ВОДНЫЕ РЕСУРСЫ, 2012, том 39, № 5, с. 521-529

КАЧЕСТВО И ОХРАНА ВОД, ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ

УДК 546.36.02.137+546.42.02.90

К СОСТОЯНИЮ ЗАГРЯЗНЕНИЯ ГЛОБАЛЬНЫМИ ⁹⁰Sr, ¹³⁷Cs и ^{239, 240}Pu ЛАДОЖСКОГО ОЗЕРА

© 2012 г. Н.А. Бакунов, Д. Ю. Большиянов, А.С. Макаров

Государственное учреждение РФ"Арктический и Антарктический научно-исследовательский институт" 199397 Санкт-Петербург, ул. Беринга, 38 E-mail: aaricoop@aari.nw.ru

Поступила в редакцию 26.10.2010 г.

Исследовано состояние радиоактивного загрязнения Ладожского оз. Полупериод очищения вод озера от 90 Sr составил 21.7 года. Отношение запаса 90 Sr в объеме вод озера к запасу в илах (слой 0–10 см) равно 2 : 1. Воды озера очищались от глобального 137 Cs медленнее, чем от 137 Cs аварийного выброса с ЧАЭС из-за хронического пополнения запаса глобального 137 Cs выпадениями из атмосферы. Поведение 90 Sr, 137 Cs и ${}^{239, 240}$ Pu в грунтах дна согласовывалось с геохимической природой элементов. По распределению ${}^{239, 240}$ Pu в грунтах дна седиментация веществ нерадиационной природы определена в 0.3 и 0.5 мм/год на свале глубин и равнинного рельефа соответственно.

Ключевые слова: озеро, искусственные радионуклиды, кумулятивный запас, вода, грунты дна, очищение вод.

За полувековой период пребывания долгоживущих искусственных радионуклидов (**ИРН**) в геосфере земли выявлены основные тенденции и закономерности перераспределения в природных средах радиоактивной примеси, поступившей на поверхность земли в составе глобальных выпадений. Однако отдельные вопросы миграции радиоактивной примеси в водоемах остаются недостаточно исследованными.

При мониторинге альпийской горной системы [19], загрязненной "чернобыльским" ¹³⁷Cs, выявился ряд особенностей в контаминации озер и процессах очищения их вод. Эти особенности проявились для мелководных озер в относительно быстром вторичном загрязнении водоемов ¹³⁷Cs за счет поверхностного стока, а для глубоководных — различиями в скорости очищения вод от ¹³⁷Cs. Озера со средней глубиной более 20 м относят к глубоководным. Природные свойства глубоководных озер (глубина, водный режим, трофический статус) влияют на процесс естественной дезактивации водоемов от ¹³⁷Cs.

В России мониторинг глубоководных озер, за исключением Каспийского моря [21], ограничивался наблюдениями за уровнями ⁹⁰Sr (реже¹³⁷Cs) в воде рек с истоком из таких озер [1, 7]. Радиологических съемок глубоководных озер с одновременным отбором проб воды с поверхности и глубин, на дне озерных котловин и в биоте не проводилось. Поэтому вопросы приходно-расходных частей баланса ИРН в глубоководных водоемах, распределения их между компонентами озерной системы и динамики ее естественного очищения оказались неизученными.

В задачу исследований входило изучение состояния загрязнения Ладожского оз. ⁹⁰Sr, ¹³⁷Cs, ^{239, 240}Pu в целях установления распределения этих ИРН между компонентами водоема, выяснения направленности миграционного перераспределения ИРН между средами вода—дно и определения временных характеристик процесса естественной деконтаминации озера.

Объекты настоящего исследования — запасы 90 Sr, 137 Cs и ${}^{239, 240}$ Pu в почвенном покрове водосбора озера, содержание 90 Sr в р. Неве, концентрации 90 Sr и 137 Cs в воде и донных отложениях (**ДО**) Ладожского оз. В работе использованы представления о геохимической природе радиоактивной примеси (90 Sr, 137 Cs, ${}^{239, 240}$ Pu) и физико-химические механизмы переноса ее в системах водосбор — водоем — отложения дна, а так же результаты собственных исследований по контаминации водоема этими ИРН.

МАТЕРИАЛ И МЕТОДИКА ИССЛЕДЛВАНИЙ

Изучение загрязнения Ладожского оз. состояло из двух этапов. На первом этапе проводилась инвентаризация источников поступления ИРН в водоем, на втором — исследовались результаты экспериментальных работ, относящиеся к определениям ИРН в воде озера, его ДО и к расчетам величин запасов радионуклидов в этих средах.

Отбор проб воды и ДО проводился в октябре 2008 г. с борта научно-исследовательского судна

Карта-схема Ладожского оз. с расположением точек отбора проб.

"Талан" Института озероведения РАН, а в марте 2009 г. – с прибрежного льда на отметках глубин более 5 м (рисунок). По периметру побережья озера взято 6 проб почвы с шагом по глубине 10 см. Пробы воды, отобранные с поверхности озера в полиэтиленовые канистры емкостью 28 л, сразу же консервировались концентрированной кислотой.

