Wu and Lundstedt, 1997; Maltsev and Rezhenov, 2003]). В частности, в большинстве предлагаемых функций связи ключевую роль приписывают B_{Z^-} или B_{S^-} компонентам ММП. Исключение составляет ε — функция связи Акасофу [Perrault and Akasofu, 1978], в которой ключевая роль принадлежит полной величине *B* ММП.

Таким образом, в настоящее время нет единого мнения о том, какая из предлагаемых функций связи или какой из параметров ММП являются наиболее геоэффективными и каков вклад *AL*- или *AE*-индексов в объяснение *D*_{sf}-вариации.

Для исследования физических процессов, связанных с геомагнитосферными бурями, особенно в периоды их главных фаз, в работе использован кластерный анализ, реализованный в виде метода "ближайшего соседа" [Ковалевский и Морозов, 1989]. При этом выполнена масштабная кластерная классификация главных фаз бурь по двум опорным физическим процессам (B_Z -компоненте ММП и D_{st} -индексу) с целью выделения событий, одинаковых по масштабу и форме и связанных с изменением B_{5} -компоненты. Выделены слабые, умеренные, сильные и очень сильные бури (выборки).

2. ИСХОДНЫЕ ДАННЫЕ

В таблице 1 приведен список исследованных главных фаз 31-ой геомагнитосфернной бури вместе с необходимыми для анализа параметрами [King, 1979]. По представленным в таблице данным выполнена интерполяционная нормировка: часовые усредненные данные о 13-ти исходных процессах интерполируются по методу кубических полиномов Лагранжа и приводятся к единичному временному интервалу дискретным представлением в 16-ти точках этого интервала. Таким образом, все главные фазы бурь сопоставляются на основе не физического временного представления, как в обычном кросскорреляционном анализе, а характерного времени, за которое приняты времена понижения D_{st}-индекса от конца начальной фазы до абсолютного минимума в каждой из реализаций бури.

Далее, по нормированным исходным данным вычисляются дополнительные "производные" параметры. В результате получается, что каждая главная фаза бури характеризуется M = 32 временными процессами. Между этими "внутренними" процессами может быть оценена мера их коррелированности.

Итак, для характеристики индивидуальных особенностей главной фазы бури использован набор из

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 51 № 4 2011

M = 32 параметров (элементарных процессов), из которых 13 являются исходными (измеряемыми) [King, 1979] и 19 - "производными" процессами [Burton et al, 1975; Perrault and Akasofu, 1978; Murayama, 1982; Пудовкин и др., 1985; Gonzalez et al., 1989; Feldstein, 1992; Gonzalez et al., 1994; Wu and Lundstedt, 1997]. К исходным данным относятся: V, n и T (скорость, концентрация и температура протонной компоненты солнечного ветра), полная величина В и компоненты B_X , B_Y и B_Z ММП, углы ориентации ϕ_B , θ_B ММП, дисперсия $\sigma_Z B_Z$ -компоненты, D_{st} -, AE- и AL-индексы геомагнитной активности. В качестве "производных" процессов приняты: V², $P = nV^{2}, nV^{3}, B_{T}^{2} = B_{Y}^{2} + B_{Z}^{2}, E_{Z} = VB_{Y}, E_{T} = VB_{T},$ $E_{\sigma_{Z}} = V(\sigma_{Z} - B_{Z}), E_{S} = VB_{S}, V^{2}B_{S}, F_{M} = VB_{S}(m_{p}nV^{2})^{1/3},$ $\varepsilon = VB^2 \sin^4(\theta/2) l_0^2$, $\varepsilon_{CF} = VB^2 \sin^4(\theta/2) l_{CF}^2$, $F_p =$ $= B^{2} |\sin^{3}(\theta/2)| / n^{1/2}, FEM = dDR/dt + DR/\tau_{R}, U_{T} = -4 \times$ $\times 10^{20} (dDR/dt + DR/\tau_R) + 3AE10^{15} (\text{spr/c}), DCF =$ = 0.02 $Vn^{1/2}$, где $B_S = B_Z$ при $B_Z < 0$ и $B_S = 0$ при $B_Z \ge 0$, m_p — масса протона, θ = arctg($|B_Y/B_Z|$) при $B_Z \ge 0$ и θ = 180° — arctg($|B_Y/B_Z|$) при $B_Z < 0$, $l_0 = 7R_E$ (радиусов Земли), $l_{CF} = (M_D^2/4\pi m_p n V^2)^{1/6}$, $M_D = 8.6 \times 10^{25} \,\mathrm{Fc} \,\mathrm{cm}^3$, τ_R — постоянная распада кольцевого тока, *FEM* = = *FEM*2 при τ_R = 2 ч и *FEM* = *FEM*6 при τ_R = 6 ч. Эти 32 элементарных процесса достаточно полно описывают состояние главной фазы бури как сложного системного явления, комплекса или объекта. Таким образом, в результате первичной обработки получается набор данных для N = 31 исследуемых событий, состоящий из M = 32 временных процессов (исходных и производных пара-

метров) в интервалах (t_1^i, t_2^i) , где i = 1, ..., N.

3. МЕТОД ОБРАБОТКИ

3.1. Двумерная масштабная классификация главной фазы бурь по особенностям B_Z-компоненты ММП и D_{st}-индекса

При анализе данных о сложном физическом явлении одним из важнейших этапов обработки информации является классификация явлений. В нашем случае при рассмотрении совокупности главных фаз магнитных бурь ставится задача масштабной классификации по двум опорным процессам (B_Z -компоненте ММП и D_{st} -индексу). Эта операция необходима для выделения выборок (кластеров и изолятов), одинаковых по форме и по масштабу и связанных с особенностями изменения B_Z -компоненты. В последующем это позволит исследовать присущую им внутреннюю структуру взаимосвязанных физических процессов и выделить наиболее геоэффективные процессы, определяющие раз-

