УДК 550.385.37

НЕКОТОРЫЕ НОВЫЕ ВОЗМОЖНОСТИ ДИАГНОСТИКИ МАГНИТОСФЕРЫ ПО ХАРАКТЕРИСТИКАМ СВИСТОВЫХ ИЗЛУЧЕНИЙ

© 2011 г. П. А. Беспалов

Учреждение РАН Институт прикладной физики, Нижний Новгород e-mail: peter@appl.sci-nnov.ru
Поступила в редакцию 16.11.2009 г.
После доработки 10.05.2010 г.

В электронных радиационных поясах Земли возбуждаются различные типы естественных электромагнитных излучений. Условия возбуждения этих излучений зависят от плазменных параметров, геометрии системы, процессов переноса волн, закономерностей накопления частиц и их высыпания из магнитной ловушки. Эффективное взаимодействие волн и частиц часто может быть описано теорией плазменного магнитосферного мазера. Плазменный магнитосферный мазер реально работает в нескольких основных режимах. Эти режимы ответственны за генерацию ОНЧ-излучений с различной динамикой частотного спектра. Переключение между режимами происходит в результате изменения как локальных, так и глобальных характеристик магнитосферы. Например, динамика циклотронной генерации во многом зависит от мощности источника энергичных частиц. Знание теории плазменного магнитосферного мазера дает возможность реализации некоторых новых методов диагностики околоземной плазмы.

1. ВВЕДЕНИЕ. ЗАДАЧИ ДИАГНОСТИКИ И НЕКОТОРЫЕ МЕТОДЫ ЕЕ РЕШЕНИЯ

Классическим примером успешной диагностики магнитосферных структур служит работа [Сагрепter, 1963], автор которой сопоставлял дисперсию свистов от молниевых разрядов в средней магнитосфере. Результаты такого анализа дополняли и обогащали данные прямых спутниковых измерений радиального распределения плотности вещества в окрестности плазмопаузы, изложенные в работе [Gringauz, 1963]. Соответствующие исследования получили дальнейшее развитие в последние годы. Так, в работе [Сагрепter and Smith, 2001] на основе волновых измерений делаются выводы о квазистатическом электрическом поле в плазмосфере. В работе [Кітига et al., 2001] вообще обсуждается возможность томографии всей плазмосферы.

Многие разновидности естественных свистовых электромагнитных излучений возбуждаются в земных радиационных поясах. Условия формирования этих излучений зависят от параметров плазмы, геометрии системы, условий переноса волн, процессов накопления и высыпания частиц из магнитосферной ловушки. Эффективное взаимодействие волн и частиц часто хорошо описывается теорией плазменного магнитосферного мазера (ПММ). ПММ может функционировать в нескольких основных режимах. Эти режимы ответственны за формирование различных типов спектров ОНЧ-излучений. Например, динамика ПММ зависит от мощности источников энергичных частиц.

Знание теории магнитосферного циклотронного мазера дает возможность использовать в диагно-

стических целях некоторые новые характеристики электромагнитных излучений. Особенно интересны возможности диагностики геофизической обстановки, характеризующей общую картину взаимодействия волн и частиц. К геофизической обстановке можно отнести текущий режим питч-угловой диффузии, добротность магнитосферного резонатора, мощность источников энергичных частиц и т.д.

Отметим, что отдельные соображения по рассматриваемому вопросу рассеяны по многим публикациям, и данная работа может помочь упорядочить известные факты и навеять новые идеи.

2. ПЛАЗМЕННЫЙ МАГНИТОСФЕРНЫЙ МАЗЕР — АЛЬВЕНОВСКИЙ МАЗЕР

В плазменном магнитосферном мазере (рис. 1) [Беспалов и Трахтенгерц, 1986] сравнительно плотная магнитосферная плазма и сопряженные торцы магнитной ловушки образуют квазиоптический резонатор для электромагнитных волн. Активное вещество состоит из плазмы радиационных поясов, имеющей характерный конус потерь в пространстве скоростей. Инкремент циклотронной неустойчивости (ЦН) определяется дисбалансом между процессами индуцированного излучения и поглощения. Источники энергичных частиц выполняют роль накачки. Рабочими модами в ПММ являются свистовые волны (похожие процессы в ионных радиационных поясах связаны с альвеновскими волнами).

