УДК 550.38:551.510.53

СОСТАВЛЯЮЩИЕ ГЕОМАГНИТНЫХ ВАРИАЦИЙ С ЧАСТОТАМИ ПРИЛИВНЫХ ВОЛН

© 2011 г. О.В.Шереметьева

Учреждение РАН Институт космофизических исследований и распространения радиоволн ДВО РАН, с. Паратунка (Камчатский край) e-mail: sheremolga@vandex.ru

Поступила в редакцию 20.01.2010 г. После доработки 28.06.2010 г.

В работе исследовались регулярные вариации, вызванные воздействием приливных волн O_1 и M_2 на магнитосферные токовые системы. С использованием параболоидной модели магнитного поля был рассчитан отклик на приливное воздействие. В статье разработана модель возникновения геомагнитных вариаций (ГМВ) с периодами приливных волн O_1 и M_2 . Оценка значений таких вариаций, возникающих вследствие приливных деформаций системы токов в магнитосфере составляет $0.2\div0.9$ нТл. Полученные расчетные значения совпадают по порядку величин с обработанными геомагнитными измерениями геофизической обсерватории Паратунка.

1. ВВЕДЕНИЕ

Источниками магнитного поля Земли являются сложные МГД-процессы в ядре Земли и кольцевые токи в магнитосфере [Тверской, 2004]. Естественное магнитное поле испытывает постоянные возмушения. Источники вариаций магнитного поля Земли находятся в жидком ядре, магнитосфере, ионосфере, литосфере, на Солнце [Гохберг и др., 1988; Яновский, 1978; Кролевец и Шереметьева, 2004]. Вариации магнитного поля делятся на регулярные, из которых наиболее выражена суточная вариация, и иррегулярные (возмущения) [Гальпер, 1999; Тверской, 2004; Будько и др., 2005]. В работе исследуются регулярные вариации, вызванные воздействием приливных волн O_1 (период составляет 25.8 ч.) и M_2 (период составляет 12.4 ч.) [Мельхиор, 1968] на асимметричный кольцевой ток, который рассматривается как семейство пространственных токовых контуров, в северном и южном полушариях, состоящих из участков частичного кольцевого тока в плоскости геомагнитного экватора, замыкающихся через ионосферу системой продольных токов (рис. 1) [Будько и др., 2005]. Кольцевой ток в магнитосфере сосредоточен на расстояниях (4÷5) $R_E(R_E$ радиус Земли) и занимает область торовой формы между полярными шапками (областями инжекции электронов) [Тверской, 2004]. Вблизи Земли, на расстояниях (4÷5) R_{E} , силовые линии дипольного геомагнитного поля и находящаяся на них плазма ионосферного происхождения вращаются вместе с планетой. Суточное вращение Земли вместе с геомагнитным полем увлекает за собой и плазму магнитосферы вплоть до высот (4 \div 5) R_E в экваториальной плоскости [Колесник, 2007]. В связи с этим, считаем, что весь объем Земли и плазма магнитосферы вплоть до высот (4÷5) R_E , а как следствие, и токовые системы в магнитосфере Земли, откликаются на приливные воздействия.

Целью настоящей работы является оценка ГМВ, возникающих вследствие приливных деформаций асимметричного кольцевого тока в магнитосфере и сравнение полученных расчетных значений с обработанными данными геофизической обс. Паратунка [Шереметьева и Смирнов, 2007].

2. ПРИРОДА ПРИЛИВНЫХ ВАРИАЦИЙ ПЛАНЕТАРНОГО ГЕОМАГНИТНОГО ПОЛЯ

Магнитное поле Земли порождается токами, которые протекают в магнитосфере и ядре Земли. Полагаем, что приливные деформации испытывает весь объем Земли и плазма магнитосферы вплоть до высот (4÷5) R_E в экваториальной плоскости. Приливная деформация плазмы приводит к деформированию асимметричного кольцевого тока в магнитосфере и порождает ГМВ с приливными частотами.

В разрабатываемой модели, асимметричный кольцевой ток считаем сосредоточенным на незамкнутой в подсолнечной области торовой поверхности (рис. 1) [Будько и др., 2005] (область радиационных поясов Земли), уравнение которой в сфери-

ческих координатах имеет вид $R = 4R_E \cos^2 \varphi_m$, где R_E — радиус Земли, φ_m — геомагнитная широта [Гальпер, 1999]. Воздействие приливных волн на весь объем Земли и окружающего ее пространства приводит к деформации торовой поверхности и то-ковых систем. Исчезновение тока в каждом недеформированном токовом контуре на торовой поверхности и появление его в деформированном приводит к возникновению суммарной по всем то-

Рис. 1. Трехмерная структура токов в магнитосфере и ионосфере, замкнутая на кольцевой магнитосферный ток.