КОВАЛЕВСКИЙ

N⁰	Момент D_{st}^{\min}		D_{st}^{\min}	\overline{D}_{st}	$\sigma(D_{st})$	B_Z^{\min}	\overline{B}_Z	σ(<i>B_Z</i>)
	Ч	дата	нТл	нТл	нТл	нТл	нТл	нТл
1	06	14.01.1967	-160	-91	54	-24.5	-15.3	5.4
2	14	16.02.1967	-130	-63	53	-22.0	-10.3	6.8
3	11	02.01.1968	-108	-73	29	-14.1	-11.4	4.3
4	11	11.02.1968	-124	-73	32	-12.3	-8.4	4.3
5	01	28.02.1968	-37	-20	12	-8.5	-7.5	1.1
6	22	05.04.1968	-112	-41	38	-19.3	-12.7	4.2
7	20	11.02.1969	-136	-96	29	-10.9	-8.7	1.9
8	02	16.05.1972	-79	-35	33	-15.9	-2.0	7.9
9	23	21.02.1973	-121	-77	34	-9.6	-8.1	1.4
10	23	02.04.1973	-211	-143	52	-21.2	-18.6	3.0
11	09	14.04.1973	-134	-88	36	-13.5	-10.8	3.0
12	22	25.01.1974	-66	-39	16	-6.6	-2.5	2.2
13	21	16.03.1974	-87	-49	36	-13.2	-5.9	8.2
14	07	06.07.1974	-204	-98	69	-20.3	-14.6	4.8
15	23	02.08.1974	-61	-33	22	-8.9	-4.6	3.6
16	23	08.11.1074	-67	-23	30	-9.1	-4.5	3.0
17	22	20.04.1975	-70	-35	25	-10.8	-5.0	6.1
18	04	26.05.1975	-37	-22	15	-8.1	-6.2	1.3
19	10	28.08.1978	-226	-151	60	-22.8	-17.9	3.7
20	11	29.09.1978	-224	-140	59	-24.4	-14.6	8.6
21	02	08.11.1978	-47	-18	54	-10.9	-9.1	2.6
22	13	12.11.1978	-93	-42	34	-12.6	0.2	8.8
23	19	25.11.1078	-149	-98	35	-15.3	-11.8	4.7
24	21	07.01.1979	-100	-49	27	-10.9	-7.5	2.0
25	09	21.02.1979	-95	-42	31	-10.3	-7.0	3.1
26	24	10.03.1979	-121	-65	43	-14.0	-9.9	3.6
27	17	22.03.1979	-81	-23	34	-16.1	-3.0	9.3
28	04	04.04.1979	-202	-119	57	-16.9	-12.0	3.1
29	04	22.04.1979	-99	-36	37	-10.6	-6.2	3.1
30	15	25.04.1979	-149	-91	46	-16.1	-6.5	7.4
31	19	30.08.1979	-140	-83	38	-11.3	-7.5	4.2

Таблица 1. Список исследуемых главных фаз геомагнитосферных бурь. Минимальные и средние значения и стандартные отклонения $D_{st}(D_{st}^{\min}, \overline{D}_{st}, \sigma(D_{st}), \mu B_Z(B_Z^{\min}, \overline{B}_Z, \sigma(B_Z))$

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 51 № 4 2011

Рис. 1. $D_{sf}-B_Z$ дендрит совокупности 31-ой главной фазы геомагнитосферных бурь, рассчитанный на основ двумерного масштабного расстояния $d_{fg}^{(2)} = \sqrt{0.5(d_{fg}^{D_{sf}})^2 + 0.5(d_{fg}^{B_Z})^2}$ с использованием одномерного масштабного расстояния d_{fg}^{M} ; кластеризация включительно до шага *S*17.

витие главной фазы. При этом учитываются различия по среднему уровню значений D_{st} -вариации и B_{Z} -компоненты, а также по среднеквадратическому отклонению $\sigma(D_{st})$ и $\sigma(B_{Z})$ от этого уровня на интервале главной фазы.

Для осуществления $D_{st}-B_Z$ масштабной кластерной классификации введем комплексное двумерное расстояние $d_{fg}^{(2)}$ (как частный случай общей формулы для многомерного расстояния $d_{fg}^{(n)}$ [Ковалевский и Морозов, 1989]):

$$d_{fg}^{(2)} = \left[0.5(d_{fg}^{D_{st}})^2 + 0.5(d_{fg}^{B_z})^2\right]^{1/2},$$
 (1)

основанное на соответствующих одномерных масштабных расстояниях $d_{fg}^{D_{st}}$ и $d_{fg}^{B_z}$, рассчитанных по:

$$(d_{fg}^{M})^{2} = \frac{1}{4} \int_{0}^{1} [f(t) - g(t)]^{2} dt =$$

$$= \frac{1}{4} [(\bar{f} - \bar{g})^{2} + (\sigma_{f} - \sigma_{g})^{2} + 2\sigma_{f}\sigma_{g}(1 - r_{fg})], \qquad (2)$$

где

3 ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 51 № 4 2011

$$\overline{f} = \int_{0}^{1} f(t)dt; \quad \overline{g} = \int_{0}^{1} g(t)dt;$$

$$\sigma_{f}^{2} = \int_{0}^{1} [f(t)]^{2}dt - (\overline{f})^{2}; \quad \sigma_{g}^{2} = \int_{0}^{1} [g(t)]^{2}dt - (\overline{g})^{2}; \quad (3)$$

$$r_{fg} = \left[\int_{0}^{1} f(t)g(t)dt - (\overline{f}\,\overline{g})\right] / \sigma_{f}\sigma_{g},$$

где f(t), g(t) — векторные реализации одного и того же процесса; \bar{f} и \bar{g} — средние уровни процесса; σ_{f}, σ_{g} средние разбросы f и g относительно \bar{f} и \bar{g} в анализируемом временном интервале; r_{fg} — коэффициент корреляции по Пирсону между f(t) и g(t) на исследуемом интервале, т.е. на временном интервале главной фазы бури.