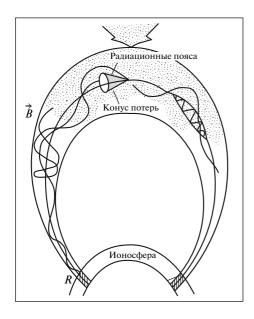


Рис. 1. Схема ПММ.

3. ХАРАКТЕРНЫЕ ВРЕМЕННЫЕ МАСШТАБЫ В ПММ

Коллективные процессы взаимодействия волн и частиц в ПММ имеют три основные области временных масштабов.

- Наименьший масштаб соответствует частоте нелинейного захвата энергичного электрона в поле отдельной монохроматической волны конечной амплитуды Ω_k и частоте осцилляций между зеркальными точками в магнитной ловушке Ω_b [Shkliar et al., 1992].
- Более медленные вариации динамического спектра связаны с частотой осцилляций пакета свистовых волн между точками отражения $\Omega_{\it g}$.
- Также существует временной масштаб квазилинейной релаксации, характеризуемый инкрементом циклотронной неустойчивости (ЦН) γ. Точные расчеты показывают, что частота соответствующего колебательного процесса в спектре излучения описывается формулой

$$\Omega_J = \left(\frac{\gamma}{T_I}\right)^{\frac{1}{2}},\tag{1}$$

где T_l — характерное время жизни энергичных электронов в магнитной ловушке.

Реально во многих случаях ОНЧ-излучения характеризуются периодическим повторением динамического спектра. Соответствующие периоды обычно лежат в нескольких интервалах [Helliwell, 1965]:

- от 0.1 до 1 секунд для хоров;

- от 10 до 300 секунд для квазипериодических излучений (OP).

Для утреннего и предполуденного сектора субавроральной магнитосферы свойственны еще и короткопериодические ОНЧ-излучения с периодами повторения элементов динамического спектра 2—6 с. Отдельные спектральные элементы по наклону часто похожи на фрагменты свистов от молниевых разрядов, но в отличие от кратных свистов повторяются без видимых изменений.

4. ОСНОВНЫЕ РЕЖИМЫ ФУНКЦИОНИРОВАНИЯ ПММ

Можно выделить следующие режимы работы ПММ:

- Режим стационарной генерации соответствует постоянному уровню электромагнитной турбулентности и балансу между поступлением новых частиц и их высыпанием в ионосферу.
 - Релаксационный режим.
 - Автоколебательный режим.

Условия реализации этих режимов зависят в основном от мощности источника частиц J(x, V) и его угловой зависимости в трубке магнитного поля. Более обстоятельно эти вопросы рассмотрены в обзоре [Bespalov and Trakhtengerts, 1986]. Далее мы коротко рассмотрим те элементы теории, которые могут быть полезны для целей магнитосферной диагностики.

5. ИСХОДНАЯ СИСТЕМА УСРЕДНЕННЫХ КВАЗИЛИНЕЙНЫХ УРАВНЕНИЙ ДЛЯ СЛУЧАЯ СЛАБОЙ ПИТЧ-УГЛОВОЙ ДИФФУЗИИ

Для описания сравнительно медленных процессов в ПММ с характерным временным масштабом $\Delta t \gg T_b, T_g$ можно использовать усредненную систему квазилинейных уравнений следующего вида:

$$\frac{\partial F}{\partial t} = \left(\int_{0}^{\infty} \hat{D}\varepsilon F d\omega\right) - \frac{F}{T} + J,$$

$$\frac{\partial \varepsilon}{\partial t} = \left(\int_{0}^{\infty} \int_{x_{min}}^{x_{max}} \hat{K}F dx dV\right) \varepsilon - v\varepsilon.$$
(2)

Здесь F(t,x,V) — усредненная функция распределения энергичных электронов в трубке магнитного поля, J(x,V) — мощность источника энергичных частиц, T(V) — время потерь частиц за счет столкновений и переноса, $x=V_{\perp L}/V$ — синус экваториального питч-угла частицы, $\varepsilon(t,\omega)$ — спектральная плотность энергии свистовых волн, $v(\omega)$ — декремент

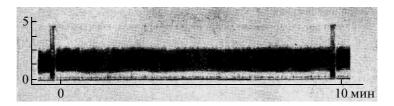


Рис. 2. Пример динамического спектра шипений – бесструктурных шумовых излучений свистового диапазона.

