КАЧЕСТВО И ОХРАНА ВОД, ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ

УДК 543.381: 574.5: 579

ОЦЕНКА ЭКОЛОГИЧЕСКОГО СОСТОЯНИЯ Р. ЗЕЯ И ЕЕ ПРИТОКОВ В ЗОНЕ СТРОИТЕЛЬСТВА НИЖНЕ-ЗЕЙСКОЙ ГЭС

© 2011 г. Л. А. Гаретова, С. Е. Сиротский, Н. М. Шестеркина, В. С. Таловская, Е. А. Каретникова, Т. Д. Ри

Институт водных и экологических проблем Дальневосточного отделения Российской академии наук 680000 Хабаровск, ул. Ким-Ю-Чена, 65
Поступила в редакцию 24.02.2010 г.

В зоне строительства Нижне-Зейской ГЭС оценены химический состав воды, содержание хлорофилла "а" в фитопланктоне и перифитоне, структура бактериопланктонных сообществ р. Зея и ее притоков. По результатам комплексных исследований показано влияние природных и антропогенных факторов на формирование качества воды на исследованном участке бассейна р. Зея.

Ключевые слова: река Зея, ГЭС, сток растворенных и взвешенных веществ, фитопланктон, перифитон, хлорофилл "а", бактериопланктон.

В настоящее время при наличии эксплуатируемой ГЭС на р. Зея планируется строительство Нижне-Зейской ГЭС. Створ проектируемой ГЭС будет располагаться на территории Мазановского р-на Амурской обл. на расстоянии 290.2 км от устья Зеи. Водохранилище и нижний бьеф будут затрагивать Зейский, Шимановский, Мазановский и Свободненский р-ны Амурской обл. на участке р. Зея от с. Мазаново до устья р. Деп.

Первооснова для мониторинга качества воды во вновь создаваемом водохранилище - задача скорейшей оценки современного состояния его доноров: р. Зеи и ее притоков. Эта задача решается с помощью гидрохимических и гидробиологических исследований. Исследования качества воды в пределах зоны строительства Нижне-Зейской ГЭС до настоящего времени не проводились. Имеются данные о химическом составе воды Зейского водохранилища [12,19], влиянии вод Зеи на зимний гидрохимический режим Среднего Амура [27] и о составе органического вещества (ОВ) в устье Зеи выше г. Благовещенск [11]. Среди гидробиологических исследований наиболее полно представлены данные по качественному и количественному составу эпилитонных водорослей р. Зеи и ее отдельных притоков [14, 15]. Для водотоков бассейна Зейского водохранилища имеются данные оценки трофического статуса по содержанию Хл "а" в водорослях перифитона и планктона [25], показана роль микробных комплексов в формировании качества воды в Зейском водохранилище [8].

Цель настоящей работы — оценка современного состояния водных экосистем в районе размещения гидроузла, водохранилища и нижнего бъефа проектируемой Нижне-Зейской ГЭС.

ОБШАЯ ХАРАКТЕРИСТИКА РАЙОНА РАБОТ

Рассматриваемый район зоны влияния Нижне-Зейского (Граматухинского) гидроузла расположен в среднем течении р. Зеи на участке от устья р. Деп до с. Мазаново (рис. 1).

Бассейн р. Зеи, одного из крупнейших левобережных притоков р. Амура, имеет сложное строение. Междуречье Зея—Амур и Зея—Селемджа занято приподнятыми Амуро-Зейской и Зея-Селемджинской равнинами с обширными пониженными заболоченными участками. Южная часть бассейна р. Зеи охватывает территорию Зейско-Буреинской равнины.