Далее, на основе разработанного компьютерного алгоритма обработки эмпирической информации о многопараметрических физических объектах, в данном случае набора 31-ой главных фаз бурь (см. табл. 1), вычисляется матрица с N(N-1)/2 = 465расстояниями $d_{fg}^{(2)}$ между событиями *f*, *g*. Затем с помощью кластерного анализа ("метод ближайшего соседа") из этой матрицы выделяется дендрит, со-

Рис. 2. Примеры графиков D_{st} -индексов и B_Z -компоненты ММП в периоды главных фаз геомагнитосферных бурь для кластеров, полученных на основе двумерной $D_{st} - B_Z$ масштабной классификации с использованием масштабного расстояния $d_{fg}^{(2)}$.

держащий (N - 1) = 30 расстояний. Полученный дендрит для N = 31 и результат его достаточно подробной кластеризации до шага $S_k = 17$ приведен на рис. 1. В результате выполненной кластеризации $D_{st}-B_{Z}$ -дендрита совокупности 31-ой главных фаз выделены три кластера (CI, C2 и C3) и три изолята (*I*3) – назовем их выборками.

Сходство и различие масштабных параметров главных фаз кластеров и изолятов, т.е. выборок, можно видеть на рис. 2 и в табл. 2, где приведены пиковые значения опорных процессов (D_{st}^{\min} и B_Z^{\min}) соответствующих событий, их средние значения за период события (\overline{D}_{st} и \overline{B}_Z), а также их среднеквадратические отклонения ($\sigma(D_{st})$ и $\sigma(B_Z)$). Кроме того, в таблице приведены данные двух потенциально важных процессов: VB_S^{\min} , \overline{VB}_S ; AE^{\max} и \overline{AE} , а также значения соответствующих процессов, усредненных по всем событиям выборок. Некоторые из них оказались следующими: для $C1 \ \overline{D}_{st}^{\min} = -46 \ \text{нTл}, \ \overline{B}_Z^{\min} =$ $= -8.8 \ \text{нTл}; для C2 \ \overline{D}_{st}^{\min} = -90 \ \text{нTл}, \ \overline{B}_Z^{\min} = -10.2 \ \text{нTл},$ для $C3 \ \overline{D}_{st}^{\min} = -130 \ \text{нTл}, \ \overline{B}_Z^{\min} = -12.8 \ \text{нTл}, \ для$ *I* $<math>3 \ \overline{D}_{st}^{\min} = -220 \ \text{нTл}, \ \overline{B}_Z^{\min} = -22.8 \ \text{нTл}. C$ учетом полученных значений \overline{D}_{st}^{\min} и в соответствии с терминологией авторов работ [Sugiura and Chapman, 1960; Gonzalez et al., 1994] фактически выделены слабые (*C*1), умеренные (*C*2), сильные (*C*3) и очень сильные бури (*I*3).

Следовательно, масштабная классификация главных фаз бурь одновременно по двум основаниям (B_Z -компоненты и D_{st} -вариации) позволяет достаточно хорошо классифицировать бури по форме и масштабным характеристикам и тем самым подтвердить важную роль B_Z -компоненты ММП как причинного процесса в генерации D_{st} -вариации.

3.2. Корреляционная кластеризация физических процессов

Следующим этапом обработки данных является проверка физической обоснованности полученных классификаций главных фаз бурь, т.е. проведение содержательного физического анализа, сводящегося к выявлению структур взаимосвязанных физических процессов, присущих полученным выборкам главных фаз бурь. Он состоит в кластерном анализе взаимосвязанности исходных и производных процессов, характеризующих каждую главную фазу. Для решения этой цели используется мера "коррелированности процессов", опирающаяся на расстояние

$$d_{fg}^{C} = (1 - r_{fg}^{2})^{1/2}; \quad (r_{fg} = \pm 1 \rightarrow d_{fg}^{C} = 0).$$
 (4)

Устанавливаются связи между собой для всех M = 32 временны́х процессов. Из полученной матрицы с M(M - 1)/2 = 496 расстояниями между процессами выделяется дендрит процессов с (M - 1) связями, который затем анализируется вышеуказанным способом, а именно, с выделением относительно независимых процессов (изолятов) и выборок (кластеров) тесно коррелированных процессов [Ковалевский и Морозов, 1989].

На рис. За приведен дендрит главной фазы бури с № 25 таблицы, а на рис. Зб — результат анализа подобных дендритов в форме дендрограмм коррелированности процессов из кластера C2 умеренной бури двумерной масштабной D_{st} — B_Z , классификации. Дробление дендрита (кластеризация) осуществля-

N⁰	D _{st} ^{min} нТл	<u></u> <i>Б_{st} нТл</i>	σ(<i>D_{st}</i>) нТл	$B_Z^{ m min}$ нТл	<u></u> В <i>Z</i> нТл	σ(<i>B</i> _Z) нТл	<i>VB</i> ^{min} мВ/м	<u><i>VB</i></u> <i>S</i> мВ/м	<i>AE</i> ^{max} нТл	<u>АЕ</u> нТл
<i>C</i> 1										
5	-37	-20	12	-8.5	-7.5	1.1	-2.8	-2.4	636	402
18	-37	-22	15	-8.1	-6.2	1.3	-3.5	-2.8	879	620
21	-47	-18	24	-10.9	-9.1	2.6	-4.3	-3.2	737	335
15	-61	-33	22	-7.7	-4.6	3.6	-3.9	-2.3	848	662
Среднее	-46	-23	18	-8.8	-6.9	2.2	-3.6	-2.7	775	505
<i>C</i> 2										
24	-100	-49	27	-10.9	-7.5	2.2	-5.8	-4.0	1358	699
25	-95	-42	31	-10.3	-7.0	3.1	-5.4	-3.6	1037	735
29	-99	-36	37	-10.6	-6.2	3.1	-4.6	-2.4	795	559
16	-67	-23	30	-9.1	-4.5	3.0	-5.0	-2.4	698	526
Среднее	-90	-38	31	-10.2	-6.3	2.8	-5.2	-3.1	972	630
<i>C</i> 3										
7	-136	-96	29	-10.9	-8.7	1.9	-5.3	-4.3	1363	778
9	-121	-77	34	-9.6	-8.1	1.4	-5.4	-4.4	909	581
11	-134	-88	36	-13.5	-10.8	3.0	-7.0	-5.4	839	646
3	-108	-73	29	-14.1	-11.4	4.3	-6.6	-5.0	729	540
26	-140	-65	43	-14.1	-9.9	3.6	-6.4	-4.5	1049	701
23	-149	-98	35	-15.3	-11.8	4.7	-8.1	-5.7	1021	703
4	-124	-73	31	-11.9	-8.4	4.3	-5.8	-3.9	1005	536
Среднее	-130	-81	34	-12.8	-9.9	3.3	-6.4	-4.7	988	641
<i>I</i> 2										
19	-226	-151	60	-22.8	-17.9	3.7	-11.3	-8.5	1026	827
10	-211	-143	52	-21.2	-18.6	3.0	-9.6	-8.4	960	565
20	-224	-140	59	-24.4	-14.6	8.6	-20.7	-12.8	1080	808
Среднее	-220	-145	57	-22.8	-17.0	5.1	-13.9	-9.9	1022	733