затухания за счет всех факторов, $\hat{D}(x,V,\omega)$ и $\hat{K}(x,V,\omega)$ — известные дифференциальные операторы, x_{\min} — граница конуса потерь.

6. ШИПЕНИЯ

Обычно условия возбуждения свистовых излучений зависят от параметра β_* , и существенны только, если

$$\beta_* = \frac{\omega_{pL}^2 V^2}{\omega_{BL}^2 c^2} \ge 1,\tag{3}$$

где ω_{pL} , ω_{BL} — электронные плазменная и циклотронная частоты в экваториальной области магнитной ловушки.

Если $\beta_* = \frac{\omega_{pL}^2 V^2}{\omega_{BL}^2} \ge 1$, мы имеем шумовые излучения (рис. 2) с верхней частотой ОНЧ-излучений

$$\omega_{\text{max}} = \omega_{BL} \left(1 - \frac{T_{\parallel}}{T_{\perp}} \right), \tag{4}$$

где T_{\parallel}/T_{\perp} — характеризует анизотропию температур функции распределения в экваториальной области магнитной ловушки.

Если $\beta_* = \frac{\omega_{pL}^2 V^2}{\omega_{BL}^2 c^2} \gg 1$, мы имеем шумовые излучения в КНЧ-диапазоне с верхней частотой

$$\omega_{\text{max}} = \frac{\omega_{BL}}{\beta_*}.$$
 (5)

Это обстоятельство позволяет нам грубо оценить анизотропию функции распределения энергичных электронов T_{\parallel}/T_{\perp} , среднюю энергию электронов в радиационных поясах и концентрацию фоновой плазмы в области генерации.

7. СТАЦИОНАРНОЕ РЕШЕНИЕ

При относительно высокой мощности источника частиц и высоких коэффициентах отражения от торцов геомагнитной ловушки реализуется стационарный режим генерации, для которого характерен баланс между поступлением частиц от источника и их высыпанием в ионосферу. Соответствующий спектр волн имеет характер шумовых бесструктурных излучений — КНЧ- и ОНЧ-шипений. Это обычные излучения внутри плазмосферы.

Формально каждой мощности источника частиц соответствует некоторое стационарное состояние, характеризующееся балансом между накоплением частиц от источника и их высыпанием в ионосферу при постоянном уровне свистовой турбулентности [Коротова и др., 1975]. Мы будем предполагать, что эффективный коэффициент затухания $v(\omega)$ представляет собой степенную функцию частоты ω ,

$$v = v_0 \left(\frac{\omega}{\omega_0}\right)^p, \tag{6}$$

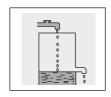
и мощность источника частиц зависит от экваториального питч-угла $x=V_{\perp L}/V$ и является степенной функцией кинетической энергии частиц

$$J = J_0(x) \left(\frac{V}{V_0}\right)^{2s}.\tag{7}$$

Тогда стационарная функция распределения захваченных частиц и спектральная плотность энергии свистовых волн определяются следующими соотношениями [Беспалов, 1985]:

$$F = F_0(x) \left(\frac{V_0}{V}\right)^{2p+3},$$

$$\varepsilon = \varepsilon_0 \left(\frac{\omega}{\omega_0}\right)^{s}.$$
(8)


Во многих случаях декремент затухания свистовых волн в магнитосферном резонаторе можно записать в виде

$$v = (2/T_{\sigma})|\ln(R)|. \tag{9}$$

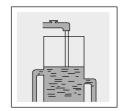
Период группового распространения свистовых волн в магнитосферном резонаторе зависит от частоты, и на частотах ниже так называемой "носовой" частоты [Helliwell, 1965]

$$T_g = \frac{l\omega_{pL}}{c\omega^{1/2}\omega_{BL}^{1/2}} \sim \omega^{-1/2},$$
 (10)

где l-длина магнитной трубки, $\omega_{\it pL}$ и $\omega_{\it BL}-$ плазменная и циклотронная частоты в экваториальной

Рис. 3. Процесс накопления заряженных частиц при слабой и умеренной питч-угловой диффузии похож на накопление жидкости в дырявом ведре.