Для района характерно островное развитие многолетнемерзлых пород. Южная граница многолетней мерзлоты проходит по северной окраине Зейско-Буреинской равнины. Годовые амплитуды температур воздуха в бассейне Зеи составляют 60—70°С. По условиям водного режима р. Зея относится к дальневосточному типу с хорошо выраженным преобладанием дождевого стока, который определяется муссонным характером климата. Доля дождевого питания составляет 60—85% общего годового стока. Более 90% влаги выпадает с апреля по октябрь. Основная фаза водного режима рек — дождевые паводки, наблюдающиеся в теплое время года (июль—сентябрь).

Правые притоки Тыгда, Ту находятся в пределах Амуро-Зейской возвышенной равнины с залесенностью до 80%. Средняя заболоченность составляет 18% и распространена преимущественно на участках верхнего течения рек. Весеннее половодые начинается в середине апреля. Паводки в маловодные годы редки, преобладает низкое стояние воды. Особенность гидрологического режима данных рек —

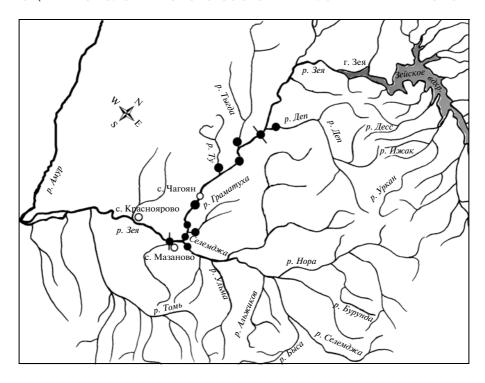


Рис. 1. Карта-схема района исследования.

значительная роль грунтовых вод. В средний по водности для этой части бассейна год их доля в питании рек достигает 40—50%. Северная часть района сложена гранитами и сланцами, перекрытыми толщей древних аллювиальных отложений, южная часть выполнена глинами и песками неогена [20].

Левые притоки Деп, Граматуха, Селемджа дренируют Зейско-Селемджинскую равнину, залесенность которой составляет 75%, заболоченнсть отдельных водосборов колеблется от 20 до 41% (р. Граматуха). Весеннее половодые хорошо выражено, начинается в середине апреля и длится около месяца. Паводочный режим сохраняется до середины октября. Южная часть равнины характеризуется плоским или волнистым рельефом и выполнена песчано-глинистыми отложениями и серыми глинами неогена.

Исследуемый район — малонаселенный и не испытывает интенсивного антропогенного воздействия, за исключением водосбора р. Селемджи, где ведется добыча россыпного золота гидравлическим способом несколькими золотодобывающими артелями. В июле 2007 г. в результате сильных дождей в бассейне р. Зеи наблюдался аномальный паводок. С 10 по 25 июля приточность водохранилища Зейской ГЭС резко увеличилась, дойдя до пикового значения — 15200 м³/с, что выше среднемноголетнего уровня в 3—4 раза. В результате такой ситуации в конце июля был произведен сброс воды из водохранилища, а в дальнейшем производились постоянные попуски Зейской ГЭС. Объем сброса воды до-

стигал 4710 м³/с что привело к катастрофическому наводнению нижележащего участка территории.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

Отбор гидрохимических проб воды проводился в сентябре 2007—2008 гг. в среднем течении р. Зеи на участке от устья р. Деп до с. Мазаново. На двух станциях — ниже впадения р. Деп и в районе с. Мазаново образцы воды отбирали на трех равномерно распределенных по ширине реки вертикалях, на остальных — на середине русла. В притоках — по одной пробе на расстоянии 800—1000 м от устья. Схема расположения станций отбора проб представлена на рис. 1.

Химический анализ проб осуществляли по аттестованным методикам в Межрегиональном центре экологического мониторинга гидроузлов при Институте водных и экологических проблем ДВО РАН.

Хл "а" фитопланктона и перифитона определяли и рассчитывали, используя стандартный спектрофотометрический метод [22].