Таблица 2. Минимальные и средние значения D_{st} , B_Z , VB_S и максимальные и средние значения параметров AE и стандартные отклонения D_{st} и B для главных фаз кластеров (C1, C2, C3) и изолятов (I3)

лась до шага SN = S3, после которого выполнялось условие $|r_{rg}| \ge 0.8$ (дендрограмма на рис. 36) для последующих взаимосвязей между парными процессами *f* и *g*. В настоящей работе в дальнейшем кластеризация дендритов осуществлялась до шага, после которого выполнялось условие $|r_{fg}| \ge 0.7$. Указанное условие позволяет выявить надежные внутренние структуры взаимосвязанных физических процессов и наиболее геоэффективные процессы, контролирующие развитие $[D_{sf}]$ и (*AE*) процессов. Что касается дендрограммы главной фазы бури с № 25, то отметим следующее: наличие тесной связи между группировками $[D_{sf}]$ и (*AE*), активность которых определяется группировками $[B_{zf}], [B_{T}], (B_{y}), (V)$ и процессами B_X , σ_Z и ϕ_B . Изолированность (є)-группировки свидетельствует о сравнительно слабом ее влиянии на $[D_{sl}]$ и (*AE*).

Анализ дендрограмм внутренних структур процессов главных фаз бурь полученных кластеров и изолятов (выборки) показал, что физические процессы обладают существенной избыточностью, а именно, часть из них всегда составляла тесно связанные устойчивые группировки (как правило, с $|r_{fg}| \ge 0.9$ между соседними процессами). Для таких группировок введем следующие условные обозначения, используя при этом самые характерные их компоненты:

 $[D_{st}] = D_{st} + DR + U_T + FEM2 + FEM6; (AE) = AE + AL; (DCF) = DCF + n + nV^2 + nV^3; (V) = V + V^2;$

Рис. 3. Дендрит (*a*) и "неизбыточный" вариант дендрограммы (*б*) коррелированности процессов для главней фазы бури с № 25 (кластер *C*2). "Неизбыточный" вариант дендрограммы есть результат кластеризации дендрита до шага SN = S3, после которого коэффициент корреляции между соседними процессами был $|r_{fg}| \ge 0.8$. Обозначения на рис. 3a: жирные линии – очень тесные связи ($|r_{fg}| \ge 0.9$), тонкие линии – тесные связи ($0.8 \le |r_{fg}| \le 0.9$), штриховые линии – умеренные связи ($0.7 \le |r_{fg}| \le 0.8$).

 $[B_Z] = B_Z + E_Y + E_{\sigma_Z} + \theta_B + VB_S + V^2B_S + F_M; (B_T) = B_T + VB_T; [B_T] = B + B_T + VB_T; (B_Y) = B_Y + VB_Y, (\varepsilon) = \varepsilon + \varepsilon_{CF} + F_P$. Отметим, что группировка $[D_{sI}]$ характеризует активность магнитосферных процессов, тогда как группировка (AE) – геомагнитную активность авроральных электроструй. Остальные группировки в преобладающем большинстве характеризуют активность межпланетной среды.

Анализ дендритов коррелированности процессов полученных выборок при кластеризации дендритов проводился до уровня $|r_{g}| \ge 0.7$ между соседними процессами оставшихся структур. Установлено, что существует общая часть (*CP*) внутренней структуры взаимосвязанных физических процессов для всех выборок. В свою очередь, каждая выборка обладает собственной общей внутренней структурой:

$$CP = [D_{st}] + B + [B_{Z}] + (B_{Y});$$

$$C1 = CP + (B_{X}) + (\varepsilon) + (DCF) + (AE);$$

$$C2 = CP + (B_{T}) + B_{X} + \sigma_{Z} + \phi_{B} + (V) + T + (AE);$$

$$C3 = CP + (B_{T}) + (\varepsilon) + (V) + T + (AE);$$

$$I3 = CP + (B_T) + B_Y + (\varepsilon) + (DCF) + (V) + T.$$

Предположим, что полученные внутренние структуры взаимосвязанных физических процессов в какой-то степени отражают происходящие физические процессы, связанные с главной фазой бури. Тогда можно сделать вывод, что главная фаза исследуемых выборок характеризуется различным физическим развитием с одновременным участием нескольких физических процессов, зависящих от масштаба события (т.е. *D*_{st}-индекса). Наличие *СР* свидетельствует о том, что магнитосферная активность в период главной фазы $[D_{st}] = D_{st} + DR + Q + Q$ $+ U_T$] (где Q = dDR/dt + DR/6) всех масштабов D_{st} определяется преимущественно $[B_{Z}]$ и (B_{Y}) группировками, а также полной величиной В межпланетного магнитного поля. Отметим также, что с увеличением интенсивности $\left| D_{st}^{\min} \right|$ возрастает роль (B_T) и (V) группировок и температуры Т. Тогда как при этом роль суббуревой активности (АЕ) ослабевает. Она существенна в периоды слабых и умеренных бурь, хотя определенную роль играет и в периоды

468

Рис. 4. Зависимость D_{st} -индекса от различных процессов X (средних и экстремальных значений за период главной фазы бури, усредненных по всем событиям соответствующих выборок: $\overline{D}_{st}(\overline{X})$, $\overline{D}_{st}^{\min}(\overline{X}^{ext})$: a) B, нТл; B_Z , нТл; VB_S , мВ/м; V^2B_S , 10⁶ нТл(км/c)²; F_M^* , 10⁵ (нТл/см)(км/c)^{5/3}; δ) ε , 10¹⁸ эрг/с.