плоскости, c — скорость света. Для простоты предположим, что коэффициент отражения свистовых волн от ионосферы сверху $R(\omega)$ не так существенно зависит от частоты. Для такого случая


$$F = F_0(x) \left(\frac{V_0}{V}\right)^4. \tag{11}$$

Этот результат близок к экспериментальным данным. Поэтому, более точно зная по экспериментальным данным параметры стационарной функции распределения энергичных электронов в радиационных поясах, мы можем определить связанную с $\nu(\omega)$ добротность (Q-фактор) магнитосферного резонатора в ОНЧ- и КНЧ-полосах частот.

Имея в своем распоряжении спутниковые данные об энергетическом распределении частиц в радиационных поясах, можно восстановить частотную зависимость добротности магнитосферного резонатора в КНЧ- и ОНЧ-диапазонах. Это весьма важно для дальнейшего развития теории ПММ, а также для понимания причин различия данных спутниковых и наземных измерений.

Таким образом, мы можем оценить $R(\omega)$.

Рис. 4. Процесс накопления заряженных частиц в слегка несимметричной геомагнитной ловушке при слабой и умеренной питч-угловой диффузии похож на накопление жидкости в ведре с двумя стоками.

8. ОНЧ-ИЗЛУЧЕНИЯ В СОПРЯЖЕННЫХ ОБЛАСТЯХ ИОНОСФЕРЫ

Почти полвека назад было отмечено [O'Brien, 1962], что процесс накопления заряженных частиц в радиационных поясах во многих отношениях похож на накопление воды в дырявом ведре (рис. 3). При этом уровень жидкости в ведре отвечает полному содержанию энергичных электронов в магнитной ловушке. При слабой мощности источника уровень жидкости практически от него не зависит.

Слегка обобщив эту концепцию, [Беспалов и Чуканов, 1980], учтя возможность высыпания частиц в две не совсем симметричных ионосферы (рис. 4), показали в рамках расчетов, что в режиме слабой питч-угловой диффузии даже небольшая асимметрия магнитосферы может приводить к заметной несимметрии ОНЧ-излучений в сопряженных областях магнитосферы.

Анализ данных экспериментов [Чуканов и Клейменова, 1975] показал, что по крайней мере статистически степень симметрии ОНЧ-излучений растет с ростом магнитной активности, которая косвенно свидетельствует о большей мощности источника частиц.

Таким образом, по крайней мере в принципе, можно диагностировать режим питч-угловой диф-

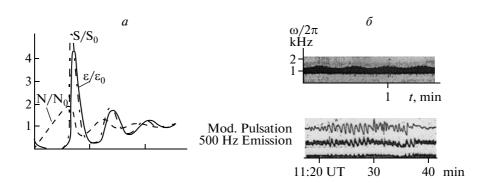


Рис. 5. Вынужденные квазипериодические процессы в радиационных поясах:

а — Релаксационные колебания параметров радиационных поясов;

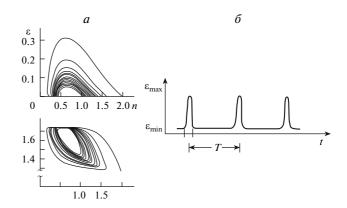
 δ — Квазипериодические ОНЧ-излучения, обусловленные геомагнитными пульсациями (*QP*-1).

фузии как составную часть текущей геофизической обстановки.

