КАЧЕСТВО И ОХРАНА ВОД, ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ

УДК 551.465

ВЫНОС БИОГЕННЫХ ВЕЩЕСТВ С РЕЧНЫМ СТОКОМ БАССЕЙНА СЕЛЕНГИ

© 2012 г. 3. И. Хажеева, А. М. Плюснин*

Байкальский институт природопользования СО РАН 670047 Улан-Удэ, ул. Сахьяновой, 6
E-mail: zkhazh@binm.bscnet.ru
**Геологический институт СО РАН 670047 Улан-Удэ, ул. Сахьяновой, 6а
E-mail: plyusnin@gin.bcsnet.ru
Поступила в редакцию 21.10.2010 г.

Проведен анализ осредненных данных многолетних наблюдений за изменением концентраций минеральных форм биогенных элементов, а также оценено общее их содержание в реках Селенга, Чикой, Хилок, Уда, Джида, Темник. Дана характеристика ежемесячной изменчивости концентраций основных биогенных веществ и определены их соотношения в течение года. На основе показателей водного стока рек и концентраций биогенных веществ оценен их внутригодовой вынос реками. Выявлены характерные колебания в соотношениях выносимых реками общих и минеральных форм биогенных элементов. Установлено, что доля минеральных компонентов в общем поступлении в дельту р. Селенги с речным стоком $N_{\text{общ}}$ и $P_{\text{общ}}$ составляют соответственно 82 и 22%.

Ключевые слова: внутригодовая и межгодовая изменчивость минеральных форм азотных соединений, минеральный и общий фосфор, вынос биогенных элементов стоками рек бассейна Селенги.

Речной сток – главный фактор формирования гидрохимической основы биологической продуктивности вод рек [9, 6, 20]. Биогенные вещества (БВ), поступающие с речным стоком, служат источником питания для гидробионтов (бактерио-, фито- и зоопланктона), влияют на биопродуктивный потенциал озерных вод и определяют трофический статус отдельных акваторий озера. Содержание БВ в реках служит комплексной характеристикой биогеохимических процессов в природных водах. Оно отражает динамику естественной трансформации вещества – интенсивность образования и выноса продуктов выветривания горных пород, растворения осадочных пород, эрозии почв, образования и распада органического вещества, а также антропогенного воздействия на окружающую среду обитания (прямые сбросы в водоемы промышленно-бытовых сточных вод и отходов сельскохозяйственного производства).

Водосборы рек бассейна Селенги существенно различаются по своим почвенно-геологическим условиям, хозяйственной освоенности и природопользованию. Эти факторы, а также режим питания рек на фоне межгодовой изменчивости климатических характеристик влияют на условия формирования водного и химического стока рек, на состав компонентов, качество речных вод и на санитарное состояние водных ресурсов. Притоки

р. Селенги различаются между собой по минерализации в 1.5—2 раза. Минерализация вод невысока — в среднем 70—210 мг/л, что определяется особенностью подстилающих древнейших кристаллических и метаморфических пород (граниты, гнейсы, гранито-диориты, магматиты и др.). Воды рек относятся к гидрокарбонатному кальциевому типу.

Гидрохимический режим рек бассейна Селенги остается недостаточно изученным. Выполненные ранее исследования химического состава воды этой реки показали, что внутригодовая и межгодовая динамика содержания биогенных элементов определяется как природными, так и антропогенными факторами. С 2001 г. институтами СО РАН ведутся ежеквартальные мониторинговые наблюдения за качеством воды. р. Селенги в нижнем течении и в устьях проток ее дельты. Так, средневзвешенная концентрация минерального фосфора (Рмин) в воде Селенги в 1950-е гг. не превышала 13 мкг Р/л, а в 1990-е гг. составила 21 мкг Р/л [3-5, 10, 11, 16-19]. В [18] приведен анализ результатов многолетних режимных наблюдений за изменением объема выноса биогенных элементов речным стоком Селенги в разные периоды.

В задачу настоящей работы входило изучение сезонной и межгодовой изменчивости концентраций биогенных элементов в речных водах бас-

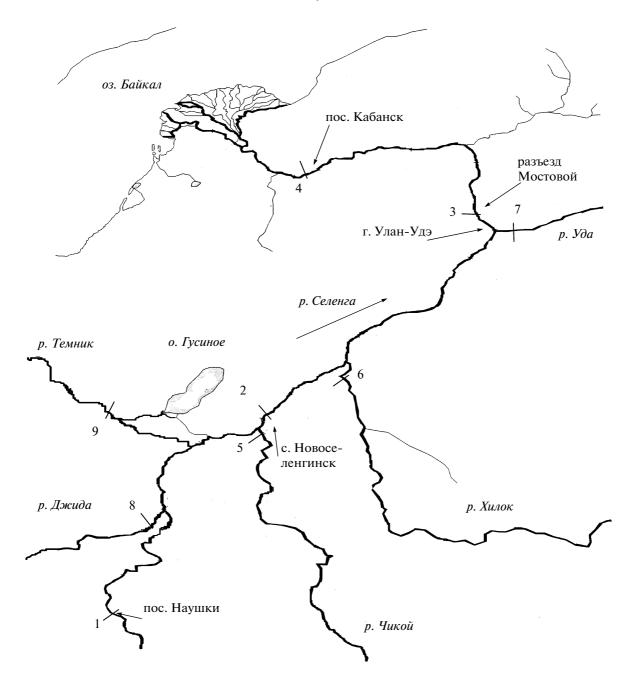


Рис. 1. Карта-схема района исследований, цифры — участки отбора проб.

сейна Селенги и определение объема выноса их речным стоком в условиях низкой водности.

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЙ

Гидрохимические наблюдения проводились с 2002 по 2009 г. на девяти станциях в различные сезоны года (рис. 1), включая следующие периоды: подледный (декабрь, февраль), после вскрытия ото льда (май—июнь), в пик вегетации (конец июня— начало августа) и осеннего охлаждения вод (сентябрь—октябрь). В табл. 1 приведены да-

ты отбора проб и соответствующие им расходы воды в створах наблюдений. Пробы воды отбирались пластиковыми батометрами объемом 2 л. Пробы для определения O_2 методом Винклера отбирались в калиброванные склянки, для определения содержания БВ в пластиковые бутылки объемом 1.5 л. До проведения анализов пробы хранились не более 2 сут при T=5-7°C.

Комплекс проведенных работ был достаточно обширен. Исследованы такие параметры как температура воды (T), pH, Eh, концентрации O_2 ,

Таблица 1. Расходы воды Q, м³/с, в створах наблюдения по данным БУГМС в 2002—2009 гг.