Для взятия проб ДО использовался пробоотборник грунта (фирма "UWITEC", Австрия) диаметром 60 мм. Колонки ДО разделялись на слои грунта с шагом 2 см для дальнейших определений в них ИРН. Отбор ДО с судна проводился в глубоководной части озера, так как на нее приходится более 95% объема вод и ~70% площади дна озерной котловины [13, 17]. Определение ИРН в пробах воды и грунта проводилось по лицензированным методикам в Испытательном лабораторном центре ФГУН "Санкт-Петербургский научно-исследовательский институт радиационной гигиены им. П.В. Рамзаева" и в НПО "Тайфун" (г. Обнинск). Относительная ошибка определения 90 Sr, 137 Cs и $^{239, 240}$ Pu в образцах воды и грунта с низкой концентрацией не превышала 45%.

Определения ¹³⁷Cs в пробах почвы, взятых по периметру озера (рисунок), показали, что его содержание в слое 0–10, 10–20 и 20–30 см позволяет исключить возможность локального поступления (пятно) ¹³⁷Cs на побережье озера и его поверхность. Усредненное значение плотности отложения ¹³⁷Cs для шести проб почвы составило 2.9 ± 0.91 кБк/м². При таком фоновом запасе ¹³⁷Cs в почвенном покрове ожидаемые флуктуации его концентраций в ДО озера могут обуславливаться только свойствами грунтов и внутриводными процессами, а не внешним фактором поступления ¹³⁷Cs из атмосферы.

Нуклид	Дата, райо	1974 г. *****,			
	1974 г.*, береговая зона озера	1976 г.**, Карельский перешеек	1985 /1986 гг.***, пос. Зеленогорск	2008 г.****, береговая зона озера	отложение ИРН на поверхность озера, ТБк
¹³⁷ Cs	3.7-4.6	2.68	2.40/7.05	2.9	73.4
⁹⁰ Sr	2.0 - 2.5	1.45	1.2/1.30	_	39.7
^{239, 240} Pu	0.086	0.056	0.050/-	_	1.5

Таблица 1. Кумулятивный запас ИРН, кБк/м², в почве прибрежных районов Ладожского оз.

*Данные аэросъемки ¹³⁷Cs [5], ⁹⁰Sr = ¹³⁷Cs 0.54, ^{239, 240}Pu = ¹³⁷Cs 0.0208 [10]. ** Данные анализа ¹³⁷Cs в пяти пробах с Карельского перешейка [18], ⁹⁰Sr и ^{239,240}Pu – по расчету. *** Данные анализа ⁹⁰Sr и ¹³⁷Cs в слое почвы 0–25 см [1], в знаменателе – сумма нуклидов от глобального и чернобыльского источников.

**** Данные анализа ¹³⁷Сѕ в слое почвы 0-30 см.

***** Расчет отложения глобальных ИРН на поверхность озера по запасу ¹³⁷Сs в почве на 1974 г. [5].

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

При воздушном источнике загрязнения озер и водохранилищ количества ИРН, поступивших в водоемы, определяется по отложению ИРН на почвы побережья. Результаты мониторинга ⁹⁰Sr и¹³⁷Сѕ в почвенном покрове территорий, примыкающих к побережью Ладожского оз., приведены в табл. 1.

В 1974 г. уровень ¹³⁷Сѕ на побережье представлен концентрацией 3.7 кБк/м² для северного участка и 4.6 кБк/м² для его на южной и юго-восточной части [5]. По этому диапазону ¹³⁷Cs уровни ⁹⁰Sr равны 2.0 и 2.5 кБк/м² соответственно.

Для пяти пунктов Карельского перешейка (Сосново, Зеленогорск, Лебяжье, Кировское, Ленинград) концентрации ¹³⁷Сѕ в почвах [18] на 1976 г. равнялась 2.68 ± 0.16 кБк/м². К 1985 г. запас глобальных ⁹⁰Sr и ¹³⁷Cs в песчаной почве (г. Зеленогорск) составил 1.2 и 2.4 кБк/м² соответственно. Считается, что до 1980 г. в почвах поддерживалось относительное постоянство запаса ¹³⁷Сs за счет спорадических поступлений его из атмосферы после ядерных испытаний Китая и Франции [10].

Определения ^{239, 240}Ри в почвах Ленинградской обл. относятся к пост-чернобыльскому периоду мониторинга почв. В районе Ленинград-ской АЭС уровень ^{239,240}Ри в почве на 1990 г. составил 114-262 Бк/м² [9]. По уровню ¹³⁷Сs и отношению ^{239, 240}Pu/¹³⁷Cs содержание ^{239, 240}Pu в почвенном покрове равно 0.05-0.086 кБк/м². Отложение глобальных ⁹⁰Sr, ¹³⁷Cs и ^{239, 240}Pu на поверхность озера составило 39, 7, 73.4 и 1.5 ТБк соответственно (табл. 1).

В 1986 г. в почвах устьевых участков рек Свирь, Паша, Оять, Волхов, Вуокса отложение "чернобыльского" ¹³⁷Сѕ повысило запас радионуклида до 7 кБк/м² [2]. Уровень ⁹⁰Sr в почве увеличился незначительно – с 1.20 до 1.28 кБк/м² [1]. "Чернобыльский" ⁹⁰Sr в количестве 0.08 кБк/м² не приводил к заметному изменению загрязнения озера⁹⁰Sr.