9. КВАЗИПЕРИОДИЧЕСКИЕ ОНЧ-ИЗЛУЧЕНИЯ, СВЯЗАННЫЕ С ГЕОМАГНИТНЫМИ ПУЛЬСАЦИЯМИ

В дневной субавроральной магнитосфере условия благоприятны для реализации колебательных режимов работы плазменного магнитосферного мазера. В этой области добротность магнитосферного резонатора сравнительно низкая. Поэтому интенсивность волн не успевает адиабатически подстраиваться под текущее содержание энергичных электронов в магнитной ловушке. Такая инерционность обеспечивает возможность существования в системе слабозатухающих релаксационных колебаний, когда стадии накопления частиц в трубке магнитного поля чередуются с импульсными высыпаниями на торцы ловушки под действием импульса электромагнитного излучения. При этом возбуждаются различные квазипериодические ОНЧ-излучения, в которых элементы динамического спектра повторяются с периодами в десятки секунд (рис. 5) [Коротова и др. 1975; Беспалов и Клейменова, 1989].

Часто квазипериодические ОНЧ-излучения раскачиваются под действием внешних факторов, таких как гидромагнитные волны, импульс магнитного сжатия, сильный свистовой сигнал и т.д. В случае, когда глубина модуляции уровня электромагнитных излучений сравнительно небольшая, частота колебательного процесса в радиационных поясах определяется выражением:


$$\Omega_J = \left(\frac{v}{T_J}\right)^{1/2},\tag{12}$$

в котором $v=2|\ln R|/T_g$, T_l — среднее время жизни энергичных частиц в магнитной ловушке, и соответственно типичное значение периода колебательного процесса лежит в пределах $10~{\rm c} < T_J < 150~{\rm c}$. Декремент затухания колебательного процесса равен $\gamma_J = -1/T_l$. В случае, если глубина модуляции очень глубокая, то период и время затухания колебаний определяются величиной времени T_l .

Таким образом, мы можем оценить собственную частоту колебательного процесса в электронных радиационных поясах и среднее время жизни частиц в магнитной ловушке T_l .

10. СПЕКТРАЛЬНЫЕ ОСОБЕННОСТИ КВАЗИПЕРИОДИЧЕСКИХ ОНЧ-ИЗЛУЧЕНИЙ, НЕ СВЯЗАННЫХ С ГЕОМАГНИТНЫМИ ПУЛЬСАЦИЯМИ

Для определенного типа угловых зависимостей мощности источника частиц при слабой питч-уг-

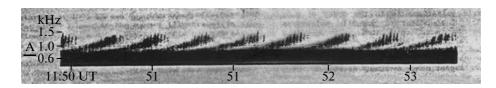
Рис. 6. Квазипериодические процессы в радиационных поясах, обусловленные внутренней динамикой ПММ:

a — Фазовые плоскости автоколебательного процесса.

 δ — Периодическая зависимость плотности энергии свистовых излучений от безразмерного времени в установившихся автоколебаниях.

ловой диффузии при постоянной по величине мощности источника частиц режим стационарной генерации оказывается неустойчивым и вместо него реализуется режим генерации периодических импульсов электромагнитного излучения (рис. 6) [Bespalov, 1982]. Форма отдельного импульса электромагнитного излучения неплохо описывается следующим нелинейным уравнением:

$$\frac{d^2\zeta}{dt^2} + \Omega_J^2(\exp(\zeta) - 1) = 0, \tag{13}$$


где $\zeta = \ln(\varepsilon/\varepsilon_0)$.

Рассмотрим качественно динамику частотного спектра в условиях квазипериодического режима *QP*-2, не связанного с геомагнитными пульсациями (рис. 7). Весьма показателен анализ выражения для инкремента циклотронной неустойчивости $\gamma(\omega, F)$. Наиболее важными оказываются две частотных зависимости $\gamma(\omega, Jt)$ и $\gamma(\omega, F_0)$. Взаимное положение максимумов этих зависимостей определяет направление изменения частоты в пределах электромагнитного импульса. Чтобы пояснить физический смысл этого утверждения, рассмотрим начальную стадию накопления энергичных электронов в магнитной ловушке для начальных условий $\varepsilon(t=0)=0$, F(t = 0) = 0. В соответствии с исходными уравнениями (2) функция распределения нарастает по линейному закону

$$F = Jt. (14)$$

Соответственно, на этой стадии процесса средний инкремент имеет следующую форму (рис. 8) $\gamma(\omega, F \to Jt)$.