	Номера и названия створов отбора проб									
Даты	р. Селенга				р. Чикой	р. Хилок	р. Уда	р. Джида	р. Темник	
отбора	1, пос. Наушки	2, с. Ново-селенгинск		4, пос. Ка- банск	5, с. Пово- рот	6, с. Хайла- стуй	7, г. Улан- Удэ	8, пос. Джида	9, с. Улан- Удунга	
				200)2 г.				•	
21.03-02.03	57.4	149	184	163	30.4	6.03	19	5.30	1.83	
15.04-16.04	253	716	437	456	553		27.8	65.3	4.3	
17.05-19.05	302	870	1790	1690	481	447	267			
14.06-15.06	249	646	856	1050	264	132	59.6	137	43.8	
15.07-16.07	324	1150	1410	1190	348	161	124	607	74.5	
14.08-15.08	216	594	731	827	382	125	60.7	112	35.8	
16.09-17.09	209	434	510	565	215	83.9	40.4	73.1	34.4	
14.10-15.10	219	400	486	518	162	81.8	39.7	83.5	28.9	
2003 г.										
24.03-25.03	40.8	74.9	93.4	119	15.3	3.44	16.4	3.96	1.23	
17.04-18.04	219	362	910	330	78.7	51.5	27.3	57.8	3.74	
19.05-20.05	277	546	863	954	271	87.9	50.8	156	52.6	
16.06-17.06	282	574	653	811	210	64.4	37.3	118	40.7	
17.07-18.07	239	513	552	609	155	60.5	32.5	127	28.7	
16.08-17.08	692	1290	1470	1610	446	84	85.3	326	80.3	
18.09-19.09	659	1640	1740	2080	496	140	69.4	252	37.7	
17.10-18.10	358	846	989	1270	215	109	61.8	143	31.6	
·	•	•	•	200	94 г.	•		•	•	
28.02-01.03	39.2	90.4	112	144	28.6	4.09	11.8	7.64	1.41	
21.03-22.03	45.5	108	128	162	32.2	5.15	16.4	9.31	1.81	
15.04-16.04	562	278	872	298	88.8		44.3			
18.05-19.05	318	912	1100	1430	503	225	95.5	121	246	
14.06-15.06	272	1010	849	970	287	108	88.5	171	114	
15.07-16.07	363	840	978	1260	361	101	75.7	116	61.4	
14.08-15.08	297	624	842	843	212	73.7	53.9	125	38.9	
16.09-17.09	286	594	623	716	206	67.6	46.9	114	53.7	
14.10-15.10	274	560	583	646	179	65.6	43.8	123	32.6	
·	•	•	•	200	95 г.	•		•	•	
26.02-27.02	36.6	56.8	83.2	85.8	21.3		6.55			
24.03-25.03	37.1	62.1	88.1	103	22.8	4.0	11.7	6.5	1.86	
17.04-18.04	264	265	413	261	56.1	13.4	25.8	57.3	16.8	
19.05-20.05	309	695	1420	1070	483	286	124	148	47.9	
16.06-17.06	328	1330	1740	1650	930	313	138	156	107	
17.07-18.07	260	817	1180	1140	608	157	71.6	123	42.1	
16.08-17.08	461	1120	1440	1380	329	93.0	62.6	375	75.5	
18.09-19.09	318	742	1020	855	266	87.4	56.9	195	55.9	
17.10-18.10	282	520	802	710	209	108	70.3	91.3	32.9	

ВОДНЫЕ РЕСУРСЫ том 39 № 4 2012

Таблица 1. Окончание

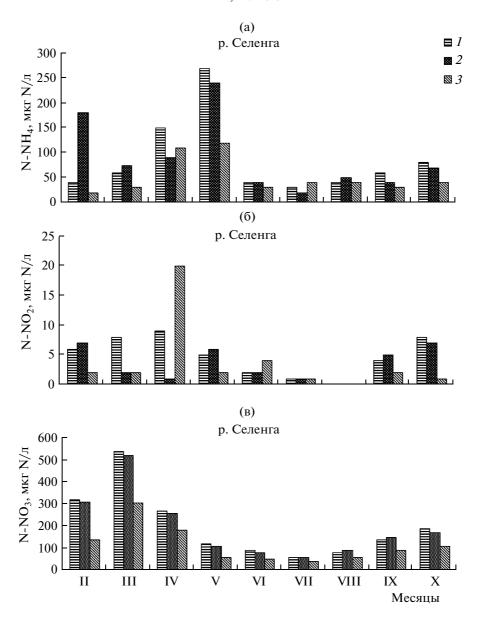
	Номера и названия створов отбора проб									
Даты отбора		p. Ce	ленга		р. Чикой	р. Хилок	р. Уда	р. Джида	р. Темник	
отоора	1, пос. Наушки	2, с. Ново- селенгинск		4, пос. Ка- банск	5, с. Пово- рот	6, с. Хайла- стуй	7, г. Улан- Удэ	8, пос. Джида	9, с. Улан- Удунга	
				200	16 г.					
28.02-01.03	30.9	47.5	61.2	78.9	15.3	4.27	8.43	3.83	0.39	
22.03-23.03	36.1	62.6	79.3	102	16.5	4.64	12.4	6.70	1.67	
15.04-16.04	98.5	169	159	264	36.8	7.22	23.7	20.5	4.73	
18.05-19.05	343	701	1040	1080	266	245	142	68.8	43.8	
14.06-15.06	357	888	1350	1500	425	164	136	42.4	64.8	
15.07-16.07	1650	2480	3090	2970	550	152	89.6	841	140	
14.08-15.08	417	1080	1300	1430	266	75.8	64.3	178	57.0	
16.09-17.09	283	707	906	932	257	73.6	61.7	108	48.5	
14.10-15.10	288	560	682	712	187	67.7	60.5	129	34.8	
	1			200	7 г.	!			ı	
26.02-27.02	44.7	72.9	104	103	25.1	4.2	9.70	9.6	1.44	
24.03-25.03	51.2	71.2	103	143	21.2	5.29	16.3	11.1	1.77	
17.04-18.04	326	487	724	368	68.9		54.9			
19.05-20.05	314	604	890	843	273	123	82.8	48.1	35.8	
16.06-17.06	310	787	818	767	218	86.9	111	41.5	91.2	
17.07-18.07	241	678	842	779	247	83.5	79.8	322	46.1	
16.08-17.08	252	513	674	572	195	44.9	54.9	148	44.2	
18.09-19.09	349	764	914	817	234	45.9	53.0	193	85.6	
17.10-18.10	263	487	618	579	145	38.9	53.0	105	27.7	
	•	•		200	8 г.	,			ı	
27.02-28.02	38.9	33.1	81.5	80.3	9.6	3.11	8.82	7.26	1.11	
22.03-23.03	53.8	84.7	113	131	13.2	8.67	15.7	15.4	1.8	
15.04-16.04	324	446	631	572	130	24.4	53.3	48.4	8.45	
18.05-19.05	217	387	558	541	145	70.4	73.8	44.8	32.2	
14.06-15.06	232	455	810	654	171	103	131	167	51.0	
15.07-16.07	457	1360	1630	1540	581	127	102	245	74.4	
14.08-15.08	379	956	1280	1460	234	86.9	87.8	232	36.5	
16.09-17.09	421	1070	1310	1220	370	103	73.8	286	64.7	
14.10-15.10	302	584	810	743	209	82.3	65.5	86	29.2	
	•	•	•	200	9 г.				•	
26.02-27.02	42.4	62.8	54.8	56.1	12.3	3.3	9.74	4.65	1.16	
22.03-23.03	49.4	59.1	92.1	107	13.6	4.8	12.5	10.5	2.02	
15.04-16.04	141	793	806	831	151	48.2	64.4	77.2	22.7	
18.05-19.05	297	494	866	902	157	82.5	84.5	36.4	30.8	
14.06-15.06	306	517	666	620	144	125	81.2	43.9	67.5	
15.07-16.07	520	1010	1370	1280	602	152	68.6	110	30.2	
14.08-15.08	362	1100	1450	1520	479	86	96.4	236	79.6	
16.09-17.09	432	840	1050	1120	415	74	71.5	106	31.8	
14.10-15.10	285	747	1120	1240	387	52.3	84.5	84.4	37.6	