Значения "чернобыльского" и глобального ¹³⁷Cs на зеркало вод Ладожского оз. (на даты поступлений) были относительно близкими (~74.1 и ~73.4 ТБк), что позволяет в первом приближении оценить скорость очищения озерных вод от 137 Cs. Для глобального ¹³⁷Сs потребовалось ~20 лет (1964–1985 гг.), чтобы его концентрации в воде снизились от максимальных значений в 1963-1964 гг. до уровня, находящегося на пределе обнаружения (~2 Бк/м³) используемого метода контроля [1].

Для «чернобыльского» ¹³⁷Сs потребовалось меньшее время для очищения вод. За 5 лет (1986-1991 гг.) концентрация ¹³⁷Сѕ в воде озера понизилась до 1.92 Бк/м³. Дальнейшее снижение уровня замедлилось и к 2001 г. составило 0.99 ± 0.45 Бк/м³ [1]. По-видимому, процесс ремобилизации ¹³⁷Сs из кумулятивного запаса дна способствовал замедлению очищения ладожских вод, так как основное депо ¹³⁷Сs – грунты дна. Естественное очищение Ладожского оз. от ¹³⁷Cs в случае разового его поступления на поверхность водоема происходило в ~5 раз быстрее, чем в условиях хронического (~1965-1980 гг.) пополнения в озере его запаса за счет выпадений из атмосферы.

С 1961 по 1985 г. наблюдения за ⁹⁰Sr в воде Невы, вытекающей из Ладожского оз., были единственным источником опытных данных для системы озеро-река. Исток Невы - мелководная бух. Петрокрепость. Поэтому в годы максимального загрязнения гидросферы (1961-1964 гг.) глобальными ИРН их значения в воде Невы могли отличаться от значений для вод глубоководных районов озера, так как на мелководье озера приходится не более 5.5% общего объема вод.

В Ладожское оз. поступают воды из озер Сайма, Ильмень, Онежское. Суммарная площадь зеркала этих озер (~12600 км²) не намного меньше, чем у Ладожского оз. (17800 км²) [13]. При

	⁹⁰ Sr	Запас ⁹⁰ Sr		
Годы	вода, Бк/м ³	запас в объеме вод, ТБк	в воде озера, % запаса 1965 г.	
1965	41.4	37.67	_	
1970	35.3	31.95	84.8	
1975	30.1	27.24	72.3	
1980	25.6	23.2	61.5	
1985	21.8	19.8	52.7	
1990	16.5	15.1	40.2	
1995	12.6	11.4	30.3	
2000	9.5	8.7	23.2	
2005	7.2	6.4	17.0	
2008-2009*	7.5	6.7*	17.8*	

Таблица 2. Динамика ⁹⁰Sr в воде Ладожского оз. по результатам расчета

* Запас определен по опытным значениям уровней ⁹⁰Sr в воде озера, восемь проб.

аэральном источнике загрязнения большая площадь зеркала озер-доноров усиливает загрязнение вод озера реципиента.

В 1963 г. в воде Невы наблюдался максимальный уровень 90 Sr – 59.3 Бк/м³, который к 1964 г. понизился до 32.2 Бк/м³. В водах Невы не произошло 2–3-кратного снижения содержания 90 Sr в воде, отмечаемого к этому году для больших рек, не вытекающих из больших озер. Запасы 90 Sr в озере и в озерах-донорах были достаточными, чтобы в значительной степени компенсировать резкое уменьшение поступления 90 Sr из атмосферы.

Содержание ⁹⁰Sr в воде Невы [1, 7, 14, 15] на даты 1, 2, 12–23-го года после максимума, приходящегося на 1962–1963 гг., равнялось 59.3, 32.2, 26.0, 27.0, 20.0, 24.0, 27.0, 27.0, 20.0, 21.0 Бк/м³ соответственно. Изменение уровней ⁹⁰Sr в этом временно́м ряду аппроксимировано экспонентой с полупериодом $T_{\rm ec}$ уменьшения концентрации, равным 21.7 года. При аппроксимации допускалось, что снижение концентрации в озере и реке, из него вытекающей, обусловлено не физическим распадом ⁹⁰Sr, а естественной направленностью природных процессов, приводящих к уменьшению его содержания в воде

$$C_t = C_0 \exp(-0.693 t / T_{ec}),$$

где C_t – концентрация ⁹⁰Sr в воде (Бк/м³) на время *t*; *t* – год наблюдений; C_0 – начальная на 1964 г. концентрация ⁹⁰Sr в воде (Бк/м³), поправка на распад которой задается лишь после 1985 г. – завершения очищения резервуара стратосферы от продуктов деления; $T_{\rm ec}$ – полупериод снижения концентрации ⁹⁰Sr в воде (годы). $C_0 = 45.6 \text{ Бк/м}^3$, $T_{ec} = 21.7 \text{ года}$.