В свою очередь, в формальном стационарном состоянии, в котором метастабильно может нахо-

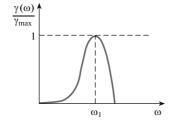
Рис. 7. Типичный динамический спектр квазипериодических ОНЧ-излучений, не связанных с геомагнитными пульсациями (QP-2).

диться система, реализуется функция распределения $F = F_0$, которой отвечает инкремент (рис. 9) $\gamma(\omega, F_0)$.

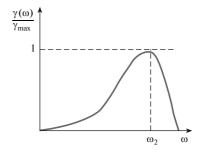
Обычно при реализации излучений типа *QP*-2 имеет место изменение средней частоты излучения, по которому можно сделать вывод об угловой зависимости мощности источника частиц. Частота электромагнитного излучения возрастает в пределах отдельного импульса электромагнитного излучения, когда источник изотропнее стационарной функции распределения. Частота волн падает, когда источник сильно анизотропен в поперечном к магнитному полю направлении.

Таким образом, периодические автоколебания в ПММ могут реализоваться при определенных мощностях источника энергичных частиц и ее подходящей зависимости от питч-угла и энергии. По динамике частотного спектра в соответствующих квазипериодических излучениях можно определять не только величину мощности источника частиц, но и характер его анизотропии по питч-углам.

11. РАЗМЕРНОСТЬ ХОРОВЫХ ИЗЛУЧЕНИЙ


Для утренней субавроральной магнитосферы типичны хоровые ОНЧ-излучения с периодами повторения спектральных элементов порядка 0.1—1 секунда. Такие излучения возбуждаются из-за комплекса процессов на восстановительной фазе магнитной бури, который включает разлет частиц, эффекты на баунс-резонансе и особенности распространения сви-

много внимания уделялось гидродинамическому режиму циклотронной неустойчивости, который обсуждается, начиная с работы [Trakhtengerts, 1995], в предположении, что на функции распределения имеется резкая ступенька по продольным скоростям в экваториальной области магнитной ловушки. Отметим, что возможность формирования в процессе квазилинейной релаксации выступа на функции распределения в области сравнительно малых продольных скоростей была впервые рассмотрена в работе [Беспалов и Трахтенгерц, 1980].


В настоящее время продолжаются попытки продвинуться в понимании условий возбуждения хоро-

стовых волн вблизи плазмопаузы. В последние годы

В настоящее время продолжаются попытки продвинуться в понимании условий возбуждения хоровых излучений. Для проверки соответствующих моделей наряду с космическими экспериментами с высоким пространственно-временным разрешением, по нашему мнению, полезны методы количественной морфологии, основанные на понятии теории размерностей. Для реализации такой возможности удобно использовать, например, электрическое поле хорового излучения в численном виде $u(i) = E(t_i)$ для последовательных временных отсчетов $t_i = i\Delta$, где i — целое число. Затем, можно ввести в рассмотрение вектора с m компонентами $x(i) = \{u(i), ..., u(i+m-1)\}$. Полное число таких векторов равно N. После этого, следуя известному

Рис. 8. Спектральная зависимость инкремента циклотронной неустойчивости, когда функция распределения заряженных частиц повторяет функциональную зависимость мощности их источника.

Рис. 9. Спектральная зависимость инкремента циклотронной неустойчивости для стационарной функции распределения формально соответствующей действующей в трубке магнитного поля мощности источника энергичных частиц.