ВОДНЫЕ РЕСУРСЫ том 39 № 4 2012

Таблица 2. Концентрации соединений N, P, Si, мкг элемента/л, в речных водах бассейна Селенги в 2002–2009 гг.
(числитель – диапазон изменений средневзвешенных концентраций по месяцам, знаменатель – среднемного-
летние концентрации за период наблюдений)

	Реки									
Параметр		Селенга	Чикой	Хилок	Уда	Джида	Темник			
	пос. Наушки	рзд. Мостовой	пос. Кабанск	THROM ANDION	Andiok	Эда	джида	TOMITIK		
N-NH ₄	<u>4–116</u> 56	$\frac{9-219}{96}$	$\frac{12-218}{98}$	$\frac{8-148}{82}$	$\frac{9-156}{68}$	$\frac{7-145}{68}$	$\frac{9-152}{61}$	$\frac{4-106}{32}$		
$N-NO_2^-$	$\frac{0-22}{4}$	$\frac{0-14}{3}$	$\frac{0-16}{5}$	$\frac{0-13}{2}$	$\frac{0-9}{2}$	$\frac{0-14}{2}$	<u>0-2</u> 1	$\frac{0-2}{1}$		
$N-NO_3^-$	$\frac{23-325}{114}$	$\frac{48-522}{286}$	$\frac{46-525}{298}$	$\frac{28-482}{196}$	$\frac{31-492}{178}$	$\frac{15-364}{162}$	$\frac{17-372}{176}$	$\frac{15-324}{145}$		
$N_{\scriptscriptstyle MUH}$	$\frac{23-458}{142}$	$\frac{59-758}{386}$	$\frac{64-732}{378}$	$\frac{22-610}{241}$	$\frac{19-540}{226}$	$\frac{16-506}{197}$	$\frac{14-528}{212}$	$\frac{11-382}{175}$		
$N_{\text{общ}}$	36(173)-552	$\frac{67 - 924}{471}$	$\frac{72 - 898}{461}$	$\frac{68-744}{356}$	$\frac{73-658}{342}$	$\frac{44-617}{254}$	$\frac{38-643}{261}$	$\frac{27-463}{201}$		
$N_{op\Gamma}$	$\frac{18-95}{31}$	$\frac{15-192}{93}$	$\frac{12-168}{83}$	$\frac{8-134}{62}$	$\frac{7-118}{58}$	$\frac{5-111}{44}$	$\frac{18-115}{56}$	$\frac{12-83}{38}$		
P-PO ₄ ³⁻	$\frac{1-14}{7}$	$\frac{1-26}{9}$	$\frac{1-29}{12}$	$\frac{1-18}{8}$	$\frac{1-32}{11}$	$\frac{1-22}{8}$	$\frac{1-28}{9}$	$\frac{1-21}{7}$		
Р _{общ}	$\frac{4-67}{28}$	$\frac{15-125}{58}$	$\frac{16-129}{59}$	$\frac{1-48}{28}$	$\frac{5-98}{37}$	$\frac{5-58}{32}$	$\frac{6-48}{25}$	$\frac{6-30}{18}$		
$Si \times 10^{-3}$	$\frac{2.7-4.9}{3.8}$	$\frac{3.1-5.2}{3.8}$	$\frac{2.8-5.4}{3.9}$	$\frac{2.9 - 4.9}{3.8}$	$\frac{2.6-5.1}{4.1}$	$\frac{2.2-6.5}{5.2}$	$\frac{2.8-5.2}{3.5}$	$\frac{2.6-4.4}{3.3}$		
Количе- ство проб	70	70	70	70	66	70	66	66		

форм Р: $P_{\text{мин}}$ и $P_{\text{общ}}$; форм N: $N_{\text{мин}}$ (аммонийного (N-NH₄⁺), нитритного (N-NO₂⁻) и нитратного (N-NO₃⁻)) и $N_{\text{общ}}$; Si. При этом использовались общепринятые, многократно проверенные методики [7, 12, 14, 18]. Колометрирование выполнялось на спектрофотометре UV-VIS фирмы "Мараdа" (Япония). Для анализа растворенных БВ фильтровали 1—2 л воды через стекловолокнистый фильтр GF-F с диаметром пор 0.5 мкм. Расчет выноса БВ проведен по известной методике О.А. Алекина [1, 2].


В табл. 2 приведены итоговые результаты определений концентраций БВ, причем в числителе указан диапазон изменений по месяцам средневзвешенных концентраций C_i , рассчитанных по формуле

$$C_i = \frac{\sum_{n=0}^{8} C_n Q_n}{\sum_{n=0}^{8} Q_n},$$

где Q_n — расход воды в месте отбора пробы (табл. 1), в знаменателе — среднемноголетняя концентрация в период наблюдений, рассчитанная как среднеарифметическая средневзвешенных концентраций в течение года в створе наблюдения. Для полноты анализируемых данных привлекались данные Бурятского управления гидрометеорологической службы (БУГМС) с 2002 по 2009 гг.