Запасы глобального ⁹⁰Sr в водоеме (1965-1980 гг.) пополнялись спорадическими поступлениями из атмосферы. Этот же канал пополнял запас 90 Sr в приповерхностном слое почв (0-2 см), служащим источником ионов ⁹⁰Sr, вовлекаемых в поверхностный сток. Часть ⁹⁰Sr поступала в речные и озерные воды за счет ремобилизации его запаса в грунтах дна. В совокупности эти процессы применительно к водному мигранту ⁹⁰Sr обусловили значительную буферность системы водосбор - глубоководное озеро - сток, которая привела к замедленному очищению озерных вод от ⁹⁰Sr [1, 4, 7]. Из сопоставления показателя обмена вод Ладожского оз., равного 10-12 годам, и полупериода $T_{\rm ec}$ очищения вод от ⁹⁰Sr следует, что воды озера обновлялись в ~3.5 раза быстрее снижения в них содержания ⁹⁰Sr. Результаты расчетов ⁹⁰Sr в воде озера и его запаса в объеме вод на даты 1970. 1975, 1980, 1985, 1990, 2000 и 2005 гг. приведены в табл. 2.

По расчету уровень ⁹⁰Sr в воде озера на 1985 г. равен 21.8, а по опытным данным для воды Невы [1] – 21.0 кБк/м³. Содержание ⁹⁰Sr в поверхностных водах озера в 1991 и 2001 гг. равнялось 18.2 и 11.1 Бк/м³ соответственно [1], что близко к расчетным значениям уровней на 1990 и 2000 гг. (табл. 2). Опытные значения уровней ⁹⁰Sr относятся к поверхностному слою воды, а расчетные – к усредненному для всего объема вод озера.

В 2001 г. [1], в отличие от 1990 г., отмечалась высокая сходимость между определениями ⁹⁰Sr в водах озера и р. Невы в интервале 9–13 при среднем 11 Бк/м³. В октябре 2008 г. концентрация ⁹⁰Sr в воде озера равнялась 8.0 ± 1.0 , а в марте 2009 г. – 7.2 ± 1.9 Бк/м³ (табл. 3). В целом отмечалось удовлетворительное согласие между данными мониторинга ⁹⁰Sr в воде и расчетами его концентраций по формуле. На 1991, 2001 [2] и 2008–2009 гг. уровни ⁹⁰Sr в воде озера составили по расчету 15.6, 9.0 и 5.8 и по опыту 18.2, 11.1 и 7.5 Бк/м³ соответственно.

Данные табл. 3 позволяют проанализировать изменения запаса ⁹⁰Sr через 10, 20, 30 и 40 лет после контаминации озера. На обозначенные промежутки времени (табл. 3) в воде озера находилось соответственно 72.3, 52.7, 30.2 и 17.0% исходного запаса ⁹⁰Sr. Замедленное снижение запаса ⁹⁰Sr в воде глубоководного озера принципиально отличается от наблюдаемого в неглубоких озерах (H ~ 2 м) Урала [11] и брянского Полесья [6]. Через 2–3 года после контаминации озер в воде находилось не более 5–17% ⁹⁰Sr, отложившегося на зеркало вод.

Определение запасов ИРН в ДО и отношения запасов в средах вода-дно для глубоководных

Номер станции, лимнический район	Дата, координаты (пункт)	Глубина, м	⁹⁰ Sr, Бк/м ³
86, глубоководный	15.10.2008, 61°0.1' с.ш., 30°23' в.д.	64.5	7 ± 3
55, озерного уступа	14.10.2008, 60°47′ с.ш., 31°32′ в.д.	66.7	8 ± 4
8, мелководный	11.10.2008, 60°20' с.ш., 32°8'в.д.	4	9 ± 4
1, мелководный	22.03.2009, 60°08' с.ш., 31°05' в.д. (Кокорево)	3	8 ± 4
2, мелководный	27.03.2009, 60°09' с.ш., 32°29 ' в.д. (Сясьстрой)	7.3	9 ± 4
3, мелководный	28.03.2009, 61°10′ с.ш., 32°17′ в.д. (Видлица)	11.0	8 ± 4
4, мелководный	28.03.2009, 61°41' с.ш., 30°59' в.д. (Ляскеля)	5.2	4 ± 2
5, переходный	30.03.2009, 60°58' с.ш., 30°17' в.д. (Моторное)	27	7 ± 3

Таблица 3. ⁹⁰Sr в поверхностных водах Ладожского оз. в 2008–2009 гг.

озер осложнены неравномерным распределением ИРН на дне озерных котловин, неодинаковым проникновением их в глубь толщи озерных отложений и разнообразием в свойствах донных грунтов. Поэтому для таких озер более корректны оценки запасов ИРН в водной массе, чем в грунтах дна. В то же время без оценок содержания ИРН в ДО глубоководных озер, имеющих сток, остается открытым вопрос направленности природного процесса перераспределения радиоактивной примеси в системе водосбор – водоем – сток.

При анализе миграции ИРН в толще ДО с использованием отношений концентраций ^{239, 240}Pu/¹³⁷Cs и ⁹⁰Sr/¹³⁷Cs следует иметь ввиду, что в ДО присутствует ¹³⁷Cs разного генезиса и неодинакового времени поступления в водоем. Часть ¹³⁷Cs поступила в озеро в составе глобальных выпадений, тогда как другая – с аэрозолями аварийного выброса с ЧАЭС.