Микробиологические посевы осуществляли не позднее 1 ч после отбора проб воды по общепринятым в водной микробиологии методам [9]. Общую численность бактерий (ОЧБ) определяли методом прямого счета на мембранных фильтрах при окрашивании карболовым эритрозином. Численность эколого-трофических групп с различными пищевыми потребностями в составе бактериопланкто-

Таблица 1. Гидрохимические показатели качества воды р. Зеи на участке от устья р. Деп до с. Мазаново в сентябре 2007 и 2008 гг. (числитель — среднее, знаменатель — предел варьирования)

Показатель,	Годы			
размерность	2007	2008		
Температура, °С	13.7 11.8–16.1	$\frac{7.8}{6.4-9.5}$		
pН	$\frac{6.8}{6.2-7.4}$	$\frac{6.8}{6.6-7.0}$		
Цв, град.	$\frac{100}{80-125}$	$\frac{70}{60-85}$		
БП K_5 , мг O_2 /л	$\frac{1.4}{1.0-2.4}$	$\frac{1.2}{1.0-2.4}$		
ХПК, мг О/л	$\frac{23}{20-26}$	$\frac{26}{22-32}$		
Взвешенные вещества, ${\rm M}\Gamma/{\rm J}$	$\frac{4.9}{3.0-6.0}$	$\frac{18.7}{10.0 - 36.7}$		
${ m O}_2$, мг/л	$\frac{9.8}{9.0-11.1}$	$\frac{9.9}{9.5-10.4}$		
Минерализация, мг/л	$\frac{29.8}{27.3 - 36.1}$	$\frac{39.8}{37.3-42.9}$		
$\mathrm{NH}_{4}^{+},\ \mathrm{M}\Gamma/\!\mathrm{Л}$	$\frac{0.65}{0.47 - 0.80}$	$\frac{0.15}{0.08 - 0.24}$		
NO_3^- , мг/л	$\frac{0.16}{0.07 - 0.20}$	$\frac{0.08}{0.04 - 0.11}$		
PO_4^{3-} , мг/л	<0.030	$\frac{0.038}{0.030 - 0.07}$		
Фенолы, мг/л	$\frac{0.0014}{0.0006 - 0.0017}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
Нефтепродукты, мг/л	$\frac{0.025}{0.006 - 0.076}$	$\frac{0.006}{0.005 - 0.008}$		

на определяли на агаризованных средах с убывающей концентрацией питательных компонентов: группу сапрофитных бактерий (СБ) учитывали на стандартном рыбопептонном агаре (РПА); группу гетеротрофных бактерий (ГБ) — на среде РПА, разбавленной в 10 раз; олигокарбофильных бактерий (ОБ) — на голодном агаре. Численность нефтеокисляющих бактерий (НОБ) выявляли на среде Раймонда с нефтью, численность фенолрезистентных бактерий (ФРБ) — на среде РПА:10 с внесением фенола в концентрации 1 г/л. Результаты подсчета выражали в численности колониеобразующих единиц (КОЕ) микроорганизмов в 1 мл воды. Количество бактерий с активной системой транспорта электронов выявляли при помощи теста с 2,3,5трифенилтетразолиумхлоридом (ТТХ) [17].

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

Химический состав воды

Результаты оценки гидрохимических параметров воды р. Зеи и ее притоков представлены в табл. 1, 2. По химическому составу вода р. Зеи и ее притоков определяется как гидрокарбонатно-кальциево-магниевая второго типа [1]. По содержанию растворенных веществ она относится к ультрапресным с минерализацией <100 мг/л. Минерализация воды притоков в 1.5-2 раза выше за счет гидрокарбонатов Са и Мg, в меньшей степени — Na. Содержание K^+ не превышало 1.0 мг/л, $Cl^- - 2.0$ мг/л. Существенных различий в содержании K^+ и Cl^- в р. Зее и притоках не отмечается, что свидетельствует об их атмосферном генезисе.