интенсивных бурь. Роль (ε) группировки и B_{χ} -компоненты ММП неоднозначна. Хотя в некоторых случаях она существенна. Полученные структуры взаимосвязанных физических процессов отражают взаимодействие межпланетной среды с магнито-сферой.

Полученное в работе сходство внутренних структур взаимосвязанных физических процессов среди главных фаз одной и той же выборки и различие между внутренними структурами из разных выборок позволяет утверждать, что масштабная $D_{st}-B_Z$ классификация имеет достаточную степень физической достоверности.

С учетом отдельных и общих внутренних структур взаимосвязанных физических процессов полученных выборок главных фаз бурь можно сделать вывод о многовариантном физическом развитии исследуемых событий. Этот процесс можно достаточно достоверно описать только с помощью многопараметрической функции связи. В этом состоит отличие полученного результата от выводов работ [Burton et al., 1975; Perrault and Akasofu, 1978; Akasofu, 1981; Murayaraa, 1982; Пудовкин и др., 1985; Feldstein, 1992; Gonzalez et al., 1994; Иванова и Клейменова, 1994; Yokoyama and Kamide, 1997; Wu and Lundstedt, 1997; Kamide et al., 1998; Maltsev and Rezhenov, 2003].

Однако возникает необходимость выяснить, какие из причинных процессов многопараметрической функции оказываются наиболее эффективными в развитии главной фазы бури. По ним можно было бы в грубом приближении судить о физике явления и моделировать его, и следовательно, прогнозировать некоторые типы главных фаз, т.е. развитие D_{st} -вариации или функции инжекции Q в период главной фазы. В настоящей работе ограничимся

Рис. 5. Связь между D_{st} -индексом и AE- или AL-индексами (средних и экстремальных значений, усредненных по всем событиям соответствующих выборок) в период главных фаз: $\overline{\overline{D}}_{st}(\overline{AE})$ – штриховая линия; $\overline{\overline{D}}_{st}(\overline{AE})$ – штриховая линия; $\overline{\overline{D}}_{st}(\overline{AE})$ – штриховая линия; $\overline{\overline{D}}_{st}(\overline{AL})$ – разреженная штриховая линия; $\overline{\overline{D}}_{st}^{\min}(\overline{AL}^{\min})$ – жирная линия.

рассмотрением характера воздействия на $Y = D_{st}$ -индекс (или Q) таких причинных "геоэффективных" процессов как X (B, B_Z , VB_S , V^2B_S , $F^* = VB_S(nV^2)^{1/3}$, функции связи Акасофу ε , а также AE- и AL-индексов). Причинно следственные связи строились на основе средних ($\overline{Y}, \overline{X}$) и экстремальных ($Y^{\text{ext}}, X^{\text{ext}}$) значений соответствующих процессов за период главной фазы, усредненных по всем событиям каждой выборки, а именно, $\overline{\overline{Y}}(\overline{\overline{X}})$ и $\overline{Y}^{\text{ext}}(\overline{X}^{\text{ext}})$.

На рис. 4a показана зависимость D_{st} -индекса от B, B_Z, VB_S, V^2B_S и F_M^* . Видно, что по форме кривые зависимостей D_{st} , (VB_S) , $D_{st}(V^2B_S)$ и $D_{st}(F_M^*)$ подобны друг другу. Тогда как кривые зависимостей $D_{y}(B_{z})$ и $D_{\rm s}(B)$ существенно отличаются от них. Видно также, что кривые зависимостей $\bar{\bar{D}}_{st}(\bar{\bar{V}}^2\bar{\bar{B}}_s), \quad \bar{\bar{D}}_{st}(\bar{\bar{V}}\bar{\bar{B}}_s),$ $\bar{\bar{D}}_{st}(\bar{\bar{F}}_{M}^{*}), \ \bar{D}_{st}^{\min}(\bar{V}\bar{B}_{S}^{\min}), \ \bar{D}_{st}^{\min}(\bar{V}^{2}\bar{B}_{S}^{\min}), \ \mathrm{M} \ \bar{D}_{st}^{\min}(\bar{F}_{M}^{*\min})$ практически описываются линейным законом в период слабых, умеренных и сильных бурь (т.е. при $\overline{D}_{st}^{\min} > -130$ нТл, $\overline{\overline{D}}_{st} > -81$ нТл). Эта линейность нарушается, а эффективность связей ослабляется при очень сильных бурях (т.е. при $\overline{D}_{st}^{\min} < -130$ нTл): наклон кривых увеличивается, особенно для зависимостей $\bar{D}_{st}(\bar{F}_{M}^{*})$ и $\bar{D}_{st}^{\min}(\bar{F}_{M}^{*\min})$, т.е. эффективность связи ослабляется. Отметим, что зависимость $\overline{D}_{st}(\overline{B}_{7})$ линейна только в пределах умеренных, сильных и очень сильных бурь ($\bar{D}_{st} = -(38-145)$ нТл). Зависимость \bar{D}_{st}^{\min} (\bar{B}_Z^{\min}) описывается параболической кривой с горизонтальной осью во всем исследуемом диапазоне с ослаблением тесноты связи при увеличении возмущенности $|\bar{D}_{st}^{\min}|$. Что касается влияния полной величины *B* ММП на D_{st} – вариацию, то зависимость $\bar{D}_{st}(\bar{B})$ приблизительно линейна во всем исследуемом диапазоне. Тогда как зависимость $\bar{D}_{st}^{\min}(\bar{B}^{\max})$ несколько усложняется. С учетом наклона полученных кривых можно сделать вывод, что наиболее тесная связь имеет место в зависимостях $D_{st}(V^2B_S)$ и $D_{st}(VB_S)$.