Определения ⁹⁰Sr в грунтах керна выполнены до отметки 18 см только для ст. 86 (табл. 4). Следовые количества ⁹⁰Sr прослеживаются до нижней границы керна. Запас ⁹⁰Sr в ДО станции составил 346 Бк/м². Уровень ⁹⁰Sr от слоя 0–2 см к слою 2– 4 см снизился в два раза, но дальнейшее его понижение замедлилось. В слое грунта 8–10 см обнаружено локальное увеличение концентрации ⁹⁰Sr, по-видимому, связанное с изменением окислительно-восстановительных условий среды. В шести колонках грунта из восьми с Ладожского оз. смена знака редокс-потенциала наблюдалась на отметке керна 8 см [17]. В области окислительно-восстановительного барьера ⁹⁰Sr мог задерживаться, так как его следовые количества часто мигрируют в составе комплексных соединений.

Распределение 90 Sr в грунте станций 55 и 56 отличалось от такового на ст. 86 бо́льшим его содержанием в слое 0-2 см (табл. 3) и отсутствием резкого снижения концентрации в верхней части колонки (слой 0-6 см). Общим свойством для кернов станций 55, 56 и 86 оказалось локальное повышение содержания ⁹⁰Sr в слое 8-10 см.

Специфика профиля распределения ИРН в керне ДО станций 55, 56 и 86 в значительной степени обусловлена приуроченностью ДО к районам с разным типом дна. ДО станций 55 и 56 относятся к равнинным участкам дна центральной части озерной котловины, тогда как ДО ст. 86 – к району резкого свала глубин у западного побережья. Здесь наряду с отложением седиментов на дно происходит их перенос. Профиль ДО ст. 86 формировался в динамических условиях, отличных от глубоководных участков со спокойным рельефом дна.

ДО ст. 86 содержат меньше 137 Сs и $^{239, 240}$ Pu, чем грунты станций 55 и 56 (табл. 4). Содержание $^{239, 240}$ Pu в слое 0–6 см ст. 86 равнялось 12.6 Бк/м², а на станциях 55 и 56 – оно в 2 раза больше. Для 137 Сs также сохранялось различие между станциями по запасу радионуклида в слое 0–6 см. Запасы 137 Сs в ДО (слой 0–10 см) для станций 55, 56 и 86 составили 1399.5, 1511.0 и 678.3 Бк/м² соответственно. Профили ДО характеризуется накоплением 137 Сs и $^{239, 240}$ Pu в верхних слоях грунта.

Перенос водного мигранта ⁹⁰Sr в глубь толщи ДО протекал интенсивней, чем ¹³⁷Cs и ^{239, 240}Pu. Ионы ⁹⁰Sr из поровых растворов слабее поглощаются частицами грунта, чем ¹³⁷Cs и ^{239,240}Pu, поэтому его ионы сравнительно легко вовлекаются в перенос с потоками влаги. Отставание ^{239, 240}Pu от ⁹⁰Sr при переносе в толщу ДО прослеживается по распределению их концентраций в грунтах. Переход от слоя грунта 0–2 к слою 4–6 см (табл. 4) сопровождается увеличением отноше-

	Ради	ионуклиды в ДО, Б	90 S = (137 C =	90 C = (239, 240 D				
Слои	⁹⁰ Sr	¹³⁷ Cs	^{239, 240} Pu	Sr/15/Cs	51/200, 210 Pu			
Ст. 86, глинисто-алевритовый ил, северо-западная часть озера								
0-2	128.8	502.5	10.4	0.26	12.4			
2-4	55.2	80.7	1.6	0.68	34.5			
4-6	38.9	32.9	0.6	1.18	64.8			
6-8	27.2	36.4	_	0.74	_			
8-10	41.4	25.8	—	1.60	—			
10-12	19.5	37.2	_	0.52	_			
12-14	16.3	36.1	_	0.45	_			
14–16	12.7	35.0	—	0.36	—			
16-18	6.0	45.0	—	0.13	—			
Итого	346	832						
	Ст. 55	, алевритовый ил,	центральная часть	озера	<u>1</u>			
0-2	40.7	757.3	16.0	0.05	2.5			
2-4	48.1	527.2	11.1	0.09	4.3			
4-6	46.4	51.3	1.1	0.90	42.2			
6-8	69.7	32.9	—	2.12	—			
8-10	61.2	30.8	—	1.99	—			
Итого	266.1	1399.5						
Ст. 56, алевритовый ил, центральная часть озера								
0-2	53.1	672.3	14.8	0.08	3.6			
2-4	60.2	640.5	8.3	0.09	7.3			
4-6	49.5	152.2	2.9	0.32	17.1			
6-8	7.1	17.7	—	0.40	—			
8-10	20.81	28.3	—	0.73	—			
Итого	190.7	1511.0						
	Ст. 8, грубо	эзернистый песок н	на выходе из Волхо	вской губы	•			
0-2	0.33*	5.33*	—	0.06	—			

Таблица 4. ⁹⁰Sr, ¹³⁷Cs и ^{239, 240}Pu в ДО Ладожского оз. (прочерк – отсутствие определений ^{239, 240}Pu)

* Уровни ⁹⁰Sr и ¹³⁷Cs в ДО ст. 8 даны в Бк/кг сухой массы песка.

