УДК 550.385.1: 550.37

ВЫСТУПЫ ПЛАЗМОСФЕРЫ И ВАРИАЦИИ ГОРИЗОНТАЛЬНОЙ КОМПОНЕНТЫ ГЕОМАГНИТНОГО ПОЛЯ

© 2011 г. О. М. Бархатова^{1, 2}, Н. А. Бархатов^{1, 2}, П. А. Беспалов³

¹Нижегородский государственный архитектурно-строительный университет (ННГАСУ), Нижний Новгород ² Нижегородский государственный педагогический университет (НГПУ), Нижний Новгород ³Институт прикладной физики РАН (ИПФ РАН), Нижний Новгород

e-mail: nbarkhatov@inbox.ru

Поступила в редакцию 28.06.2009 г. После доработки 27.04.2010 г.

Рассмотрено влияние на уровень возмущенности горизонтальной компоненты наземного геомагнитного поля дневного и вечернего выступов плазмосферы на стадии распада кольцевого тока. Показано, что горизонтальная компонента геомагнитного поля меняется своеобразно и синхронно в области, отвечающей дневному выступу плазмосферы. Вне выступа, временной ход горизонтальной компоненты геомагнитного поля заметно отличается. Спектральный анализ возмущений горизонтальных компонент геомагнитного поля в диапазоне геомагнитных пульсаций показал, что на магнитных станциях расположенных на силовых линиях соответствующих дневному и вечернему выступам плазмосферы, наблюдается повышение интенсивности в диапазоне пульсаций Pc-4. Пульсации, обнаруженные в динамическом спектре горизонтальных компонент геомагнитного поля в области дневного выступа плазмосферы, вероятно, отражают резонансные колебания магнитных силовых линий в области продольных токов на сравнительно малых высотах. По нашему мнению, это обусловлено неустойчивостью продольных токов, возникающих вследствие взаимодействия энергичных ионов кольцевого тока с электромагнитными волнами в области относительно плотной фоновой плазмы дневного выступа.

1. ВВЕДЕНИЕ

Асимметрия возмущений геомагнитного поля была впервые обнаружена при сопоставлении магнитных записей на низкоширотных станциях, разнесенных по долготе [Нишида, 1980]. Исследование вклада асимметричного кольцевого тока в полную токовую систему *DR* [Liemohn et al., 2001] показало, что такой вклад на главной фазе геомагнитной бури составляет до 80%. Наличие асимметрии обычно связывают с формированием трехмерной токовой системы, включающей в себя часть кольцевого тока, токи вдоль силовых линий, и ионосферные токи [Grafe et al., 1997; Sun and Akasofu, 1999; Бархатов и др., 2008].

Изучение динамики кольцевого тока в течение магнитной бури предполагает рассмотрение наиболее важной части этой проблемы — замыкания асимметричной части кольцевого тока. Образование и развитие ассиметричного кольцевого тока сопровождается переносом энергии в ионосферу и формированием интенсивного субаврорального поляризационного тока. Под основными механизмами потерь энергичных ионов кольцевого тока в ионосферу обычно подразумевают столкновения с нейтральными атомами и рассеивание в конус потерь из-за взаимодействий частиц с электромагнитными волнами [Fok et al., 1991; Jordanova et al., 1996, 1997; Cornwall et al., 1970].

Согласно современным представлениям [Беспалов и Трахтенгерц, 1986], циклотронная неустойчивость (ЦН) энергичных ионов кольцевого тока является важным механизмом рассеивания ионов в конус потерь и их дальнейшего интенсивного высыпания в вечернем секторе. Наличие областей холодной плотной фоновой плазмы - вечернего выступа, а так же областей холодной "оторвавшейся" (detached) плазмы, может стимулировать развитие циклотронной неустойчивости именно в вечернем секторе [Trakhtengerts and Demekhov, 2005]. Экспериментальное подтверждение развития циклотронной неустойчивости при взаимодействии энергичных ионов с облаками оторвавшейся плазмы получено в работе [Яхнин и др., 2006]. В этой работе были обнаружены локализованные высыпания энергичных протонов и электронов, регистрируемые низкоорбитальным спутником NOAA. Однако вопрос о роли высыпающихся частиц в эволюции асимметричного кольцевого тока на разных фазах геомагнитной бури остается до конца не выясненным. Кроме того, форма плазмосферы во время геомагнитных возмущений может существенно изменяться. В работе [Spasojević et al., 2003] показано образование дневного выступа плазмосферы, который формируется на фазе восстановления геомагнитной бури, поэтому можно предположить наличие благоприятных условий реализации циклотронной неустойчивости не только в вечернем, но и в дневном секторе магнитосферы.