Анализ данных рис. 46 и 66 показал, что влияние параметра Акасофу ε на развитие возмущенности главной фазы бури оказалось менее заметным. Детальный анализ зависимости функции инжекции Qот перечисленных выше процессов X выходит за рамки данной статьи. Отметим только, что характер графиков Q(X) практически мало отличается от зависимости $D_{st}(X)$, но усиливается линейность связей

$$Q\left(B_{Z}
ight)$$
 и $Q\left(B
ight)$.

Эффект воздействия суббурь на бури можно проследить на рис. 5, где приведены зависимости $D_{st}(AL)$ и $D_{st}(AE)$ в диапазоне $\overline{D}_{st}^{\min} = -(46-220)$ нТл. Видно, что умеренная пропорциональная связь существует между AL- или AE-индексами и D_{st}-индексом только для главных фаз слабых и умеренных бурь $(\overline{D}_{st}^{\min} > -90$ нТл). С увеличением возмущенности $(\bar{\bar{D}}_{st} < -38$ нТл, $\bar{D}_{st}^{\min} < -90$ нТл) $|D_{st}|$ – индекс резко увеличивается при насыщении суббуревой активности на уровне $\overline{A}\overline{L}^{\min} = -801$ нТл и $\overline{A}\overline{L}$ = -457 нТл ($\overline{A}\overline{E}^{max} = 972$ нТл и $\overline{A}\overline{E} = 630$ нТл). При этом связи $D_{st}(AL)$ и $D_{st}(AE)$ приблизительно описываются параболической кривой с вертикальной осью. Более близкая парабола описывает связи $\overline{D}_{st}^{\min}(\overline{A}\overline{L}^{\min})$ и $\overline{D}_{st}^{\min}(\overline{A}\overline{E}^{\max})$. Отметим, что зависимости Q(AL) и Q(AE) не приведенные в работе, по своему характеру мало отличаются от кривых $D_{st}(AL)$ и $D_{st}(AE)$, т.е. для них также характерна связь параболического типа.

Представляет интерес реакция суббуревой активности (а именно, *AL*-индекса) в период главной фазы бури на перечисленные выше функции связи и процессы, показанная на рис. 6*a* и δ . Видно, что реакция *AL*-индексов существенно отличается от реакции D_{st} -индексов на одни и те же функции *X* (*B*, B_{Z} , VB_{S} , $V^{2}B_{S}$, F_{M} и ε).

Рис. 6. Зависимости AL – индексов от причинных процессов X (построенных на основе средних и экстремальных значений за период главных фаз, усредненных по всем событиям соответствующих выборок: $\overline{AL}(\overline{X})$, $\overline{AL}^{\min}(\overline{X}^{ext})$: $(a) - B_Z$ – сплошная линия; B – сплошная линия; VB_S – штриховая линия; V^2B_S – штрихпунктирная линия; F_M^* – пунктирная линия; $(\delta) \varepsilon$ – штрихпунктирная линия. Для сравнения приводятся $\overline{AE}(\overline{\overline{\varepsilon}})$, $\overline{AE}^{\max}(\overline{\varepsilon}^{\max})$ и $\overline{D}_{st}(\overline{\overline{\varepsilon}})$, $\overline{D}_{st}^{\min}(\overline{\varepsilon}^{\max})$.

Остановимся на некоторых особенностях кривых AL(X). Так, кривые $\overline{A}\overline{L}^{\min}(\overline{X}^{ext})$ и $\overline{A}\overline{L}(\overline{X})$ подобны друг другу по форме, за исключением кривой $\overline{A}\overline{L}(\overline{B}_{Z})$. Все кривые обладают более сложной структурой по сравнению с зависимостями $D_{st}(X)$.

В периоды слабой и умеренной возмущенности главной фазы бури ($\overline{D}_{st}^{\min} - 90$ нТл и $\overline{D}_{st} > -38$ нТл; или $\overline{AL}^{\min} > -800$ нТл и $\overline{AL} > -460$ нТл) существует зависимость \overline{AL} от (\overline{X}). При этом наиболее тесная связь имеет место в зависимостях \overline{AL} ($\overline{V}^2 \overline{B_s}$), \overline{AL} ($\overline{V} \overline{B_s}$) за исключением \overline{AL} ($\overline{B_z}$). Связи ослабевают для зависимостей \overline{AL} (\overline{F}_M^*), \overline{AL} (\overline{B}) и \overline{AL} ($\overline{\epsilon}$). При усилении возмущенности ($\overline{D}_{st}^{\min} < -90$ нТл и $\overline{AL}^{\min} < -800$ нТл)

резко ослабевает связь \overline{AL} с \overline{X} , т.е. имеет место насыщение электроструи при $\overline{B}_Z^{\min} = -10$ нТл и $(\overline{B}_Z) =$ = -6 нТл; $\overline{VB}_S^{\min} = -5$ мВ/м и $\overline{VB}_S = -3$ мВ/м; $\overline{V}^2 \overline{B}_S^{\min} = -2.6 \times 10^6$ км² нТл/с² и $\overline{V}^2 \overline{B}_s = -1.5$ км² нТл/с²; $\overline{\epsilon}^{\max} = 2 \times 10^{19}$ эрг/с, $\overline{\epsilon} = 7 \times 10^{17}$ эрг/с. При этом $|D_{st}|$ -индекс резко увеличивается, что, по-видимому, свидетельствует о нарушении связи между кольцевым током и авроральными процессами в период главных фаз сильных и очень сильных бурь. Для связей $\overline{AL}^{\min}(\overline{X}^{\text{ext}})$ насыщение электроструи наступает только после сильной бури, и имеет место практически линейная зависимость \overline{AL}^{\min} от \overline{B}_Z^{\min} , и \overline{VB}_S^{\min} в периоды главных фаз слабых, умеренных и сильных бурь.