ния 90 Sr/ ${}^{239, 240}$ Pu из-за многократного снижения в грунте концентрации ${}^{239, 240}$ Pu . ${}^{239, 240}$ Pu задерживался в приповерхностном слое ДО, а 90 Sr мигрировал вглубь. Аналогичное поведение пары радионуклидов ${}^{239, 240}$ Pu наблюдалось в ДО глубоководного арктического озера [12].

Определение ⁹⁰Sr и ¹³⁷Cs в ДО ст. 8 относится к верхнему слою 0-2 см грубозернистого песка (табл. 3). Применительно к одинаковому способу выражения результата наблюдений (Бк/кг сухой массы) содержание ⁹⁰Sr в пробе песка было меньше, чем в илах (слой 0-2 см) станций 55, 56 и 86, соответственно в 29, 46 и 27 раз. Низкое содержание ⁹⁰Sr в ДО ст. 8 является ожидаемым, так как сорбционная способность у песков меньше, чем у илов. Осмотр пробы показал, что образец песка был хорошо отмыт и не содержал примеси тонкодисперсных частиц. Содержание ¹³⁷Cs в песке (5.33 Бк/кг) близко к нижней границе значений ¹³⁷Cs (3.7 Бк/кг), обнаруженных в ДО озера [8].

Для ст. 86 выполнено сравнение запаса 90 Sr в грунте ДО (слой 0–18 см) с запасом 90 Sr в столбе воды. При площади основания столба 1 м², высоте 64.5 м и концентрации 90 Sr в воде 7 Бк/м³ запас

К СОСТОЯНИЮ ЗАГРЯЗНЕНИЯ ГЛОБАЛЬНЫМИ ⁹⁰Sr , ¹³⁷Cs и ^{239, 240}Pu

Число проб, вода/ил	⁹⁰ Sr в средах		Запас ⁹⁰ Sr, ТБк *		¹³⁷ Сѕ в средах		Запас ¹³⁷ Сs, ТБк*		
	вода, Бк/м ³	ил, кБк/м ²	вода	ИЛ	вода, Бк/м ³	ил, кБк/м ²	вода	ИЛ	
Определение ИРН в 1991 г. [1]									
6/3	18.17	0.64	16.05	7.93	1.92	1.82	1.74	22.5	
Определение ИРН в 2001 г. [1]									
10/—	11.1	—	10.09	_	0.99	-	0.9	-	
Определение ИРН в 2008—2009 гг. (данные авторов)									
8/3	7.5	0.25	6.73	3.1	**	1.2	_	14.7	

Таблица 5.	Оценки запасов	⁰⁰ Sr и ¹³	⁷ Cs в объеме вод	д Ладожского оз	. и илах дна	(прочерк -	 отсутствие данных)
------------	----------------	----------------------------------	------------------------------	-----------------	--------------	------------	--

* Запасы ИРН на дне озера рассчитаны на слой иловых отложений 0–10 см.

** ¹³⁷Сѕ в воде ниже предела обнаружения.

радионуклида равен 451.5.5 Бк. Запас ⁹⁰Sr в столбе воды в ~1.3 раза больше такового в ДО ст. 86 (табл. 4) и в 1.6 раза меньше кумулятивного запаса ⁹⁰Sr в песчаной почве Карельского перешейка (743 Бк/м² с учетом распада к 2009 г.). Суммарный запас ⁹⁰Sr (вода + дно) близок к запасу ⁹⁰Sr в песчаной почве Карельского перешейка.

....

....

При седиментации в Ладожском оз. ~0.5 мм/год [13] ожидалось, что к 2008 г. грунт с высоким содержанием глобальных ИРН, приходящемся на 1963—1964 гг., может располагаться на глубине ~3 см от поверхности керна. Поэтому при консервативном поведении примеси слой 0–10 см алевритового ила мог содержать основное количество ⁹⁰Sr. Запасы ⁹⁰Sr в этом слое грунта (станции 55, 56 и 86) на 2008 г. составили 266.1, 190.7 и 291.5 Бк/м² соответственно при среднем 249.4 ± 52.4 Бк/м².

Содержания ⁹⁰Sr и ¹³⁷Cs в пробах воды и илов в 1991 и 2008–2009 гг. использованы в рекогносцировочной оценке запасов радионуклидов на дне озерной котловины и отношения запасов в средах вода – илы дна. Алевритовые илы в Ладожском оз. занимают ~70% площади дна. Они же характеризуются максимальным накоплением ИРН. На 1991 г. усредненное содержание ⁹⁰Sr в трех пробах илов составило 0.64 ± 0.42 кБк/м² (табл. 5). По этой плотности запас ⁹⁰Sr в илах озера равен 7.93 ТБк.

По данным исследований (табл. 5), запасы ⁹⁰Sr в воде озера и в алевритовых илах составили 6.73 и 3.1 ТБк соответственно. Эти значения меньше предыдущей оценки запасов на 1991 г. За интервал 1991–2009 гг. запасы ⁹⁰Sr в воде и алевритовых илах изменились, но отношение между запасами (вода/илы) сохранилось на уровне ~2. Незначительное изменение отношения от 2.0 до 2.2 за экспозицию 18 лет свидетельствует о синхронности процесса очищения вод и донного грунта от ⁹⁰Sr.