Насыщенность воды кислородом высокая: в 2007 г. при средней концентрации $9.3\,\mathrm{mr/n}$ интервал колебания составил $7.3{-}11.1\,\mathrm{mr/n}$ ($82{-}105\%$). В 2008 г. при среднем значении $10.0\,\mathrm{mr/n}$ интервал колебания — $9.5{-}10.4\,\mathrm{mr/n}$. При этом температура воды в 2007 г. в среднем была $15.4^{\circ}\mathrm{C}$ (диапазон от $11.8\,\mathrm{дo}\,20.9^{\circ}\mathrm{C}$), в 2008 г. $8.8^{\circ}\mathrm{C}$ (диапазон $6.4{-}11.9^{\circ}\mathrm{C}$). Минимальное за наблюдаемый период содержание кислорода $7.3\,\mathrm{mr/n}$ ($82\%\,$ насыщения) наблюдалось в р. Деп с температурой воды $20.9^{\circ}\mathrm{C}$, что соответствует термодинамическим законам растворения газов.

Межгодовые различия и особенности формирования химического состава воды р. Зеи и ее притоков зависели от гидрологической обстановки на водосборе. В 2007 г. сформированный в верховьях р. Зеи значительный паводок, вынужденный сброс воды и попуски из водохранилища Зейской ГЭС вызвали повышение уровня воды в основной реке, что создало подпор в притоках, который в свою очередь привел к повышению уровня воды и в них. По наблюдениям авторов уровень воды в притоках в 2007 г. был на 1.0—1.5 м выше по сравнению с 2008 г.

В р. Зее в условиях повышенной водности в сентябре 2007 г. средняя величина минерализации составила 29.8 мг/л, а при пониженных уровнях воды в 2008 г. — 39.8 мг/л с равномерным распределением по продольному профилю вниз по течению и незначительной амплитудой колебания по ширине реки. По поперечному профилю амплитуда колебания минерализации в 2007 г. составила 1.3 мг/л ниже устья р. Деп и 7.2 мг/л у с. Мазаново; в 2008 г. — 3.1 и 5.6 мг/л соответственно, что обусловлено снижением влияния зарегулирования водного стока и усилением роли боковой приточности в условиях повышенной водности.

В отличие от р. Зеи, содержание растворенных веществ в воде притоков в 2007 г. было выше по сравнению с 2008 г. и связано, очевидно, с поступлением растворенных веществ с поверхностно-склоновыми водами. Определенное влияние на содержание главных ионов и их соотношение в воде водотоков ока-

Таблица 2. Гидрохимические показатели качества воды в устьях притоков р. Зеи (числитель -2007, знаменатель -2008 гг.)