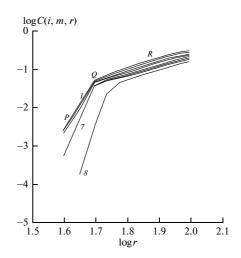
формализму [Рабинович и Трубецков, 1984], есть основания рассмотреть функцию

$$C(i, m, r) = \frac{1}{N} \{\text{number of vector with}$$

$$d[x(i), x(j)] < r\},$$

где d[x(i), x(j)] — характеризует различие двух векторов. С помощью анализа этой функции (рис. 10) по приведенной ниже формуле мы провели расчет размерности [Беспалов и Сидоровская, 1992] и нашли, что

$$\dim = \lim \frac{\lg C}{\lg r} \simeq 2.5. \tag{15}$$


То есть в нашем расчете оказалось, что размерность КНЧ-хоров порядка 2.5. По теореме Такенса [Мун, 1990] это значит, что для корректного описания соответствующего процесса достаточно системы с *п* уравнениями первого порядка по времени, а число этих уравнений можно оценить с помощью неравенств

$$[\dim] + 1 = 3 \le n \le 2 + 2[\dim] = 6.$$
 (16)

12. ЗАКЛЮЧЕНИЕ. ПРИМЕНЕНИЕ РЕЗУЛЬТАТОВ ТЕОРИИ ПЛАЗМЕННОГО МАГНИТОСФЕРНОГО МАЗЕРА ДЛЯ ДИАГНОСТИКИ ФИЗИЧЕСКИХ УСЛОВИЙ В ЭЛЕКТРОННЫХ РАДИАЦИОННЫХ ПОЯСАХ

Рассмотрено несколько новых возможностей диагностики магнитосферной плазмы посредством изучения тонкой структуры свистовых излучений. Теория плазменного магнитосферного мазера дает возможности для диагностики как локальных, так и менее очевидных глобальных характеристик магнитосферных процессов. Схематически можно выделить следующие диагностические возможности:

- Верхняя частота полосы ОНЧ-шипений определяет анизотропию функции распределения захваченных частиц.
- Верхняя частота полосы КНЧ-шипений определяет концентрацию фоновой плазмы.
- Период квазипериодических (*QP*) ОНЧ-излучений определяет мощность источника энергичных частиц.
- Время затухания модуляции уровня ОНЧ-излучений после короткого импульса сжатия магнитосферы определяет время жизни энергичных частиц в магнитной ловушке.
- \bullet Разность фаз между модуляцией ОНЧ-излучений типа QP-1 и гидромагнитной волной дает дополнительные возможности для уточнения соб-

Рис. 10. Примеры зависимостей функции C(i, m, r) от $\log r$ для нескольких значений длины вектора m.

ственной частоты процесса взаимодействия волн и частиц в трубке магнитного поля [Bespalov, 1982].

- ullet Анализ квазипериодических ОНЧ-излучений, не связанных с геомагнитными пульсациями (QP-2), определяет анизотропию мощности источника энергичных частиц.
- Степень сопряженности электромагнитных сигналов в северном и южном полушариях определяет режим питч-угловой диффузии, как составную часть текущей геофизической обстановки.
- По энергетическому спектру захваченных в радиационные пояса энергичных электронов можно найти частотную зависимость добротности магнитосферного резонатора в ОНЧ-диапазоне.
- Квазипериодические ОНЧ-излучения являются свидетельством реализации режима слабой питчугловой диффузии частиц в магнитной ловушке.

Дополнительные полезные результаты удается установить, анализируя данные абсолютных измерений интенсивности. Например, сравнивая форму электромагнитного импульса с теоретически найденной [Беспалов, Коваль, 1982], можно найти конкретные параметры радиационных поясов.

Хотелось бы обратить внимание еще на одно направление экспериментальных исследований. Для совершенствования теоретических моделей представляется важным знать, какие спектральные структуры могут плавно переходить одна в другую, а какие не могут. Фактически таким образом можно экспериментально решить вопрос о числе различных теоретических моделей, которые необходимы для адекватного описания экспериментальных данных.

Работа выполнена при частичной поддержке по гранту РФФИ 08-02-00979, по программе поддержки научных школ НШ-4588.2006.2 и программе ОФН N 16 PAH.