В настоящей работе сделана попытка обнаружить последствия возникновения продольных токов, обусловленных интенсивными высыпаниями энергичных ионов кольцевого тока за счет их взаимодействия с электромагнитными волнами в области относительно плотной фоновой плазмы вечернего и дневного выступов. Для этого на стадии распада кольцевого тока выполнен анализ уровня возмущенности горизонтальной компоненты наземного геомагнитного поля на станциях, отвечающих областям выступов и вне их. Выполнен спектральный анализ возмущений горизонтальных компонент геомагнитного поля в диапазоне геомагнитных пульсаций для магнитных данных с нескольких близко расположенных станций. Отметим, что вопрос о локальности геомагнитных пульсаций ранее тщательно исследовался во многих работах (например, Пудовкин и др., 1976] и ссылки в ней).

2. ИСХОДНЫЕ ДАННЫЕ

Известно, что в периоды геомагнитных возмущений положение границы плазмосферы может существенно отличаться по сравнению с невозмущенным периодом. В дневном секторе магнитосферы может образовываться выступ, который на фазе восстановления геомагнитной бури пересекает магнитную оболочку L = 4. Это означает, что энергичные частицы кольцевого тока могут взаимодействовать не только с протяженным вечерним выступом, но и с более локализованным дневным выступом плазмосферы. Для настоящего исследования были отобраны два возмущенных дня (10 и 27 июня 2001 г), в течение которых согласно результатам работы [Spasojević et.al., 2003] дневной выступ плазмосферы существовал и пересекал магнитную оболочку L = 4 (рис. 1).

Геомагнитная обстановка в рассматриваемые интервалы времени, характеризовалась индексами интенсивности кольцевого тока *SYM*, *ASY* и индексами интенсивности восточного (*AU*) и западного (*AL*) электроджетов (рис. 2). Отобранные интервалы времени соответствуют фазам восстановления магнитной бури и характеризуются слабыми геомагнитными возмущениями (-40 нТл < Dst < -20 нТл).

3. СПЕКТРАЛЬНЫЙ АНАЛИЗ ВОЗМУЩЕНИЙ ГОРИЗОНТАЛЬНОЙ КОМПОНЕНТЫ ГЕОМАГНИТНОГО ПОЛЯ НА МЕРИДИОНАЛЬНЫХ ЦЕПОЧКАХ СТАНЦИЙ

Следствием предполагаемого взаимодействия энергичных ионов кольцевого тока с электромагнитными волнами в области относительно плотной фоновой плазмы вечернего и дневного выступов являются нисходящие продольные токи, замыкающиеся через ионосферу. При сравнительно малой величине полного тока, токи фоновой плазмы в значительной степени компенсируют исходный ток. При превышении током предела Альвена [Альвен и Фельтхаммар, 1967] $I_A =$

$$= \frac{mc}{e} \gamma \beta = 17 \gamma \beta$$
 кА, где $\beta = u/c, \gamma = (1 - u^2/c^2)^{-1/2},$

где u — характерная скорость энергичных ионов, *m* и *е* — масса и величина заряда электрона, компенсация становится не эффективной. Для значительного продольного тока, неоднородного по поперечной координате, характерна неустойчивость альвеновских волн с волновыми векторами почти перпендикулярными магнитному полю [Kozlovsky and Lyatsky, 1997]. Весьма вероятно, что именно поэтому продольные токи часто сопровождаются локальными геомагнитными пульсациями диапазона *Pc*-4. Обнаружение в спектре пульсаций диапазона *Pc*-4 может свидетельствовать о существовании значительных продольных токов [Olson, 1986].