ковым контурам составляющей ГМВ с приливными частотами в масштабе планеты.

Такая деформация может быть рассмотрена следующим образом: разобъем токовые контуры на недеформированной торовой поверхности на элементы dl, каждый с током I₀. В результате приливных деформаций каждый из элементов dl контура на недеформированной торовой поверхности смещается на вектор **h** приливной деформации. Смещение изза приливных деформаций элементов тока эквивалентно наложению на контур на недеформированной торовой поверхности замкнутых заполняющих сегменты целиком элементарных контуров с током I_0 (рис. 2). Токи смежных сторон соседних элементарных контуров компенсируют друг друга, а ток контура на недеформированной поверхности компенсируется токами наложенных на него всех элементарных контуров. Таким образом, это приведет к смещению элементарных площадок dS торовой поверхности на вектор **h** приливной деформации. Тогда магнитный момент каждой элементарной площадки dS торовой поверхности рассчитывается по формуле [Ландау и Лифшиц, 1941]:

$$d\mathbf{M} = \left[(\mathbf{I}dS) \times \left(\mathbf{h} \frac{r_M}{R_E} \right) \right] = \frac{r_M}{R_E} [\mathbf{I} \times \mathbf{h}] dS, \tag{1}$$

где r_M — расстояние до системы токов в магнитосфере Земли, I — сила тока на торовой поверхности, определяемая на основании того, что величина электрического тока в магнитосфере составляет 10⁶ *А* [Яновский, 1978]. Приливная составляющая магнитного поля, которая является источником ГМВ с приливными частотами, вычислялась как суммарный вклад всех элементарных площадок. Вектор приливной деформации **h** оценим следующим образом:

1) для каждой из приливных волн будем считать вектор приливной деформации **h** сонаправленным вектору приливной силы ($-\nabla W$), где

$$W_{O_1} = A_{O_1} \sin\left(2\varphi\right) \cos\left(\frac{2\pi}{T_{O_1}}t + \lambda - \lambda_0\right), \qquad (2)$$

$$W_{M_2} = A_{M_2} \cos^2(\varphi) \cos\left(\frac{2\pi}{T_{M_2}}t + 2(\lambda - \lambda_0)\right),$$
 (2')

 W_i – потенциал приливной силы, T_i – периоды приливных волн O_1 (25.8 ч) и M_2 (12.4 ч), φ – широта, λ – долгота, λ_0 – долгота точки наблюдения, A_i – амплитуды приливных волн O_1 и M_2 ; t – время, отсчитываемое для каждой волны с момента, когда в точке наблюдения (λ_0) соответствующий приливный потенциал принимает максимальное значение [Кролевец и Копылова, 2003];

Рис. 2. Изменение формы токового контура в результате воздействия суточных приливных волн.

2) приливное смещение токовых элементов магнитосферы считаем равными тем, какие были бы в полностью жидком теле [Мельхиор, 1968]:

$$h_z = \frac{r_M}{R_E} \frac{W}{g},\tag{3}$$

где g — ускорение свободного падения, а система координат связана с точкой наблюдения с географическими координатами (ϕ_0 , λ_0) (ось X направлена на север, Y — на восток, Z — к центру Земли). После выполнения дифференцирований (2) и (2') и используя (3) получим следующие выражения для компонент вектора приливной деформации **h** для волны O_1 :

$$h_x = 2 \frac{A_{O_1}}{g} \frac{r_M}{R_E} \cos(2\varphi) \cos(\Phi_{O_1}),$$

$$h_y = 2 \frac{A_{O_1}}{g} \frac{r_M}{R_E} \sin(\varphi) \sin(\Phi_{O_1}),$$

$$h_z = -\frac{A_{O_1}}{g} \frac{r_M}{R_E} \sin(2\varphi) \cos(\Phi_{O_1}),$$

и для волны M_2 :

$$h_x = -\frac{A_{M_2}}{g} \frac{r_M}{R_E} \sin(2\varphi) \cos(\Phi_{M_2}),$$

$$h_y = 2\frac{A_{M_2}}{g} \frac{r_M}{R_E} \cos(\varphi) \sin(\Phi_{M_2}),$$

$$h_z = -\frac{A_{M_2}}{g} \frac{r_M}{R_E} \cos^2(\varphi) \cos(\Phi_{M_2}),$$

иде
$$\Phi_{O_1} = \frac{2\pi}{T_{O_1}}t + \lambda - \lambda_0$$
, а $\Phi_{M_2} = \frac{2\pi}{T_{M2}}t + 2(\lambda - \lambda_0) - \frac{2\pi}{T_{M2}}t$