Оценка запасов 90 Sr в воде озера по данным опыта является корректной. Такого заключения нельзя сделать по запасу 90 Sr в ДО озера из-за неопределенности содержания 90 Sr в грунтах, находящихся глубже слоя 0–10 см. Можно лишь констатировать, что на 2008–2009 гг. отношение запасов 90 Sr в средах вода–ил (слой 0–10 см) составило ${\sim}2:1$.

Запасы ¹³⁷Сѕ в средах вода–ил на 1991 г. (табл. 5) характеризовались отношением ~1 : 10. Снижение запаса ¹³⁷Сѕ в илах в 1991–2009 гг. с 22.5 до 14.7 ТБк (табл. 5) оказалось близким к величине потерь за счет физического распада ¹³⁷Сѕ. Такой темп снижения концентрации ¹³⁷Сѕ в ДО ожидаем, так как аэральный путь загрязнения водоема отсутствует, а приток ¹³⁷Сѕ в озеро с поверхностными водами при равнинном рельефе мал.

Районам Ладожского оз. глубоководному, склоновому и озерного уступа свойственны низкие температуры (2–6°С) придонной воды и отложений дна [13, 17]. Поэтому химические реакции в системах придонный слой воды – ДО, поровый раствор – частицы грунта дна протекают медленнее, чем в мелководных озерах средних широт. С понижением температуры ДО с 20 до 0°С наблюдалось пятикратное уменьшение коэффициентов диффузии ⁹⁰Sr с 2.3 10⁻⁷ до 4.0 10⁻⁸ см²/с [16].

При низких температурах замедляется миграция ИРН и трансформация начального физикохимического состояния радионуклидов, поступивших на дно. С этим связана консервативность поведения глобального ^{239,240}Pu, аккумулированного в поверхностном слое илов (табл. 4). В глубоких озерах альпийского типа, обследованных при реализации европейского проекта AL : PE 1 [20], продукт распада ²⁴¹Pu – дочерний ¹⁴¹Am – регистрировался только в верхнем (0–3 см) слое ДО, что подтверждает невысокую миграцию материнского нуклида в таких водоемах.

В [3, 12] содержание глобальных ¹³⁷Сs и ^{239, 240}Ри в профиле ДО озер использовано при определении седиментации веществ нерадиационной природы. С аналогичной целью было рассмотрено распределение ^{239, 240}Ри в грунте станций 55 и 86. Для 1964—2009 гг. седиментация составила 0.3 и 0.5 мм/год. На свале глубин (ст. 86) седиментация была ниже, чем для ст. 55 с выровненным рельефом дна. Из-за наличия в верхних слоях ДО "чернобыльского" ¹³⁷Сs корректная оценка седиментации по ¹³⁷Сs затруднена. Однако изменения в послойном распределении ¹³⁷Сs (табл. 4) отражают тенденцию к более высокой седиментации в районе расположения станций 55 и 56, чем в районе ст. 86.

выводы

На 2008–2009 гг. запас глобального ⁹⁰Sr в объеме вод озера составил 6.73 ТБк – величину, не превышающую 17% кумулятивного отложения радионуклида на зеркало вод.

Запас 90 Sr в приповерхностном слое (0–10 см) озерных илов оценен в 3.1 ТБк, что в ~2 раза меньше запаса 90 Sr в водной массе озера. Воды Ладожского оз. очищались от глобального 90 Sr с полупериодом *Т* экологических потерь, равным 21.7 года.

Динамика снижения содержания 90 Sr в воде глубоководного озера принципиально отличается от свойственной мелководным озерам, у которых через 2–3 года после контаминации содержание 90 Sr в воде не превышает 5–10% отложившегося количества.

При близких величинах кумулятивного отложения глобального и "чернобыльского" ¹³⁷Cs на поверхность озера (73.4 и 74.1 ТБк соответственно) очищение вод озера от ¹³⁷Cs разного генезиса было неодинаковым. Переход от максимальных концентраций глобального ¹³⁷Cs в воде (1963– 1964 гг.) к низким (1984–1985 гг.) на пределе метода контроля (2 Бк/м³) произошло за ~20 лет. На аналогичное изменение концентраций "чернобыльского"¹³⁷Cs в водах Ладоги потребовалось ~5 лет (1986–1991 гг.).

В условиях хронического поступления глобального ¹³⁷Cs на зеркало озера и его водосбор (1965–1980 гг.) очищение ладожских вод происходило медленнее, чем при однократном (1986 г.) загрязнении водоема ¹³⁷Cs от аварийного выброса с Чернобыльской АЭС.