Показатель,	Реки					
размерность	Селемджа Граматуха Д		Деп	Ту Тыгда		
Температура, °С	$\frac{15.8}{9.0}$	$ \begin{array}{c cccc} & 15.8 & & 18.4 & & 20 \\ \hline 9.0 & & 9.2 & & 6. \end{array} $		18.4 11.9	19.6 8.8	
рН	$\frac{7.1}{6.6}$	$\frac{6.6}{6.9}$	$\frac{6.9}{6.8}$	$\frac{7.4}{7.3}$	$\frac{8.8}{7.4}$	
Цв, град.	$\frac{80}{80}$	$\frac{65}{90}$	$\frac{105}{100}$	$\frac{65}{30}$	$\frac{70}{30}$	
БП K_5 , мг O_2/π	$\frac{1.0}{1.2}$	<1.0 1.2	$\frac{1.9}{1.2}$	<1.0 <1.0	1.0 <1.0	
ХПК, мг О/л	$\frac{27}{28}$	$\frac{11}{29}$	$\frac{29}{38}$	$\frac{12}{16}$	$\frac{11}{14}$	
Взвешенные вещества, $M\Gamma/\Pi$	$\frac{7.6}{82.5}$	$\frac{3.5}{11.0}$	$\frac{<3.0}{9.6}$	$\frac{<3.0}{6.1}$	$\frac{<3.0}{6.8}$	
${ m O}_2,$ мг/л	$\frac{8.8}{9.8}$	$\frac{8.7}{9.8}$	$\frac{7.3}{10.1}$	$\frac{9.1}{10.4}$	$\frac{10.0}{10.1}$	
Минерализация, мг/л	$\frac{38.0}{42.4}$	$\frac{62.2}{43.2}$	54.5 47.2	64.2 55.1	<u>56.4</u> 54.5	
$\mathrm{NH}_{4}^{+},\ \mathrm{M}\Gamma/\mathrm{J}$	$\frac{0.52}{0.29}$	$\frac{0.38}{0.17}$	$\frac{0.47}{0.32}$	$\frac{<0.05}{0.55}$	<0.05 <0.05	
NO_3^- , мг/л	$\frac{0.08}{0.14}$	<0.03 <0.03	<0.03 <0.03	<0.03 <0.03	<0.03 <0.03	
РО₄ , мг/л	<0.030 <0.030	<0.030 <0.030	<0.030 <0.030	<u>0.105</u> <0.03	<u>0.072</u> <003	
Фенолы, мг/л	$\frac{0.0030}{0.0026}$	$\frac{0.0009}{0.0021}$	$\frac{0.0022}{0.0022}$	$\frac{0.0010}{0.0023}$	$\frac{0.0007}{0.0017}$	
НП, мг/л	<u>0.403</u> <0.005	$\frac{0.012}{0.008}$	<u>0.025</u> <0.005	$\frac{0.010}{0.008}$	$\frac{0.0014}{0.007}$	

зывает наличие на территории островных многолетнемерзлых пород. Для р. Зеи и притоков в условиях повышенной водности 2007 г. соотношение ионов Ca^{2+}/Mg^{2+} было в пределах 1.8-2.7. При низких уровнях воды осенью 2008 г. и усилении роли грунтового питания эти соотношения изменялись в пределах 0.8-1.4 в основной реке и 0.4-1.0 в притоках. Низкая величина соотношения Ca^{2+}/Mg^{2+} для маломинерализованных вод — признак влияния процессов криогенной метаморфизации [7]. Исключение составляет станция на р. Зее ниже с. Чагоян, где соотношение Ca^{2+}/Mg^{2+} не зависело от водности и было практически постоянным (2.3-2.4), что обусловлено наличием и разработкой мраморного карьера у с. Чагоян.

Сток взвешенных веществ формируется из транзитных, переносимых со всего водосбора, и местных отложений, аллювиальных и эоловых наносов.

В 2007 г. содержание взвешенных веществ в р. Зее не превышало 6.0, в притоках — 3.5 мг/л. В 2008 г. в притоках эти значения увеличились до 11.0 мг/л. Исключение составляет р. Селемджа, в верховьях которой ведется золотодобыча. Содержание взвешенных веществ в ней было самым высоким из исследованных рек — 7.6 мг/л в 2007 г. и 82.5 мг/л в 2008 г. Влияние вод р. Селемджи прослеживается и в основной реке ниже с. Мазаново. Здесь в 2008 г. содержание взвешенных веществ в левобережной части русла и на фарватере составило 31.7 и 36.7 мг/л соответственно при среднем значении 18.7 мг/л.

Цветность (Цв,град. Pt-Co шкалы) воды определяет содержание окрашенных OB, прежде всего — водорастворимых гумусовых соединений почв и болот. В притоках заболоченных водосборов рек Деп, Селемджи и Граматухи Цв воды была высокой, но если в первых двух реках ее величина не зависела от водного стока, то в р. Граматухе Цв возрастала с понижением уровня воды, т.е. в данном случае определенную роль играли внутриводоемные процессы. В правобережных притоках Тыгде и Ту Цв возрастала до 70 град. при повышенных уровнях воды в 2007 г. и снижалась до 30 град. в условиях низкой водности.