РЕЗУЛЬТАТЫ НАБЛЮДЕНИЙ И ИХ ОБСУЖДЕНИЕ

N аммония. В верхнем течении Селенги (пос. Наушки) максимальная концентрация N аммония (N- $N\,H_4^+$) во внутригодовом распределении наблюдалась в весенний период и составляла 110-120 мкг N/π , в июне—июле уменьшалась до 20-50 мкг N/π , а в октябре возрастала до 40-60 мкг N/π . На рис. 2а приведено внутригодовое распределение средневзвешенных концентраций аммонийных солей. Среднегодовое содержание N аммония за 2002-2009 гг. оказалось

Рис. 2. Внутригодовой ход изменения средневзвешенных концентраций минеральных форм N в воде р. Селенги: аммонийного (а), нитритного (б) и нитратного (в): I - пос. Кабанск, 2 - рзд. Мостовой, 3 - пос. Наушки.

равным 56 мкг N/л при колебаниях по годам от 51 до 58 мкг N/л.

В среднем течении реки ниже г. Улан-Удэ у разъезда (рзд.) Мостового максимальная амплитуда колебаний концентраций рассматриваемой формы N увеличивается до 250—340 мкг N/л в подледный период и апреле—мае. В летний период его концентрация варьирует в интервале 60—80, в осенний — 80—120 мкг N/л. На этом участке реки выявляется дополнительный максимум — зимний, что обусловлено восстановительными условиями среды на этом участке реки вследствие сброса сточных вод г. Улан-Удэ. Максимумы концентраций отмечены в феврале, мае, октябре (рис. 2а). Среднее содержание N аммония в период наблю-

дений было равно 96 мкг N/л при изменении среднегодовых концентраций от 92 до 104 мкг N/л.

В нижнем течении реки (пос. Кабанск) максимальная амплитуда колебаний содержания N аммония отмечена весной и составила 420 мкг N/л. В остальные периоды годового цикла эти амплитуды близки к таковым на створе рзд. Мостовой. Среднее содержание N аммония за 2002—2009 гг. оказалось равным 98 мкг N/л при колебаниях по годам в диапазоне от 89 до 104 мкг N/л (табл. 2).

Внутригодовая динамика концентрации N аммония в водах главных притоков аналогична таковой в р. Селенге. Воды р. Хилок отличаются наличием двух максимумов — зимнего (до 270 мкг N/л в 2004 г.) и весеннего. Зимний максимум обуслов-

лен, возможно, перемерзанием верховья реки. Динамика изменений концентраций этой формы N в воде р. Чикой отличается появлением дополнительного максимума в июле (до 150 мкг N/л в 2005, 2007 гг.), что обусловлено поступлением талых вод с окружающих высокогорных хребтов. Среднегодовое содержание N аммония в период наблюдений в реках Чикой и Хилок составляло 82 и 68 мкг N/л соответственно.

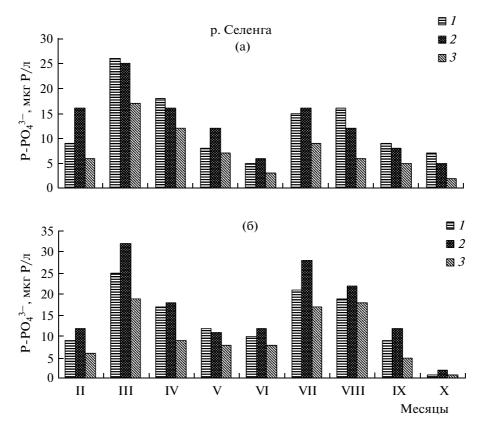
В водах рек Уда, Джида и Темник содержание N аммония ниже, его максимальная концентрация не превышала 110—160 мкг N/л. В отдельные годы в летние месяцы содержание N аммония в водах этих рек снижалось до аналитического нуля. Среднемноголетнее содержание N аммония по наблюдениям 2002—2009 гг. в реках Уда, Джида и Темник составило 68, 60 и 32 мкг N/л соответственно.

Режим изменчивости содержания N аммония имеет цикличность с максимумами в Селенге в мае, октябре; в главных притоках пики максимума наблюдались в феврале, мае, июле, октябре. В воде Селенги и притоков (рек Уда, Джида, Темник) максимальные величины N аммония характерны для периода половодья из-за поступления с поверхностным стоком аллохтонного органического вещества. Появление дополнительного максимума в зимний период в среднем участке Селенги и Хилока обусловлено восстановительными условиями при снижении концентрации растворенного О₂ в воде.

N нитритов. В сезонной динамике концентраций N нитритов $(N-NO_2^-)$ четко выраженной закономерности не выявлено. Тем не менее, в воде р. Селенги максимумы его содержания отмечены весной (апрель) и осенью (октябрь). Повышенные концентрации $N-NO_2^-$ наблюдаются в апреле вследствие окисления Nаммония до N нитритов – токсичных, неустойчивых форм N. В это время в верхнем течении Селенги содержание N нитритов колебалось в пределах 14—22 мкг N/л, в 2004, 2005, 2007 гг. оно превышало предельно допустимые концентрации для рыбохозяйственных водоемов (ПД $\mathbf{K}_{\mathbf{p},\mathbf{p}}$) в 1.5—1.8 раза и составляло 35— 37 мкг N/л; в июне-августе - падает до аналитического нуля (рис. 26). Октябрь характеризовался небольшим повышением содержания нитритов (до 5-6 мкг N/л). Среднемноголетнее содержание N нитритов на этом участке Селенги составило 4.0 мкг N/л при вариации среднегодовых значений от 2.5 до 5.2 мкг N/л.

В среднем течении Селенги ниже г. Улан-Удэ максимальные амплитуды колебаний содержания нитритов в апреле -10-14 мкг N/π , в 2003, 2005 гг. отмечалась концентрация 18-20 мкг N/π . В мае—июне нитрит присутствовал в количестве 5-8 мкг N/π , в начале июля его содержание

уменьшалось до 2-4 мкг N/л. Среднее содержание N нитритов равно 4 мкг N/л при изменении среднегодовой концентрации от 2 до 6 мкг N/л.


В нижнем течении (пос. Кабанск) максимальная концентрация N нитритов составляла 16—18 мкг N/л. В июне—августе N нитритов присутствовал в количестве 3-6 мкг N/л, в конце августа его содержание не превышает 0-3 мкг N/л, а в октябре увеличивается до 8-10 мкг N/л. Среднемноголетнее содержание N нитритов на этом участке Селенги составило 5 мкг N/л при вариации среднегодовых значений от 3.5 до 6.0 мкг N/л.