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 51 № 4 2011

Анализ кривых AE(X) показал, что они подобны кривым AL(X) с незначительным изменением уровней насыщения AE-индекса.

4. ОБСУЖДЕНИЕ

Сравним полученные нами результаты на основе кластерного анализа с некоторыми результатами других исследователей с использованием метода наложенных эпох, кросскорреляционного анализа и искусственных нейронных сетей.

Полученные нами результаты подтверждают точку зрения о том, что совокупность межпланетных причин, порождающих главную фазу бурь, различна для бурь в зависимости от уровней их интенсивности [Gosling et al., 1991]. Южная компонента B_S ММП [Yokoyama and Kamide, 1997] наряду с функциями связи, включающими в себя B_7 или B_5 -компоненты ММП [Wu and Lundstedt, 1997], играют решающую роль в определении масштаба главной фазы магнитных бурь. Параметр Акасофу є слабо геоэффективен в воздействии на бурю [Wu and Lundstedt, 1997b; Maltsev and Rezhenov, 2003]. B работе [Wu and Lundstedt, 1997а] с использованием искусственных нейронных сетей показано, что степень тесноты взаимосвязи *D*_{st}-индекса с функциями $p^{1/3}VB_S \equiv F_M, p^{1/2}VB_S, V^2B_S, VB_S, VB_Z$ и V^3B_S послевательно убывает соответственно от высокой до низкой. В отличие от этого результата в исследуемой нами совокупности событий получен несколько иной порядок степени тесноты взаимосвязи D_{st} -индекса с V^2B_S , VB_S , $p^{1/3}VB_S$ она убывает соответственно от сильной до умеренной.

В работах [Tsurutani and Gonzalez, 1995; Maltsev and Rezhenov, 2003] утверждается, что B_{γ} -компонента ММП оказывает слабое влияние на геомагнитную активность. Вместе с тем в настоящей работе показано, что B_{γ} -компонента ММП играет существенную роль в развитии главной фазы бури.

До сих пор в литературе существует неоднозначный ответ на вопрос о степени воздействия суббурь на бури: от отрицания такого воздействия [Iemory and Rao, 1996] до его наличия [Akasofu, 1981; Gonzalez et al., 1994; Yokoyama and Kamide, 1997], вплоть до существования связи в широком диапазоне в форме алгоритма [Cade et al., 1995; Shen and Liu, 2002]. Однако наши результаты свидетельствуют о том, что связь суббуря — буря существует преимущественно в периоды слабых и умеренных бурь.

В работе подтвержден факт отличия реакции AEили AL-индексов от реакции D_{st} -индекса на одни и те же функции связи [Gonzalez et al., 1989], факт тесной связи V^2B_S с AL-индексом [Murayama, 1982] (в нашем случае только в период слабых и умеренных бурь), а также факт насыщения AE- или AL-индексов при определенных пороговых значений B_Z -компоненты ММП и некоторых функций связи [Weimer et al., 1990].

Из полученных в настоящей работе результатов следует, что для прогнозирования D_{st} -индекса или функции инжекции Q во время главной фазы бури во всем диапазоне исследуемых бурь (с учетом степени взаимосвязей $D_{st}(X)$) в первом приближении целесообразно использовать функции связи V^2B_S и VB_S . Функции связи $F_M^* = VB_S(nV^2)^{1/3}$ и процесс B_Z -компоненты также пригодны для прогнозирования D_{st} и Q во время главной фазы бури. Использование параметра Акасофу є для этих целей вызывает определенные сомнения, несмотря на его популярность. Отметим, что AL- и AE-индексы могут оказаться потенциально полезными для прогнозирования D_{st} и Q, но только в периоды слабой и умеренной магнитной возмущенности (\overline{D}_{st}^{\min} =

= -(46-90) нТл, $A\overline{L}^{\min} = -(526-801)$ нТл).

Добавим, что *AL*- (или *AE*) -индекс представляется возможным довольно надежно прогнозировать с помощью функций V^2B_S и VB_S , но только во время главной фазы бури при слабой и умеренной возмущенности. Эффективность прогнозирования суббуревой активности в указанном диапазоне возмущенности при использовании B_Z -компоненты, F_M^* и параметра є существенно понижается. Заметим, что прогнозирование *AL*- и *AE*-индексов в периоды сильных возмущений $\overline{D}_{st}^{min} < -130$ нТл, $A\overline{L}^{min} < -860$ нТл) с использованием указанных выше функций связи представляется крайне затруднительным в свете тенденции насыщения суббуревой электроструи в указанном диапазоне активности.

5. ВЫВОДЫ

1. Исследованы основные причины разви-

тия главных фаз геомагнитосферных бурь ($\overline{D}_{st}^{\min} = -(37-226)$ нТл) с применением кластерного анализа в виде метода "ближайшего соседа".

2. На основе $D_{st}-B_Z$ масштабной классификации по среднему уровню \overline{D}_{st} и \overline{B}_Z и их среднеквадратическому отклонению от этого уровня на интервале главных фаз бури выделены выборки слабых, умеренных, сильных и очень сильных бурь, связанных с B_Z -компонентой ММП, внутренние структуры взаимосвязанных физических процессов которых зависят от масштаба события (D_{st}^{min} -индекса). Корреляционная кластеризация позволила установить, что магнитосферная активность в периоды главных фаз всех исследуемых масштабов D_{st} -индекса определя-

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 51 № 4 2011

ется преимущественно B_{Z^-} и B_{Y^-} компонентами ММП и связанными на их основе некоторыми функциями связи, а также полной величиной *B* ММП. Наиболее тесные взаимосвязи имеют место в зависимосях $D_{st}(V^2B_S)$ и $D_{st}(VB_S)$, где B_S — южная компонента ММП, V — скорость солнечного ветра. Взаимосвязь параметра Акасофу є с D_{st} -индексом оказалась относительно слабой.