Средняя Цв р. Зеи при повышенной водности в 2007 г. составила 100 град., почти не изменяясь по продольному профилю, и 70 град. в 2008 г., незначительно понижаясь вниз по течению. Следует отметить, что по многолетним наблюдениям зарегулирование р. Зеи привело к увеличению ее Цв за счет затопления заболоченной Верхне-Зейской равнины [19].

Максимальные величины ХПК независимо от водности отмечались в самых цветных водах р. Деп. Во всех притоках, в отличие от характера изменения цветности, содержание ОВ было выше в условиях низкой водности в 2008 г. Наибольшая амплитуда колебания концентраций ОВ отмечалась в р. Граматухе: от 11 мг О/л в 2007 г. до 29 мг О/л в 2008 г. с одновременным повышением Цв. Пониженное содержание ОВ характерно для воды рек Тыгды и Ту (11—16 мг О/л) и мало зависит от водного режима, в то время как Цв в условиях низкой водности в 2 раза ниже. В р. Селемдже содержание ОВ, как и Цв, практически не изменялись в зависимости от водного режима.

В воде р. Зеи от устья р. Деп до с. Мазаново ОВ распределялось относительно равномерно с незначительным возрастанием ниже впадения рек Депа и Граматухи.

Величины БПК $_5$, характеризующие содержание лабильных ОВ (в основном — продуктов жизнедеятельности водных организмов), в воде притоков не превышали 2.0 мг O_2/π — предельно допустимой концентрации (ПДК) легкоокисляемых ОВ. Максимальные значения БПК $_5$ наблюдались при повышенном водном стоке в р. Деп — 1.9 мг мг O_2/π и на фарватере р. Зея ниже устья р. Деп — 2.4 мг O_2/π . В основной реке среднее содержание легкоокислямых ОВ было несколько выше, чем в притоках, при этом отмечалась тенденция их снижения вниз по течению.

Содержание биогенных веществ (БВ) в воде исследованных водотоков было незначительным. Концентрации нитрит-ионов за наблюдаемый период не превышали 0.006, нитратионов 0.20 мг/л. Максимальная концентрация иона аммония (0.80 мг/л) отмечалась в р. Зее ниже с. Чагоян в 2007 г. при повышенном уровне воды. В 2008 г. в условиях пониженного водного стока

содержание ионов аммония снижалось в среднем в 4 раза, незначительно изменяясь по длине реки в пределах 0.08—0.24 мг/л. В притоках, дренирующих заболоченные водосборы рек Депа, Граматухи, Селемджи, концентрации ионов аммония в 2007 г. колебались в пределах 0.38—0.52 мг/л и понижались, как и в основной реке, осенью 2008 г. В притоках с преобладающим грунтовым питанием (реки Тыгда и Ту) содержание ионов аммония чаще было ниже предела обнаружения (0.05 мг/л).

Содержание минерального Р в р. Зее и притоках за наблюдаемый период оценивается как незначительное. В 60% проб воды р. Зеи и 40% проб притоков оно было ниже предела обнаружения. Исключение составили реки Тыгда и Ту, в которых концентрации фосфатов в 2007 г. в условиях подпора воды и при температуре 20°С повысились до 0.072 и 0.105 мг/л соответственно.