Внутригодовая динамика распределения N нитритов в воде главных притоков аналогична таковой в р. Селенге. Вода рек Чикой, Уда отличается относительно высокой амплитудой колебания содержания N нитритов (до 12—14 мкг N/л в марте), что вызвано большим загрязнением этих водотоков по сравнению с другими притоками. В воде рек Хилок, Джида, Темник максимальная амплитуда колебаний среднемесячных концентраций не превышала 2—9 мкг N/л. В остальные периоды годового цикла динамика колебаний концентрации N нитритов близка к таковой в водах других главных притоков. В конце мая и в августе содержание N нитритов в воде притоков — на уровне аналитического нуля.

Среди притоков максимальная концентрация N нитритов отмечается в р. Уда, подверженной в наибольшей степени органическому загрязнению. Благодаря развитию фитопланктона в теплый период года потребление минеральных форм N существенно возрастает, и содержание N нитритов (промежуточной формы окисления соединений N) снижается до следовых количеств. Концентрация нитритов в водах рек превышает $\Pi \mathcal{I} K_{\text{р.в.}}$ (0.02 мг N/л) приблизительно в 20% проанализированных проб.

N Нитратов (N-NO $_3^-$) — доминирующая из минеральных форм N по временному распределении азотистых соединений в водах рек бассейна Селенги. Для внутригодовой изменчивости N нитратов характерно наличие двух максимумов: в феврале—марте и в сентябре—октябре. Эти максимумы связаны с уменьшенным потреблением фитопланктоном минеральных веществ и накоплением OB. Минимумы N нитратов приходятся на июль—август вследствие интенсивного их потребления (в основном минеральных форм) в процессе фотосинтеза.

По сравнению с главными притоками вода Селенги характеризуется повышенным содержанием N нитратов. На рис. 2 в приведено внутригодовое распределение средневзвешенных концентраций N нитратов в воде р. Селенги. В зимний период наибольшее содержание N нитратов на разных участках по течению реки существенно

Рис. 3. Годовой ход изменения средневзвешенных концентраций фосфатов в воде р.Селенги у пос. Кабанск (I), рзд. Мостовой (2), пос. Наушки (3) — а и притоков Чикой (I), Хилок (2), Уда (3) — б.

различается: в верхнем течении (пос. Наушки) — 280-360, в среднем течении (рзд. Мостовой) — 480-530, а в нижнем течении (пос. Кабанск) — 540-640 мкг N/л.

В период открытого русла реки содержание N нитратов в среднем и нижнем течении выравнивается. В мае—июне его содержание варьирует в интервале $80{-}160$, в июле $50{-}90$ мкг N/π . В октябре нитрат присутствовал в количестве $140{-}170$ мкг N/π .

Среднемноголетнее содержание N нитратов в селенгинской воде в нижнем течении было равно 298 мкг N/л при изменении среднегодовых концентраций от 286 до 304 мкг N/л.

Временная изменчивость режима N нитратов в водах главных притоков аналогична таковой в р. Селенге. За период исследований максимальная амплитуда изменения концентрации N нитратов в воде р. Чикой составляла 450—503, р. Хилок — 470—511, р. Уда — 350—370, р. Джида — 340—390, р. Темник — 280—360 мкг N/л в зимний период. В период открытой воды отмечалось плавное снижение содержания нитрата до 20—60 мкг N/л, а осенью —повышение до 100—160 мкг N/л (рис. 3в). Среднемноголетнее содержание N нитратов в воде рек Чикой, Хилок составило 196,

224 мкг N/π соответственно, в реках Джида, Уда и Темник — 145—176 мкг N/π .

Общий N. Биогенные элементы, активно участвуя в биопродукционных процессах, определяют интенсивность развития фито-бактериопланктона. Эти процессы определяются не только имеющимися легко доступными для биоты минеральными формами N и P, но и органическими соединениями, которые при своей биохимической трансформации способны обеспечивать окружающую среду легко усваиваемыми планктоном формами БВ. Очевидно, не все количество связанных в живом и "косном" органическом материале N и P может быть выделено в окружающую среду в минеральной форме при биохимических деструкционных процессах. Об этом свидетельствует присутствие в водных экосистемах гумусовой компоненты, которая очень трудно поддается бактериальному воздействию и сохраняет в своем составе значительные количества N и Р.

Содержание общего N ($N_{oбш}$) различно в водах рек бассейна Селенги. В воде Селенги его максимальное внутригодовое количество меняется по течению реки: у пос. Наушки — 562, в среднем течении (рзд. Мостовой) — 970, в нижнем течении (пос. Кабанск) — 991 мкг N/л. В воде рек Чикой,

Хилок, Уда максимальное содержание $N_{\text{общ}}$ составляло 766, 689 и 642 мкг N/π , в водах рек Джида и Темник — 654 и 471мкг N/π соответственно.

Биогенный состав компонентов речных вод сложен и характеризуется разнообразием в содержании отдельных БВ и их форм — растворенных и взвешенных, органических и минеральных. Они активно вовлекаются в оборот гидробионтами и при развитии физико-химических, химических и биохимических процессов способны переходить из одной формы в другую. Существенно поступление органических и взвешенных соединений биогенных элементов в речные воды за счет отмирания и распада клеток гидробионтов, их прижизненных выделений, с промышленными, сельскохозяйственными, хозяйственно-бытовыми сточными водами, при обмене БВ на границе вода—дно.

Для концентрации ОВ характерна существенная сезонная изменчивость. Внутригодовой ход содержания органического азота $N_{\rm opr}$ отличает максимум в вегетационный сезон. Наибольшее содержание $N_{\rm opr}$ до 198 мкг N/π) отмечалось в среднем течении р. Селенги. В воде притоков максимальное содержание $N_{\rm opr}$ не превышало 142 мкг N/π . Среднегодовая доля $N_{\rm opr}$ в $N_{\rm ofin}$ в стоке рек колеблется от 0.17 до 0.19. Она наибольшая в стоке рек Селенги и Джиды (0.18—0.2) и поменьше — в стоке Чикоя, Хилока и Уды (0.17).

Фосфаты. Поведение Р в водах более сложное, чем нитратов. Нагрузка речного стока по Р в несколько раз превосходит природную из-за промышленных и сельскохозяйственных стоков и попадающих в реки детергентов, содержащих полифосфаты. В водотоках существуют своеобразные небиологические буферные механизмы, способные снижать высокую концентрацию Р фосфатов $(P-PO_4^{3-})$ и увеличивать низкую до среднего уровня. Этот механизм представлен в виде процессов сорбции и десорбции фосфата на взвеси. При определенных кислотно-щелочных и окислительно-восстановительных условиях создаются такие зоны, в которых фосфат удаляется из воды, а в донных отложениях повышается его концентрация за счет десорбции из взвеси.