3. Суббуревая активность (AL- или AE-индексы), порождаемая преимущественно V^2B_S или VB_S , вносит существенный вклад в D_{st} -индекс только в периоды главных фаз слабых и умеренных бурь.

4. По-видимому, функции связи V^2B_S и VB_S являются более геоэффективными для прогнозирования D_{st} -индекса и функции инжекции Q в периоды исследуемых главных фаз бурь, а также для прогнозирования AL- или AE-индексов, но только в периоды слабых и умеренных бурь.

СПИСОК ЛИТЕРАТУРЫ

- Иванова П.К., Клейменова Н.Г. Максимальное значение D_{st} в главную фазу больших магнитных бурь и параметры ММП // Геомагнетизм и аэрономия. Т. 34. № 4. С. 67–72. 1994.
- Ковалевский И.В., Морозов Ю.И. Методы распознавания образов в анализе сложных физических явлений. М.: ИЗМИРАН, 259 с. 1989.
- Порчхеидзе Ц.Д., Чхетия А.М., Фельдитейн Я.И. Межпланетная плазма и геомагнитные бури в течение солнечного цикла // Симп. КАПГ по солнечно-земной физике (Тбилиси, сентябрь 1976). Тез. докл. Ч.З. М.: Наука, С. 142. 1976.
- Пудовкин М.И., Зайцева С.А., Сизова Л.З., Орлова Н.М. Вариации поля D_{st} в зависимости от параметров солнечного ветра // Геомагнетизм и аэрономия. Т. 25. № 5. С. 812—817. 1985.
- Akasofu S.-I. Relationships between the AE and D_{st} indices during geomagnetic storms // J. Geophys. Res. V. 86. № A6. P. 4820–4822. 1981.
- Burton R.K., McPherron L., Russell T. An empirical relationship between interplanetary conditions and D_{st} / J. Geophys. Res. V. 80. № 31. P. 4204–4214. 1975.
- Cade W.B., Sojka J.J., Zhu L. A correlative comparison of the ring current and auroral electrojets using geomagnetic indices // J. Geophys. Res. V. 100. № A1. P. 97– 105. 1995.
- Feldstein Y.I. Modeling of the magnetic field of magnetospheric ring current as a function of interplanetary parameters // Space Sci. Rev. V. 59. № 1 + 2. P. 83–165. 1992.
- Gonzalez W.D., Tsurutani B.T., Gonzalez A.L.C., Smith E.J., Tang F., Akasofu S.-I. Solar wind – magnetosphere coupling during intense magnetic storms (1978–1979) // J. Geophys. Res. V. 94. № A7. P. 8835–8851. 1989.
- Gonzalez W.D., Joselyn J.A., Kamide Y., Kroehl H.W., Rostoker G., Tsurutani B.T., Vasyliunas V.M. What is a

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 51 № 4 2011

geomagnetic storm? // J. Geophys. Res. V. 99. № A4. P. 5771–5792. 1994.

- Gosling J.T., McComas D.J., Phillips T.L., Bame S.J. Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections // J. Geophys. Res. V. 96. № A5. P. 7831– 7839. 1991.
- *Iyemory T., Rao D.R.K.* Decay of the D_{st} field of geomagnetic disturbance after substorm onset and its implication to storm-substorm relation // Ann. Geophysical V. 14. № 6. P. 608–618.1996.
- Kamide Y., Baumjohann W., Daglis I.A. et at. Present understanding of magnetic storms: storm-substorm relationship // J. Geophys. Res. V. 103. № A8. P. 17705– 17728. 1998.
- King J.H. Composite interplanetary magnetic field and plasma tape // SM-41B. NSSDC/WDC-A. Greenbelt. 1987.
- Loewe C.A., Prolss G.W. Classification and mean behavior of magnetic storms // J. Geophys. Res. V. 102. № A7. P. 14209–14213. 1997.
- Maltsev Yu.P., Rezhenov B.V. Relation of D_{st} index to solar wind parameters // Int. J. Geomag. Aeron. V. 4. N
 № 1. P. 1–9. 2003.
- Murayama T. Coupling function between solar wind parameters and geomagnetic indices // Rev. Geophys. Space Phys. V. 20. № 3. P. 623–629. 1982.
- Perreault P., Akasofu S.-L. A study of geomagnetic storms // Geophys. J. R. Astron. Soc. V. 54. № 3. P. 547–573. 1978.
- Shen C., Liu Z. A physics-based study of the D_{st}-AL relationship // J. Geophys. Res. V. 107. № Al. doi:10.1029/2001JA900121.2002.
- Siscoe G.L. Energy coupling between region 1 and 2 Birkeland current system // J. Geophys. Res. V. 87. № A7. P. 5124–5130. 1982.
- Taylor J.R., Lester M., Yeoman T.K. A superposed epoch analysis of geomagnetic storms // Ann. Geophysicae V. 2. № 7. P. 612–624. 1994.
- Tsurutani B.T., Gonzalez W.D., Tang F., Tehee Y. Great magnetic storms // Geophys. Res. Lett. V. 19. № 1. P. 73–76. 1992.
- *Tsurutani B.T., Gonzalez W.D.* The future of geomagnetic storm prediction: implications from recent solar and interplanetary observations // J. Atmos. Terr. Phys. V. 75. V. 12. P. 1369–1384. 1995.
- Weimer D.R., Reinleitner L.A., Kan J.R., Zhu L., Akasofu S.-I. Saturation of the auroral electrojet current and the polar cap potential // J. Geophys. Res. V. 95. № 11. P. 18981–18987. 1990.
- Wu J.-G., Lundstedt H. Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks // J. Geophys. Res. V. 102. № A7. P. 14255– 14268. 1997(a).
- Wu J.-G., Lundstedt H. Neural network modeling of solar wind – magnetosphere interaction // J. Geophys. Res. V. 102. № A7. P. 14457–14466. 1997(b).
- Yokoyama N., Kamide Y. Statistical nature of geomagnetic storms // J. Geophys. Res. V. 102. № A7. P. 14215– 14222. 1997.