Для проверки этой гипотезы выполнен спектральный анализ горизонтальных компонент геомагнитного поля на магнитных станциях, соответствующих дневному и вечернему выступам плазмосферы. В ходе исследования были отобраны станции вдоль геомагнитного меридиана 19° и 240°. Координаты и обозначения станций вдоль указанных меридианов представлены в табл. 1. Значения магнитных широт, долгот и *L*-оболочек рассчитывались по модели IGRF/DGRF [http://modelweb.gsfc.nasa.gov/models/cgm/cgm.html].

Расположение станций позволяет исследовать спектры горизонтальной составляющей для двух случаев: 1 — меридиональная цепочка станций находится вне области плазмосферного выступа; 2 — меридиональная цепочка станций находится под выступом плазмосферы. Данные с цепочки станций (BJN, TRO, LOV, HRB, BNG) вдоль меридиана 19° были выбраны для исследования изменений в *H*-компоненте под дневным выступом плазмосферы; данные с цепочки станций (CBB, YKS, MEA, NEW, FRN) вдоль меридиана 240° — для исследования изменений под вечерним выступом.

Исследование проводилось на основе данных об изменениях *H*-компоненты с минутным разрешением [http://www.intermagnet.org/Data_e.html], которые были предварительно "очищены" от Sqвариации. Рассчитанные амплитудно-частотные спектры *H*-компоненты для каждой из станций меридиана 19° представлены на рис. 3. Сопоставление полученных спектров магнитных записей на станциях в соответствии с динамикой дневного выступа плазмосферы показывает, что на магнитных станциях с геомагнитными широтами ниже 45–57° (L = 2.04-3.30), отвечающим сило-

Рис. 1. Положение границ плазмопаузы 10 и 27 июня 2001 г. Дневной выступ плазмосферы пересекает границу L = 4. Граница L = 4 отмечена на рисунках пунктирной линией. [Spasojević et al., 2003].

вым линиям области дневного выступа плазмосферы, наблюдается повышение интенсивности высокочастотных частей спектра в диапазоне, отвечающем пульсациям *Pc*-4. На более высокоширотных станциях наблюдается общее падение интенсивности спектров. На рис. 4 представлены спектры *H*-компоненты для станций, отвечающих вечернему выступу плазмосферы. Сопоставление спектров в области вечернего выступа плазмосферы показывает, что увеличение интенсивности высокочастотных частей спектров наблюдается на всех рассматриваемых станциях.

Таким образом, результаты спектрального анализа магнитных записей на двух меридиональных цепочках станций свидетельствуют о повышении амплитуды частей спектров, соответствующих пульсациям в диапазоне Рс-4 (с частотами выше $6 \times 10^{-3} \, \mathrm{c}^{-1}$), при входе магнитных станций в области силовых линий, отвечающих плазмосферным выступам. Повышение амплитуд частей спектров, которые соответствуют колебаниям в диапазоне частот пульсаций Рс-4, отмечается на станциях с геомагнитной широтой ниже 45° для дневного выступа, и на всех широтах для вечернего выступа. При учете возможности возникновения продольных токов вследствие развития циклотронной неустойчивости на восточных граниплазмосферных выступов, повышение нах амплитуд частей спектров в диапазоне пульсаций *Рс*-4 может свидетельствовать о нестабильности этих токов отмечаемой в магнитных возмущениях у поверхности Земли. Отличие амплитуд пульсаций внутри и вне дневного и вечернего выступов может объясняться большей протяженностью по L-оболочкам вечернего выступа плазмосферы по сравнению с дневным выступом.

4. ПРОЯВЛЕНИЕ ПРОДОЛЬНЫХ ТОКОВ, СВЯЗАННЫХ С ДНЕВНЫМ ВЫСТУПОМ ПЛАЗМОСФЕРЫ В ГОРИЗОНТАЛЬНЫХ СОСТАВЛЯЮЩИХ МАГНИТНЫХ ВОЗМУЩЕНИЙ И АНАЛИЗ ИХ ДИНАМИЧЕСКИХ СПЕКТРОВ

Изменение амплитудно-частотных спектров горизонтальных компонент на магнитных станциях имеет место при прохождении как дневного, так и вечернего выступов плазмосферы. Однако оценить вклад в асимметрию *H*-компоненты, связанный с вечерним выступом плазмосферы достаточно сложно, поскольку существование этого выступа не обусловлено развитием геомагнитных возмущений. В этом случае рассмотрение дневного выступа является интересным, поскольку он образуется преимущественно на фазе восстановления геомагнитной бури.