Исследованные водотоки не загрязнены анионными поверхностно-активными веществами, их содержание за период наблюдений было ниже предела обнаружения (0.025 мг/л). Превышение ПДК по нефтепродуктам (НП) отмечено в двух случаях — 1.5 ПДК в р. Зее ниже устья р. Граматухи и 8 ПДК в р. Селемдже в 2007 г., в среднем содержание НП в условиях повышенного водного стока составило $0.025 \,\mathrm{MF}/\mathrm{Л}\,\mathrm{B}$ р. Зее и $0.015 \,\mathrm{MF}/\mathrm{Л}\,\mathrm{B}$ притоках. По ширине р. Зеи повышенные количества НП отмечались в прибрежной левобережной зоне. При низких уровнях воды в 2008 г. содержание НП как в р. Зее, так и в притоках не превышало 0.008 мг/л, а в 50% проб было ниже предела обнаружения (0.005 мг/л). Концентрации НП и характер зависимости от водного стока свидетельствуют о природном их происхождении и в единичных локальных случаях (р. Селемджа) – об антропогенном. Содержание фенолов на исследуемом участке р. Зеи и в большинстве ее притоков варьировало в пределах, характерных для речных вод. В основной реке при повышенной водности содержание фенолов не превышало 0.0017 мг/л, в притоках (Граматухе, Ту, Тыгде) — 0.001 мг/л. В условиях низкой водности в 2008 г. концентрации фенолов возросли до 1.7-2.3 ПДК. Независимо от водного стока, содержание фенолов в воде р. Селемджи составляло 2.6-3 ПДК.

Хлорофилл "а"

Существенный фактор, определяющий степень развития водорослей в водотоках, — гидрологический режим, обусловленный конкретными климатическими условиями на водосборной площади. Регулирующая роль паводка в развитии сообществ перифитона для горных рек Северной Америки, Японии, Нижнего Амура и Приморья отмечается в [2, 3, 26, 28, 29]. При частых паводках в водных объектах поддерживается низкое развитие водорослей, а их максимум устанавливается в период межени. Влияние гидрологического фактора сказалось на

результатах исследования перифитона. Если в сентябре 2007 г. из-за сильного паводка отбор проб обрастаний был вообще невозможен, то в сентябре 2008 г. в большинстве притоков перифитон можно было отобрать только на значительном расстоянии от устий притоков.

Максимальное содержание Хл "а" в водорослях перифитона отмечено в р. Тыгде (табл. 3). По среднему содержанию Хл "а" (71.232 мг/м²) трофический статус данного водотока в сентябре 2008 г. оценен как политрофный, с соответствующей концентрацией Хл "а" 66—80 мг/м² [23]. Минимальное содержание Хл "а" было характерно для р. Депа, что связано с паводковым режимом реки в период исследования. Содержание Хл "а" в перифитоне рек Ту и Граматухи было выше, чем в р. Депе, в 3 и более раз, но по упомянутой классификации соответствовало олиготрофному типу с содержанием Хл "а", не превышающим 15 мг/м².

Содержание Хл "а" в воде притоков существенно колебалось (табл. 4). В р. Ту Хл "а" выявлен не был, в остальных притоках среднее его содержание составило $0.9 \,\mathrm{mr/m^3}$ (при максимальной концентрации $1.42 \,\mathrm{mr/m^3}$ в р. Селемдже).

По поперечному профилю р. Зеи ниже устья р. Депа содержание X_{7} "а" изменялось от 0 до 1.103 мг/м^{3} (при максимуме у правого берега).

Вниз по течению р. Зеи отмечается тенденция к увеличению содержания Хл "а" выше устья р. Селемджи.

На нижнем створе р. Зеи (с. Мазаново) Хл "а" фитопланктона был распределен относительно равномерно. Средние концентрации составили $0.93~{\rm Mr/m^3},$ что несколько выше, чем на верхнем створе.

По шкале оценки трофического статуса и классов качества вод по величине первичной продукции и концентрации Хл "а" в планктонных сообществах водные массы р. Зеи и ее притоков можно отнести к олиготрофному типу и классу I качества вод [4, 23, 24].

Бактериопланктон

В 2007 г. ОЧБ в воде р. Зеи составляла 0.38-1.08 млн. кл/мл. На отрезке Зеи от устья р. Деп до с. Мазаново ОЧБ постепенно снижалась и положительно коррелировала с содержанием лабильного ОВ, определяемого по показателю БПК $_5$ (r=0.830) (рис. 2). Значения соотношения СБ/ОЧБ \times 100%-100% показателя органического загрязнения [21] — вниз по течению Зеи увеличивались, но не превышали 0.05. Близкие величины данного соотношения были отмечены для Горьковского водохранилища в период весеннего половодья [6].