Воды р. Хилок отличаются наибольшей внутригодовой амплитудой содержания фосфатов (44 мкг P/π) (рис. 3), в Селенге эта величина не превышает 20—29 мкг P/π (рис. 3). Вода р. Джида характеризуется повышенной концентрацией фосфата (29 мкг P/π).

Внутригодовой режим изменчивости фосфатов в воде рек бассейна различается. Так, в Селенге максимальная концентрация фосфатов отмечается в феврале—марте, тогда как в притоках в некоторые годы экстремальные концентрации фиксировались в июле, что вызвано поступлением талых вод с горных хребтов. Максимальное со-

держание фосфатов в воде рек на порядок ниже $\Pi \coprod K_{n,R}$ (0.200 мг P/π).

Общий фосфор. Динамика режима общего фосфора ($P_{\text{общ}}$) отличается ярко выраженным увеличением его содержания в период весеннего половодья в основном за счет органических форм; в это время в водах Селенги максимальная амплитуда внутригодового колебания содержания $P_{\text{общ}}$ составляла $104-142\,\text{мкг}$ Р/л. В остальные периоды годового цикла его содержание составляло $26-74\,\text{мкг}$ Р/л. Среднемноголетнее содержание этого показателя в нижнем течении реки составило $59\,\text{мкг}$ Р/л при колебании среднегодовой концентрации в интервале $52-68\,\text{мкг}$ Р/л.

По содержанию $P_{\text{общ}}$ главные притоки различаются. Первую группу — с наибольшей амплитудой его максимального содержания — составляет вода рек Хилок и Уда, в которых величина этого показателя в отдельные годы (2003, 2005 и 2008 гг.) составляла 152 и 70 мкг Р/л соответственно, хотя среднемноголетнее его содержание в водах этих рек — 37 и 32 мкг Р/л соответственно (табл. 2). Вторую группу составляют воды рек Чикой, Джида, Темник, в которых максимальная амплитуда концентрации $P_{\text{общ}}$ во внутригодовом режиме варьировала в пределах 30—48 мкг Р/л со среднемноголетней концентрацией 18—28 мкг Р/л.

Кремний (Si). Максимальная концентрация Si, наблюдаемая в марте, как и у соединений N, связана с зимним накоплением БВ. Весной содержание Si резко падает в связи с бурным развитием диатомовых водорослей — одного из основных видов фитопланктона.

В верхнем течении Селенги в марте наибольшая концентрация Si изменялась в интервале $4.2-4.9~\rm Mr$ Si/л, в отдельные годы (например, в $2007~\rm r$.) содержание Si возрастало до $6.7~\rm Mr$ Si/л. В апреле—мае концентрация Si в воде снижается до $2.8-3.7~\rm Mr$ Si/л, а осенью (в конце октября) увеличивается до $4.4-4.7~\rm Mr$ Si/л.

В среднем и нижнем течении Селенги внутригодовая динамика и амплитуда колебания концентрации Si в воде аналогичны. Эти участки реки отличаются тем, что максимальная амплитуда колебания содержания Si повышается до 7.8—8.2 мг Si/л.

Среднее содержание Si в воде Селенги в 2002—2009 гг. составляло 4.3 мг Si/л при изменении среднегодовой концентрации от 3.5 до 4.8 мг Si/л. Наименьшая концентрация отмечается в период открытой воды и совпадает с таковой во время наиболее интенсивного развития фитопланктона, наибольшая концентрация — зимой, когда регенерация Si преобладает над его потреблением. Растворенная кремнекислота находилась в количествах, чаще всего превышающих потребность растительных организмов.

Содержание Si в водах правых притоков (Чикой, Хилок, Уда) характеризуется следующей внутригодовой динамикой: в марте его количество в реках Чикой и Хилок изменялось в пределах 5.1-5.9, Уда -7.1-7.6 мг Si/л; в период летней межени — от 3.8 до 5.0 мг Si/л, а осенью его содержание возрастает до 4.8-5.4 мг Si/л.

В водах рек Джида и Темник максимальная амплитуда изменения содержания Si в воде в зимний период не превышала 7.0 мг Si/л. Более того, в отдельные годы (например, 2004, 2007 гг.) содержание Si в воде р. Джида варьировало в интервале 2.5—3.6 мг Si/л. В весенне-летний период концентрация Si в воде рек Джида и Темник изменялась в пределах 3.0—4.7 мг Si/л, а осенью она возрастала до 5.1—5.5 мг Si/л.

Среднее содержание Si в воде рек Чикой, Хилок, Джида и Темник за 2002—2009 гг. составляло 3.8—4.6 мг Si/л при изменении среднегодовой концентрации от 3.4 до 4.8 мг Si/л, причем наибольшее среднегодовое содержание Si (5.2 мг Si/л) характерно для вод р. Уда.

СООТНОШЕНИЕ БИОГЕННЫХ ВЕЩЕСТВ В СТОКЕ ОТДЕЛЬНЫХ РЕК

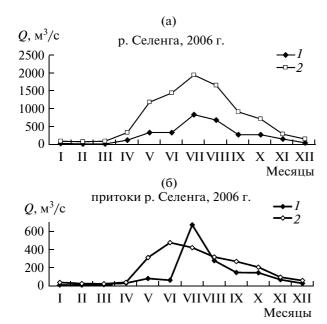
Различия природных и антропогенных факторов и водного питания в бассейнах рек отражаются не только на концентрациях отдельных БВ, но и на их соотношениях, так как в их составе меняются доли взвешенных и минеральных компонентов.

Соотношение минеральных фракций Si, N и P свидетельствует о большом различии запасов БВ в стоке рек. В стоках рек Хилок, Уда, Джида и Темник отношение $N_{\text{мин}}/PO_4^{3-}$ примерно одного порядка и его среднегодовые значения варьируют в интервале 20.1—25.2, в стоках рек Селенга и Чикой оно возрастает соответственно до 34.3 и 30.2, что объясняется в целом низкими концентрациями минерального P в воде этих рек (табл. 2). Минимальные значения $N_{\text{мин}}/PO_4^{3-}$ в реках Селенга и Чикой составляют 7—9 и отмечаются в июле—августе, а в небольших по стоку реках Хилок, Джида, Уда и Темник минимальные значения отмечаются в августе.

Соотношение минеральных форм N и P позволяет судить о том, какой из биогенных элементов служит потенциальным лимитантом процессов первичного продуцирования OB в водной среде: при $N_{\text{мин}}/PO_4^{3-} <$ лимитант N, при $N_{\text{мин}}/PO_4^{3-} > 7-$ P, а при $N_{\text{мин}}/PO_4^{3-} \sim$ 7 оба элемента могут быть лимитантами [20]. Значения указанного соотношения в водах Селенги всегда >7. Таким образом, в воде р. Селенги основной лимитант процессов биопродуцирования — P.