Следуя предположению о формировании дополнительного тока вдоль силовых линий вблизи дневного выступа, для рассмотрения были выбраны четыре магнитные станции: ABK, LER, LOV, SOD (см. табл. 2). Для двух рассматриваемых интервалов станции LER и LOV находились под дневным выступом плазмосферы, а станции ABK и SOD – вне его. Геометрия расположения станций представлена на рис. 5. Существование тока вдоль силовых линий, связанного с дневным выступом, можно обнаружить при сравнении магнитных записей *H*-компонент на указанных стан-

Рис. 2. Геомагнитная обстановка 10 и 27 июня 2001 г., характеризуемая индексами интенсивности кольцевого тока *SYM ASY* и индексами интенсивности восточного (*AU*) и западного (*AL*) электроджетов.

Станция	Сокращенное обозначение	Географическая		Геомагнитная		I
		широта	долгота	широта	долгота	L
Bear Island	BJN	74.5	19.2	71.46	108.06	9.89
Bangui	BNG	4.333	18.566	_	90.32	1.02
Cambridge Bay	CBB	69.123	254.969	77.22	309.14	9.99
Fresno	FRN	37.083	240.283	42.97	303.62	1.87
Hurbanovo	HRB	47.873	18.19	43.02	92.74	1.87
Lovo	LOV	59.344	17.824	55.91	95.98	3.18
Meanook	MEA	54.615	246.653	62.06	305.84	4.55
Newport	NEW	48.267	242.883	54.91	303.38	3.03
Tromso	TRO	69.663	18.948	66.65	102.90	6.37
Yellowknife	YKS	62.482	245.518	69.48	300.66	8.14

Таблица 1. Станции вдоль 19° и 240° меридиана

Таблица 2. Станции в области дневного выступа плазмосферы

Станция	Сокращенное обозначение	Географическая		Геомагнитная		I
		широта	долгота	широта	долгота	
Abisko	ABK	68.36	18.82	65.33	101.75	5.74
Lerwick	LER	60.13	358.82	57.97	81.00	3.56
Lovoe	LOV	59.34	17.82	55.91	95.98	3.18
Sodankyla	SOD	67.37	26.63	63.94	107.26	5.18

циях. На рис. 6 показаны одновременные записи *H*-компонент данных станций 27 и 28 июня 2001 г.

Сопоставление временного хода Н-компонент на станциях, находящихся под дневным выступом (LER, LOV) и станциях вне выступа (ABK, SOD) показывает, что в момент прохождения станциями LER, LOV дневного выступа, наблюдается более значительный провал в горизонтальной составляющей. На рис. 6 для 27 июня 2001 г. разность величин провала Н-компонент на станциях LER, LOV по сравнению со станциями ABK, SOD достигает 20 нТл. Это может означать, что над станциями LER, LOV протекает интенсивный ток, связанный с дневным выступом плазмосферы. Согласно оценкам [Trakhtengerts and Demekhov, 2005], величина продольного тока, образованного высыпающимися частицами за счет их изотропизации циклотронными волнами, составляет величину $J \sim 230$ kA. При сравнении горизонтальных компонент на тех же станшиях в геомагнитоспокойный день 28 июня 2001 г. имеет место синхронный ход горизонтальных компонент.

Как отмечалось выше, одним из признаков продольного тока является существование пульсаций диапазона *Pc*-4. Обнаружение таких пульсаций и времени их возникновения возможно при анализе динамических спектров. На рис. 7 представлены динамические амплитудно-частотные спектры горизонтальной составляющей геомагнитного поля для трех из рассматриваемых станций 10 и 27 июня 2001 г.