фазы приливных волн. Амплитуда А₀₁ совпадает с амплитудой изменения приливного потенциала W_{O_1} в точке со значением широты $\phi = 45^{\circ}$ для волны O_1 , а амплитуда A_{M_2} совпадает с амплитудой изменения приливного потенциала W_{M_2} в точке со значением широты $\varphi = 0^\circ$ для волны M_2 . Эти амплитуды подвержены вековым (18.6-летним) вариациям. Для вычислений выбран период 2001-2003 гг. Вычисления проводились для всех географических широт и долгот с шагом 5°. В точках с соответствующими географическими координатами с шагом 1 ч выполнялись прямые вычисления приливного потенциала по значениям склонений Луны и Солнца и расстояний до этих светил. Далее из полученных годовых рядов (для $\phi = 45^\circ$ и $\phi = 0^\circ$) выделялись гармонические составляющие: из первого ряда - с периодом волны O_1 , из второго – с периодом волны *M*₂. Начальный момент времени *t* принят равным нулю и долгота $\lambda_0 = 158^{\circ}15.02'$. Полученные значения амплитуд A_{O_1} и A_{M_2} соответственно равны 0.03 м и 0.024 м.

Вклад *d***B** в магнитные вариации от каждого элементарного контура рассчитывался по формуле Био–Савара–Лапласа с учетом формулы (1) [Ландау и Лифшиц, 1941]:

$$d\mathbf{B} = \mu \frac{dS}{4\pi} \frac{r_M}{R_E} \left(\frac{3\mathbf{r}_M \left([\mathbf{I} \times \mathbf{h}] \mathbf{r}_M \right)}{r_M^5} - \frac{[\mathbf{I} \times \mathbf{h}]}{r_M^3} \right).$$
(4)

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 51 № 2 2011

Рис. 3. Проекции рассчитанных годографов (изображены квадратиками, фазы выделены курсивом) и годографов, полученных после обработки наблюдательных данных за период 2001–2003 гг. (изображены точками), составляющих вектора магнитной индукции с периодом волны M_2 (*a*) и с периодом волны O_1 (*b*) в точке наблюдения $\varphi = 52^{\circ}58.33'$ N, $\lambda = 158^{\circ}15.02'$ E (обс. Паратунка). Измерения по осям приведены в нТл.

Полные вариации **B** = $\int_{l} d\mathbf{B}$ вычислялись на основании формулы (4) для различных фаз приливных волн O_1 и M_2 в точке наблюдения с географическими координатами $\varphi = 52^{\circ}58.33'$, $\lambda = 158^{\circ}15.02'$ (координаты геофизической обс. Паратунка).

Данная модель позволила оценить значения вариаций магнитной индукции для различных фаз приливных волн O_1 и M_2 в точке наблюдения – обс. Паратунка. Для составляющей вектора магнитной индукции с периодом приливной волны О₁ интервал изменения значений вариаций составил 0.3÷0.9 нТл, причем наибольшие значения соответствуют фазам 0.9π (155°) и 1.9π (335°), а наименьшие значения — фазам 0.4 т (65°) и 1.4 т (245°). Для составляющей вектора магнитной индукции с периодом приливной волны M_2 интервал изменения значений вариаций 0.3÷0.8 нТл, причем наибольшие значения соответствуют фазам 0.4π (65°) и 1.4π (245°) , а наименьшие значения — фазам 0.9π (155°) и 1.9π (335°). Амплитуда рассчитанных значений вариаций с периодом приливной волны O_1 равна 0.9 нТл и с периодом волны M_2 равна 0.8 нТл.

Проекции годографов вектора вариаций магнитной индукции на плоскость, перпендикулярную оси O_{v} , имеют форму эллипсов. На рисунке 3 приведены проекции рассчитанных годографов составляющих вектора геомагнитных вариаций (проекции изображены квадратиками, фазы выделены курсивом) с периодами волн M_2 (*a*) и O_1 (*б*) за период 2001–2003 гг. и указано изменение фаз приливных волн от 0 до 2π .