Среднегодовое значение $Si/N_{\text{мин}}$ в воде Селенги — наименьшее (10.3), в воде рек Чикой, Хилок, Джида и Темник оно примерно одного порядка (15.3—18.1), в стоках Уды оно несколько выше (26.4). Среднегодовые отношения Si/PO_4^{3-} в стоках рек Селенга, Хилок и Джида варьируют в близком диапазоне (354—388), в стоке рек Чикой и Темник диапазон варьирования больше (471—475), в стоке р. Уда это отношение значительно больше 650.

Среднегодовое отношение $PO_4^{3-}/P_{\text{общ}}$ в стоках притоков составляет 0.20—0.38, в стоке Селенги — 0.22. Согласно литературным данным [15], в водах рек, расположенных на лесных, смешанных, сельскохозяйственных и урбанизированных водосборах, $PO_4^{3-}/P_{\text{общ}}$ в среднем составляет 0.3—0.6 и возрастает до 0.9 при увеличении плотности населения до 100—200 чел/км².


Отношение $N_{\text{общ}}/P_{\text{общ}}$ наименьшее в стоке рек Уда и Селенга (7.4—7.8), наибольшее — в стоке р. Чикой (12.4). В стоках рек Хилок, Джида и Темник в среднем за год оно составляет 9.2—11.6.

ВЫНОС РЕКАМИ БИОГЕННЫХ ВЕЩЕСТВ

Период исследований 2002-2009 гг. характеризовался условиями низкой водности в бассейне Селенги. Так, водный сток Селенги у пос. Кабанск изменялся в пределах 15.6-23.7, сток р. Чикой -4.4-7.9, р. Хилок -1.4-2.79, р. Уда -1.2-2.6, р. Джида -2.5-3.4, р. Темник -0.776-1.32 км³. В течение года биогенный сток неравномерен и соответствует внутригодовому распределению водного стока рек. На рис. 4а, 4б представлены гидрографы р. Селенги в верхнем и нижнем течении и по одному из правых и левых притоков. В феврале-мае с речным стоком в дельту поступает 19.3% годового выноса фосфатов, немногим более $(25.3\%) - P_{\text{обш}}$. Наибольшее поступление общего количества фосфорных соединений приходится на май-октябрь (до 61.2 %). В мае-октябре доля выносимых в дельту фосфатов составляет 78.3%.

Поступление в дельту с водами р. Селенги различных форм N обнаруживает существенную внутригодовую дисперсию. На февраль—июнь приходится 76 и 38.5%, на август—октябрь — 16.2 и 43.1% годового выноса $\mathrm{NH_4}^+$ и $\mathrm{NO_3}^-$ соответственно. Вынос соединений Si с водами Селенги особенно значим в мае—июле (52%) и сентябре—октябре (24%).

Динамика внутригодового поступления БВ в Селенгу со стоком притоков (реки Чикой, Хилок, Уда, Джида и Темник) также соответствует распределению в течение года водного стока. В феврале—июне в Селенгу поступает 21 и 48% годового вы-

Рис. 4. Гидрографы р. Селенги в верхнем (I) и нижнем (I) течении (I), правого притока р. Чикой (I) и левого — р. Джида (I) (I) в 2006 г.

носа фосфатов и общих соединений фосфора соответственно. Вынос NO_3^- в Селенгу происходит преимущественно в мае—октябре (53.7%).

По результатам расчетов были также оценены соотношения выносимых со стоком отдельных рек БВ (табл. 3). Доля $N\,H_4^+$ в $N_{\text{мин}}$ в стоке всех рек бассейна изменялась в интервале 28—48%, в стоке Селенги она составила 36%. Доля $N\,O_2^-$ в $N_{\text{мин}}$ в стоке рек невелика и в среднем для всех рек ва-

рьирует в пределах 0.6—1.1%. Доля NO_3^- в $N_{\text{мин}}$ наибольшая — в стоке всех рек бассейна и варьирует в пределах 52—72%. Доля $N_{\text{мин}}$ в $N_{\text{общ}}$ составляет 76—86%, а в среднем для речного стока бассейна она оценена равной 82%.

Биогенный сток рек бассейна Селенги отличается не только количеством выносимых в дельту БВ, но и их соотношением. Соотношения выносимых стоком минеральных компонентов Si : $N_{\text{мин}}$: PO_4^{3-} составляют 326 : 31 : 1, 666 : 34 : 1, 285 : 16 : 1, 610 : 20 : 1, 380 : 25 : 1, 287 : 15 : 1 соответственно для рек Селенга, Чикой, Хилок, Уда, Джида и Темник. Соотношения Si : $N_{\text{общ}}$: $P_{\text{общ}}$ в стоке р. Селенги составляет 76 : 9 : 1, р. Чикой — 200 : 15 : 1, р. Хилок — 114 : 6.8 : 1, р. Уда — 203 : 10 : 1, р. Джида — 152 : 13 : 1, р. Темник — 115 : 66 : 1.

выводы

Водосборы рек бассейна Селенги различаются почвенно-геологическими условиями, хозяйственной освоенностью и природопользованием. Эти факторы вместе с режимом питания рек и межгодовой изменчивостью климата формируют водный и химический сток, качество и санитарное состояние водных ресурсов.

Содержание БВ в реках служит комплексной характеристикой биогеохимических процессов в природных водах, показателем развития естественной трансформации вещества и антропогенного воздействия на окружающую среду обитания.

Выявлена внутригодовая изменчивость концентраций БВ в реках бассейна Селенги, а также установлены качественные различия рек по содержанию в них органических и минеральных

Таблица 3. Годовые поступления БВ с речным стоком, тыс. т N, P, Si, бассейна Селенги в 2002—2009 гг.