Сопоставление полученных результатов показывает, что при входе станций LER и LOV в область магнитных линий, отвечающих дневному выступу плазмосферы, в *H*-компоненте наблюдаются значительные изменения по сравнению со станциями ABK, SOD, находящимися вне его. В спектрах горизонтальной составляющей появляется набор частот, среди которых отмечаются частоты, соответствующие пульсациям диапазона *Pc*-4. Это косвенно подтверждает предположение

Рис. 3. Амплитудно-частотные спектры магнитных записей горизонтальной составляющей магнитного поля на цепочке станций меридиана 19 в логарифмиче-ском масштабе (27 июня 2001 г.). Пунктирная линия соответствует случаю *I* – цепочка станций еще не вошла в область дневного выступа. Сплошная линия соответствует случаю 2- станции находятся под дневным выступом плазмосферы.

Рис. 5. Расположение геомагнитных станций ABK, LER, LOV, SOD относительно дневного выступа плазмосферы 27 июня 2001 г. Положение границы дневного выступа определено в работе [Spasojević et al., 2003].

о формировании интенсивных токов вдоль силовых линий, возникающих благодаря взаимодействию ионно-циклотронных волн с энергичными ионами в области дневного выступа плазмосферы. Энергичные ионы кольцевого тока попадают в область плазмосферного выступа (дневного или вечернего), в результате чего на восточных границах выступов возникают области циклотронной неустойчивости. Ионно-циклотронные волны, взаимодействуя с энергичными протонами кольцевого тока, изотропизуют их по питч-углам, в результате чего происходят высыпания частиц кольцевого тока в конус потерь [Беспалов и Трахтенгерц, 1986]. Формируется ток вдоль силовых линий, который затем растекается по ионосфере. Согласно работам [Grafe et. al., 1997; Sun and Akasofu, 2000; Бархатов и др., 2008], таким ионосферным током может быть восточный электроджет при взаимодействии в области дневного выступа, и западный электроджет при взаимодействии в области вечернего выступа. Динамические амплитудно-частотные спектры D-составляющей геомагнитного поля демонстрируют аналогичные особенности, но в среднем на три часа раньше.

Рис. 6. Магнитные записи на станциях ABK, LER, LOV, SOD 27 и 28 июня 2001 г. Пунктирной линией отмечены станции, находящиеся вне дневного выступа плазмосферы (ABK, SOD), сплошной линией – станции внутри дневного выступа плазмосферы (LER, LOV).

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 51 № 2 2011

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 51 № 2 2011

5. ВЫВОДЫ

В работе рассмотрено влияние дневного и вечернего выступов плазмосферы на асимметрию и амплитудно-частотные характеристики возмущений наземного геомагнитного поля. Получены следующие результаты:

1. Развитие плазмосферных выступов в периоды повышенной магнитной возмущенности проявляется на поверхности Земли как локальное увеличение интенсивности ряда спектральных составляющих в диапазоне геомагнитных пульсаций.

2. Пространственная локализация дневного выступа плазмосферы позволяет провести сопоставление временного хода горизонтальной составляющей на станциях, находящихся на магнитных линиях, соответствующих этому выступу и станциях, находящихся на том же меридиане за его пределами. Установлено, что при "входе" магнитных станций в область дневного выступа, наблюдается "провал" в горизонтальной составляющей геомагнитного поля. Это может быть связано с формированием дополнительной токовой системы на границе выступа.

3. Проведен сравнительный анализ динамических амплитудно-частотных спектров *H*-компонент для станций, находящихся в области дневного выступа плазмосферы и станций, находящихся за его пределами. При входе магнитных станций в область дневного выступа плазмосферы обнаружены всплески интенсивности на частотах диапазона геомагнитных пульсаций. Обнаружено присутствие пульсаций диапазона *Pc*-4, что является косвенным признаком интенсивного продольного тока в этой области.

Таким образом, развитие циклотронной неустойчивости, обеспечивающей эффективное взаимодействие энергичных ионов кольцевого тока с ионно-циклотронными волнами в области плазмосферных выступов, может привести к формированию продольных токов в окрестностях восточной границы как вечернего, так и дневного плазмосферных выступов. Указанные процессы представляются эффективным механизмом замыкания асимметричного кольцевого тока.

Авторы благодарны Sarah Reay (The British Geological Survey) и Patrik Johansson (Geological Survey of Sweden) за предоставление магнитных записей компонент геомагнитного поля с высоким разрешением.