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Ранее в работе [Шереметьева и Смирнов, 2007] было установлено, что вариации геомагнитного поля в районе обс. Паратунка за период 2001-2003 гг. содержат приливные составляющие с частотами волн O_1 (амплитуда 0.7 н Тл) и M_2 (амплитуда 0.94 нТл), годографы составляющих вектора магнитной индукции с частотами волн О1 и М2 принадлежат параболическим цилиндрам, оси которых перпендикулярны оси, направленной на восток, а проекции годографов на плоскость, перпендикулярную оси, направленной на восток (ось O_v), имеют форму эллипсов. На рис. 3 приведены проекции годографов составляющих вектора геомагнитных вариаций, полученных после обработки наблюдательных данных за период 2001-2003 гг. (проекции изображены точками), с периодами волн $M_2(a)$ и

 $O_1(\delta)$ и указано изменение фаз приливных волн от 0 до 2π .

Значения вариаций, исходя из принятой в данной работе модели, качественно совпали с измеренными значениями для составляющих с периодами волн O_1 и M_2 . Но ориентация годографа расчетного вектора геомагнитных вариаций не полностью совпадает с ориентацией годографа, полученного на основании данных обс. Паратунка (рис. 3). Несовпадение ориентаций может быть вызвано сложностью процессов, влияющих на изменение состояния магнитосферы, в том числе в геомагнитные вариации могут вносить существенный вклад локальные источники, на что ранее указывалось в работе [Шереметьева и Смирнов, 2007]. Несовпадение ориентаций также может определяться особенностями модели. Принятая в работе модель рассматривает процессы, происходящие в магнитосфере в магнитоспокойные дни, в которые сила тока достигает значений 10⁶ А [Яновский, 1978], однако эти значения могут варьироваться в сторону уменьшения [Будько и др., 2005], что приводит к уменьшению амплитуды рассчитанных значений вариаций. Величина вектора приливных деформаций оценивалась с точки зрения магнитогидродинамического подхода пропорционально расстоянию, но процессы в магнитосфере носят сложный характер и не всегда могут быть описаны только с этих позиций. В модели принята идеальная форма токовых систем в магнитосфере, тогда как в действительности токовые системы в магнитосфере могут испытывать значительные деформации и за счет иных источников, в том числе электромагнитной природы [Будько и др., 2005; Колесник, 2007], что в работе не учитывалось и также может влиять на направление вектора приливных деформаций и его величину, а, следовательно, и на форму годографа и его ориентацию.

5. ВЫВОДЫ

1. Рассчитанные амплитуды вариаций вектора магнитной индукции, обусловленных приливными воздействиями, для геофизической обс. Паратунка

составляют 0.9 нТл с периодом приливной волны O_1 и 0.8 нТл с периодом приливной волны M_2 .

2. Рассчитанный вектор приливных вариаций магнитной индукции описывает в пространстве эллипс, ориентация которого не полностью совпадает с ориентацией годографа, полученного на основании наблюдательных данных [Шереметьева и Смирнов, 2007].

3. Рассчитанные значения вариаций геомагнитного поля с периодами волн O_1 и M_2 качественно совпали по порядку величин и интервалу изменений с обработанными геомагнитными измерениями геофизической обс. Паратунка [Шереметьева и Смирнов, 2007], что подтверждает правильность принятой теоретической модели.

Работа выполнена при поддержке гранта ДВО РАН № 09-III-В-08-476.

СПИСОК ЛИТЕРАТУРЫ

- Будько Н.Н., Зайцев А.Н., Карпачев А.Т., Козлов А.Н., Филиппов Б.П. Космическая среда вокруг нас. Троицк: ТРОВАНТ, 231 с. 2005.
- Гальпер А.М. Радиационный пояс Земли // СОЖ.
 № 6. С. 75–81. 1999.
- Гохберг М.Б., Моргунов В.А., Похотелов О.А. Сейсмоэлектромагнитные явления. М.: Наука, 174 с. 1988.
- Колесник А.Г. Волны в околоземной плазме. Томск: изд-во "ТМЛ-Пресс", 222 с. 2007.
- Кролевец А.Н., Копылова Г.Н. Приливные составляющие в электротеллурическом поле // Физика Земли. № 5. С. 251–257. 2003.
- Кролевец А.Н., Шереметьева О.В. Возможный механизм магнитных вариаций // Вулканология и сейсмология. № 4. С. 16–21. 2004.
- Ландау Л.Д., Лифшиц Е.М. Теория поля. М.: Гостехиздат, 283 с. 1941.
- *Мельхиор П.* Земные приливы. М.: Мир, 374 с. 1968.
- Тверской Б.А. Основы теоретической космофизики.
 М.: Едиториал УРСС, 2004. 376 с.
- Шереметьева О.В., Смирнов С.Э. Приливные компоненты геомагнитных вариаций // Геомагнетизм и аэрономия. Т. 47. № 5. С. 1–10. 2007.
- *Яновский Б.М.* Земной магнетизм. Л.: изд-во Ленингр. ун-та, 592 с. 1978.

228