СПИСОК ЛИТЕРАТУРЫ

- Беспалов П.А., Трахтенгерц В.Ю. Циклотронная неустойчивость радиационных поясов Земли / Вопросы теории плазмы. Под ред. Леонтовича М.А. М.: Атомиздат, 1980. Вып. 10. С. 88—163. 1980.
- Беспалов П.А., Чуканов А.А. Электромагнитные шумы свистового диапазона в магнитосопряженных областях // Геомагнетизм и аэрономия. Т. 20. № 1. С. 89—94. 1980.
- Беспалов П.А., Коваль Л.Н. Установление периодических режимов циклотронной неустойчивости в плазменных пробкотронах // Физика плазмы. Т. 8.
 № 6. С. 1136—1144. 1982.
- Беспалов П.А. Стационарный режим циклотронной неустойчивости радиационных поясов // Физика плазмы. Т. 11. № 4. С. 446—451. 1985.
- Беспалов П.А., Трахтенгерц В.Ю. Альфвеновские мазеры. Горький: изд-во ИПФ АН СССР, 1986.
- Беспалов П.А., Клейменова Н.Г. Влияние геомагнитных пульсаций на свистовые излучени вблизи плазмопаузы // Геомагнетизм и аэрономия. Т. 29.
 № 2. С. 177–191. 1989.
- Беспалов П.А., Сидоровская Н.А. Размерность КНЧхоров // Геомагнетизм и аэрономия. Т. 32. № 2. С. 152—154. 1992.
- Коротова Г.И., Располов О.М., Клейменова Н.Г. Модуляция ОНЧ-шипений геомагнитными пульсациями // Геомагнетизм и аэрономия. Т. 15. № 1. С. 177—179. 1975.
- Михайлова Г.А., Будько Н.И., Капустина О.В., Михайлов Ю.М. Тонкая структура энергетических спектров КНЧ-шипений в верхней ионосфере и возможный механизм генерации шипений (спутник Intercosmos-14) // Геомагнетизм и аэрономия. Т. 15. № 1. С. 177—179, 1983.
- Мун Ф. Хаотические колебания. М.: Мир, 1990.
- Рабинович М.И., Трубецков Д.И. Введение в теорию колебаний и волн. М.: Наука, 1984.

- Чуканов А.А., Клейменова Н.Г. Магнитная активность и субавроральные КНЧ ОНЧ хоры // Геомагнетизм и аэрономия. Т. 15. № 2. С. 377—378. 1975.
- Bespalov P.A. Self-excitation of periodic cyclotron instability regimes in a plasma magnetic trap // Physica Scripta. V. 2. № 2. P. 576–579. 1982.
- Bespalov P.A., Trakhtengerts V. Yu. Dynamics of cyclotron instability in the Earth's radiation belts // Revs. Plasma Phys. 1986. V. 10. P. 155–292. 1986.
- Carpenter D.L. Whistler evidence of "knee" in the magnetospheric ionization density profile // J. Geophys. Res. V. 68. № 6. P. 1675–1682. 1963.
- Gringauz K.I. The structure of the ionized gas envelope of earth from direct measurements in the U.S.S.R. of local charged particle concentrationssta // Planetary and Space Science. V. 11. № 3. P. 281–296. 1963.
- Carpenter D.L., Smith A.J. The study of bulk plasma motions and associated electric fields in the plasmasphere by means of whistler-mode signals // J. Atmos. Solar-Terr. Phys. V. 63. № 11. P. 1117–1132. 2001.
- Helliwell R.A. Whistlers and related ionospheric phenomena. Stanford: Stanford Univ. Press, 1965.
- Kimura I., Kasahara Y., Oya H. Determination of global plasmaspheric electron density profile by tomographic approach using omega signals and raytracing // J. Atmos. Solar-Terr. Phys. V. 63. № 11. P. 1157–1170. 2001.
- O'Brien B.J. Lifetime of inna zone electrons and their precipitation into atmosphere // J. Geophys. Res. V. 67. № 10. P. 3687–3706. 1962.
- Shkliar D.R., Nunn D., Smith A.J., Sazhin S.S. An investigation into the nonlinear frequency shift in magnetospherically propagated VLF pulses // J. Geoph. Res. V. 97. № A12. P. 19.389–19.402. 1992. doi: 10.1029/92JA01536.
- Trakhtengerts V.Y. Magnetosphere cyclotron maser: Backward wave oscillator generation regime // J. Geophys. Res. V. 100. № A9. P. 17205–17210. 1995.