Работа выполнена при частичной поддержке РФФИ грантов №№ 08-05-12051, 08-02-00979 и 09-05-00495, программы поддержки научных школ НШ-4588.2006.2, программы ОФН № 16 РАН и программы Минобрнауки "Развитие научного потенциала высшей школы (2009–2010 годы, проект № 1623)".

СПИСОК ЛИТЕРАТУРЫ

- Альвен Г., Фельтхаммар К.-Г. Космическая электродинамика. М.: МИР, 260 с. 1967.
- Бархатов Н.А., Левитин А.Е., Церковнюк О.М. Анализ связи индексов, характеризующих симметричный SYM и асимметричный ASY кольцевой ток, с индексами активности авроральных электроструй AE (AU, AL) // Геомагнетизм и аэрономия. Т. 48. № 4. С. 520–525. 2008.
- Беспалов П.А., Трахтенгерц В.Ю. Альвеновские мазеры. Горький: Изд-во ИПФ АН СССР, 191 с. 1986.
- Нишида А. Геомагнитный диагноз магнитосферы.
 М.: Мир, 300 с. 1980.
- Пудовкин М.И., Pacnonos О.М., Клейменова Н.Г. Возмущения электромагнитного поля Земли. Часть 2. Короткопериодные колебания геомагнитного поля. Л.: ЛГУ, 271 с. 1976.
- Яхнин А.Г., Яхнина Т.А., Демехов А.Г. Взаимосвязь локализованных высыпаний энергичных частиц и неоднородностей холодной плазмы в магнитосфере // Геомагнетизм и аэрономия. Т. 46. № 3. С. 349–356. 2006.
- Cornwall J. M., Coroniti F.V., Thorne R.M. Turbulent loss of ring current protons // J. Geoph. Res., V. 75. № 25. P. 4699. 1970.
- Fok M.-C., Kozyra J.U., Nagy A.F., Cravens T.E. Lifetime of ring current particles due to coulomb collisions in the plasmasphere // J. Geophys. Res. V. 96. N. A5. P. 7861, 1991.
- Grafe A., Bespalov P.A., Trakhtengerts V.Y., Demekhov A.G. Afternoon mid-latitude current system and low-latitude geomagnetic field asymmetry during geomagnetic storms // Ann. Geophysicae. V. 15. P. 1537–1547. 1997.
- Jordanova V. K., Kistler L.M., Kozyra J.U., Khazanov G.V., Nagy A.F. Collisional losses of ring current ions // J. Geophys. Res. V. 101. N. A1. P. 111. 1996.
- Jordanova, V.K., Kozyra J.U., Nagy A.F., Khazanov G.V. Kinetic model of the ring current atmosphere interactions // J. Geophys. Res. V. 102. N. A7, P. 14279. 1997.
- Kozlovsky A.E., Lyatsky W.B. Alfven wave generation by disturbance of ionospheric conductivity in the fieldalignend current region // J. Geophys. Res. V. 102.
 N. A8. P. 17297–17303. 1997.
- Liemohn M.W., Kozyra J.U., Thomsen M.F., Roeder J.L., Lu G., Borovsky J.E., Cayton T.E. Dominant role of the asymmetric ring current in producing the stormtime Dst* // J. Geophys. Res. V. 106. N. A6. P. 10883–10904. 2001.
- Olson J.V. ULF signatures of the polar cusp // J. Geophys. Res. V. 95. N.A9. P. 10055–10062. 1986.
- Spasojević M., Goldstein J., Carpenter D.L., Inan U.S., Sandel B.R., Moldwin M.B., Reinisch B.W. Global response of the plasmasphere to a geomagnetic Disturbance // J. Geoph. Res. V. 108. N. A9. 1340. doi:10.1029/2003JA009987. 2003.
- Sun W., Akasofu S.-I. On the formation of the storm time ring current belt // J. Geophys. Res. V. 105. N. A3. P. 5411–5418. 1999.
- Trakhtengerts V.Y., Demekhov A.G. Discussion paper: Partial ring current and polarization jet // International Journal of Geomagnetism and Aeronomy. V. 5. GI3007. doi:10.1029/2004GI000091.2005.