Разучаства	Реки								
Вещество	Селенга	Чикой	Хилок	Уда	Джида	Темник			
N-NH ₄ ⁺	1.3-2.6	0.31-0.65	0.10-0.24	0.08-0.12	0.21-0.33	0.03-0.06			
$N-NO_2^-$	0.07-0.11	0.008-0.01	0.003-0.005	0.002-0.005	0.004-0.007	0.001-0.002			
$N-NO_3^-$	2.8-4.8	0.63-0.87	0.20-0.34	0.16-0.20	0.26-0.35	0.15-0.22			
$N_{\text{мин}}$	4.3-7.2	1.0-1.4	0.31-0.58	0.22 - 0.33	0.49-0.68	0.17 - 0.26			
$N_{ m oб m}$	5.2-8.7	1.1-1.7	0.4-0.7	0.26 - 0.40	0.60 - 0.83	0.20 - 0.32			
N_{opr}	1.1-1.6	0.18-0.32	0.07-0.13	0.03 - 0.07	0.11-0.15	0.03 - 0.06			
$P-PO_4^{3-}$	0.12-0.18	0.04-0.08	0.014-0.03	0.011-0.015	0.032-0.067	0.008 - 0.02			
Р _{общ}	0.58-0.70	0.17-0.33	0.06-0.13	0.047 - 0.064	0.12 - 0.19	0.024 - 0.056			
Si	656.0-99.0	17.6-30.2	5.3-10.4	6.1-8.0	8.9-13.3	2.3-4.3			

компонентов. Реки различаются по среднегодовым и среднемесячным соотношениям растворенных органических и минеральных форм БВ. Наибольшее среднегодовое отношение $N_{\text{мин}}/PO_4^{3-}$ отмечено в водах р. Селенги (34.2), оно почти в 1.5 раза больше, чем в водах рек Хилок и Уда (19.5–20.2). В течение года отношение $N_{\text{мин}}/PO_4^{3-}$ в реках довольно изменчиво. Наименьшие его значения (7–9) отмечаются в р. Селенге в июлеавгусте, а в меньших по стоку притоках — позже, в конце августа.

Речные воды бассейна Селенги обладают разным потенциалом влияния на развитие продукционных процессов. При $N_{\text{мин}}/PO_4^{3-} < 7$ эти процессы лимитируются P, при $N_{\text{мин}}/PO_4^{3-} > 7 - N$, а при $N_{\text{мин}}/PO_4^{3-} \sim 7$ оба эти элемента могут лимитировать развитие фитопланктона. В водах р. Селенги бо́льшую часть года $N_{\text{мин}}/PO_4^{3-} > 7$, поэтому основной лимитант процессов биопродуцирования — P.

Поступление в дельту с водами р. Селенги различных форм N обнаруживает существенную внутригодовую дисперсию. На февраль—июнь приходится 76 и 38.5%, август—октябрь — 16.2 и 43.1% годового выноса $\mathrm{NH_4^+}$ и $\mathrm{NO_3^-}$ соответственно. Вынос соединений Si водами Селенги особенно значим в мае—июле (52%) и сентябре—октябре (24%).

Доля $N\,H_4^+$ в $N_{\text{мин}}$ в стоке всех рек бассейна изменялась в интервале $28{-}48\%$, в стоке Селенги она составила 36%. Доля $N\,O_2^-$ в $N_{\text{мин}}$ в стоке рек невелика и в среднем для всех рек варьирует в пределах $0.6{-}1.1\%$. Доля $N\,O_3^-$ в $N_{\text{мин}}$ — наибольшая в стоке всех рек бассейна и варьирует в пределах $52{-}72\%$. Доля $N_{\text{мин}}$ в $N_{\text{общ}}$ — $76{-}86\%$, а в среднем для речного стока бассейна — 82%.

Авторы выражают искреннюю признательность сотрудникам гидрохимической лаборатории Геологического института СО РАН за выполненные аналитические работы.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Алекин О.А*. Основы гидрохимии. Л.: Гидрометеоиздат, 1970. 444 с.
- 2. Алекин О.А., Семенов А.Д., Скопинцев Б.А. Руководство по химическому анализу вод суши. Л.: Гидрометеоиздат, 1973. 270 с.

- 3. *Богданов В.Т.* Химический сток р. Селенги в многоводный и маловодный годы // Тез. VIII совещ. по подземным водам. Иркутск, Улан-Удэ, 1976. С. 82.
- 4. *Бочкарев Н.Ф.* Гидрохимия реки Селенги // Тр. Иркутского гос. ун-та.1958. Т. XX1У. С. 143–148.
- 5. Вотинцев К.К., Глазунов И.В., Толмачева А.П. Гидрохимия рек бассейна озера Байкал. М.: Наука, 1965. 494 с.
- 6. *Гордеев В.В., Джамалов Р.Г., Зекцер И.С. и др.* Оценка выноса биогенных элементов с речным и подземным стоком в окраинные моря Российской Арктики // Вод. ресурсы. 1999. Т. 26. № 2. С. 206—211.
- 7. Государственный контроль качества воды. М.: Изд-во стандартов, 2003. 776 с.
- Ежегодник качества поверхностных вод Российской Федерации. Обнинск, 1993—1999.
- 9. *Михайлов В.Н.* Устья рек России и сопредельных стран: прошлое, настоящее и будущее. М.: ГЕОС, 1997. 413 с.
- Молотов В.С., Коломеец О.П. Мониторинг вод основного притока оз. Байкал реки Селенги // Селенга река без границ. Улан-Удэ, 2002. С. 29–31.
- 11. *Обожин В.Н., Богданов В.Т., Кликунова О.Ф.* Гидрохимия рек и озер Бурятии. Новосибирск: Наука, 1984. 152 с.
- 12. Питьева К.Е., Брусиловский С.А., Востриков Л.Ю., Чесалов С.М. Практикум по гидрохимии. М.: Издво МГУ, 1988. 150 с.
- 13. Ресурсы поверхностных вод СССР. Л.: Гидрометеоиздат, 1973. Т. 16. Вып. 3. 400 с.
- 14. Руководство по химическому анализу поверхностных вод суши. Л.: Гидрометеоиздат, 1977. 537 с.
- 15. *Савенко В.С., Захарова Е.А.* Фосфор в основной гидрографической сети // Вод. ресурсы. 1997. Т. 24. № 3. С. 292—299.
- 16. Сороковикова Л.М., Поповская Г.И., Томберг И.В., Башенхаева Н.В. Пространственно-временная изменчивость содержания биогенных и органических веществ и фитопланктона в воде р. Селенги и протоках ее дельты // Вод. ресурсы. 2009. Т. 36. № 4. С. 465–474.
- 17. Сороковикова Л.М., Синюкович В.Н., Дрюккер В.В. и ∂p . Экологические особенности реки Селенги в условиях наводнения // География и природные ресурсы. 1995. № 1. С.64—71.
- 18. Сороковикова Л.М., Синюкович В.Н., Ходжер Т.В. и др. Поступление биогенных элементов и органических веществ в оз. Байкал с речными водами и атмосферными осадками // Метеорология и гидрология. 2001. № 4. С. 78—86.
- 19. *Сороковикова Л.М., Тулохонов А.К., Синюкович В.Н. и др.* Качество вод в дельте реки Селенги // География и природные ресурсы. 2005. № 1. С. 73–80.
- 20. Строганов Н.С., Бузинова Н.С. Практическое руководство по гидрохимии. М.: Изд-во МГУ, 1980. 193 с.
- 21. *Meybeck M.* Carbon, nitrogen and phosphorus transport by World rivers // Am. J. Sci. 1982. V. 282. P. 401–450