Впервые для Ладожского оз. получена сравнительная характеристика распределения ⁹⁰Sr, ¹³⁷Cs и ^{239, 240}Pu в иловых отложениях. Поведение в илах ⁹⁰Sr, ¹³⁷Cs и ^{239, 240}Pu согласовывалось с геохимической природой этих элементов. Литофилы ¹³⁷Cs и ^{239, 240}Pu аккумулировались в приповерхностном слое донных грунтов и медленнее водного мигранта ⁹⁰Sr поступали в глубь ДО. Специфика распределения ИРН в профиле иловых отложений отмечается при анализе отношений концентраций в парах ⁹⁰Sr/^{239, 240}Pu, ⁹⁰Sr/¹³⁷Cs и ^{239, 240}Pu/¹³⁷Cs, используемых в качестве репера текущих изменений в миграции радионуклидов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Агапов А.М., Беленький М.И., Гаврилов В.М. и др. Радиоактивное загрязнение водной системы река Нева Ладожское озеро // Радиохимия. 2003. Т. 45. № 4. С. 370–374.
- 2. Алексеенко В.А. Динамика выноса чернобыльского радиоцезия с речных водосборов бассейна Балтийского моря в 1986–1988 гг. // Радиохимия. 1997. Т. 38. № 2. С. 187–190.
- 3. Бакунов Н.А., Большиянов Д.Ю. Глобальный ¹³⁷Сs как метка седиментации в глубоководных озерах // Радиохимия. 2007. Т. 49. № 2. С.170–172.
- Бакунов Н.А., Большиянов Д.Ю., Макаров А.С. Ретроспективная оценка загрязнения Онежского озера глобальным ⁹⁰Sr и очищения его вод // Радиохимия. 2010. Т. 52. № 2. С. 186–189.
- Болтнева Л.И., Израэль Ю.А., Ионов В.А. и др. Глобальное загрязнение Sr-90 и Cs-137 и дозы внешнего облучения на территории СССР // Атомная энергия. 1977. Т. 42. Вып. 5. С. 355–360.
- Вакуловский С.М., Газиев Я.И., Колесникова Л.В. и др. ¹³⁷Сѕ и ⁹⁰Sг в поверхностных водных объектах Брянской обл. в 1987–2002 гг. // Атомная энергия. 2006. Т. 100. Вып. 1. С. 68–74.
- Гедеонов Л.И., Анкудинов Е.П. Исследование радиоактивного загрязнения воды некоторых водоемов Ленинградской области и северо-западного бассейна СССР в 1961–1966 гг. М.: Атомиздат, 1967. 24 с.
- Геоэкология Ладожского озера / Под ред. Иванова В.Л., Гуревича В.И. СПб.: ВНИИ Океангеология, 1995. 209 с.
- Горяченкова Т.А., Павлоцкая Ф.И., Казинская И.Е. и др. Содержание и распределение ^{239,240}Ри в почвенно-растительном покрове ближней зоны Ленинградской АЭС // Атомная энергия. 1993. Т. 74. Вып. 6. С. 514–517.
- 10. Израэль Ю.А., Квасникова Е.В., Стукин Е.Д. Радиоактивное загрязнение цезием-137 территории России на рубеже веков // Метеорология и гидрология. 2000. № 4. С. 20–31.
- Итоги изучения и опыт ликвидации последствий аварийного загрязнения территории продуктами деления урана / Под ред. Бурназяна А.И. М.: Энергоатомиздат, 1990. 144 с.

ВОДНЫЕ РЕСУРСЫ том 39 № 5 2012

- Кузнецов В.Ю., Большиянов Д.Ю., Струков В.Н. Плутоний в озерных отложениях полуострова Таймыр // Радиохимия. 2001. Т. 43. № 1. С. 89–92.
- Ладожское озеро. Критерии состояния экосистемы. СПб.: Наука, 1992. 325 с.
- 14. Саксен Р., Илус Э., Синкко К. и др. Исследование радиоактивного загрязнения Балтийского моря в 1984—1985 гг. Л., 1988. 29 с.
- Саксен Р., Тайпале Т.К., Синкко К. и др. Исследование радиоактивного загрязнения Балтийского моря в 1981–1983. М.: ЦНИИатоминформ, 1987. 60 с.
- Сафронова Н.Г., Питкянен Г.Б., Погодин Р.И. О механизмах миграции ⁹⁰Sr в донных отложениях водоемов // Проблемы радиоэкологии водоемовохладителей атомных электростанций. Свердловск: УрО АН СССР, 1978. С. 95–98.
- 17. Семенович Н.И. Донные отложения Ладожского озера. М.; Л.: Наука, 1966. 123 с.

- Силантьев А.Н., Шкуратова И.Г. Обнаружение промышленных загрязнений почвы и атмосферных выпадений на фоне глобального загрязнения. Л.: Гидрометеоиздат, 1983. 136 с.
- Циболд Г., Драйсснер Ж., Камински С. и др. Содержание ¹³⁷Сѕ в предальпийских лесах и озерах: изменения и моделирование уровней загрязнения в зависимости от времени с 1986 года // Тр. Междунар. конф. "Радиоактивность при ядерных взрывах и авариях". СПб.: Гидрометеоиздат, 2000. Т. 2. С. 356–360.
- Acidification of Mountain Lakes: Palaeolimnology and Ecology (AL : PE 1 Report) / Eds. Wathne B.M., Patrick S.T., Monteith D., Barth H. // European Commission Report EUR 16129 EN. 1995. P. 61–64.
- 21. Vakulovsky S.M., Chumichev V.B. Radioactive contamination of the Kaspian Sea // Radiation Protection Dosimetry, 1998. V. 75. № 1–4. P. 61–64.