В обследованных притоках р. Зеи значения ОЧБ колебалась от 0.58 млн. кл/мл в р. Тыгда до

Таблица 3. Содержание Хл "а" в перифитоне притоков р. Зеи в сентябре 2008 г.

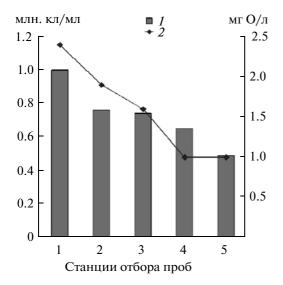

Место отбора проб	Содержание Хл "а", мг/м2			
Р. Деп, 12 км от устья				
плес	3.792			
перекат	2.828			
Р. Тыгда, 1 км от устья				
плес	90.628			
перекат	51.851			
Р. Ту, 1 км от устья				
плес	13.031			
перекат	9.709			
Р. Граматуха, 800 м от устья				
плес	9.955			
перекат	9.645			

Таблица 4. Содержание $X\pi$ "а" в р. Зее и ее притоках в сентябре 2008 г. (прочерк — не обнаружено)

Место отбора проб	Содержание Хл "а", мг/м ³
Р. Деп, устье	0.711
Р. Зея, ниже устья р. Деп	
левый берег	_
середина	0.965
правый берег	1.103
Р. Тыгда, устье	0.965
Р. Зея, ниже р. Тыгды	1.104
Р. Ту, 800 м от устья	_
Р. Зея, 1 км ниже с. Чагоян	1.029
Р. Зея, выше устья р. Граматухи	1.273
Р. Граматуха, 800 м от устья	0.710
Р. Зея, выше устья р. Селемджи	1.318
Р. Селемджа	1.424
Р. Зея, с. Мазаново	
левый берег	0.800
середина	1.104
правый берег	0.889

1.4 млн. кл/мл в р. Селемдже. Несмотря на высокую численность микроорганизмов в воде р. Селемджи, соотношение СБ/ОЧБх100% здесь было минимальным среди других притоков и составляло 0.01, что указывает на низкое содержание легкоокислямого ОВ в воде реки.

Численность СБ и ГБ, утилизирующих, соответственно, высокие и умеренные концентрации ОВ, в притоках р. Зеи осенью 2008 г. была выше, чем в аналогичный период 2007 г. (табл. 5). Это может быть связано с паводком 2007 г., который способ-

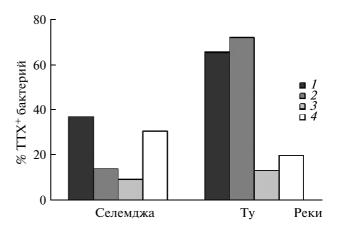
Рис. 2. Динамика общей численности бактериопланктона I и содержания легкоокисляемого OB 2 по фарватеру р. Зеи в сентябре 2007 г. Станции отбора проб: 1 — ниже устья р. Деп, 2 — ниже с. Чагоян, 3 — выше устья р. Граматухи, 4 — ниже устья р. Граматухи, 5 — с. Мазаново.

ствовал обеднению водотоков легкоокисляемым OB за счет выноса перифитона и остатков растительности [3] и, как следствие, снижению численности СБ и ГБ, участвующих в его деструкции.

Таблица 5. Численность и соотношение микроорганизмов различных эколого-трофических групп в составе бактериопланктона притоков р. Зеи в осенний период 2007 и 2008 гг. (числитель — пределы варьирования по водотокам, знаменатель — средние данные)

Показа-	Реки Деп, Тыгда,	Р. Селемджа		
тель	2007 г.	2008 г.	2007 г.	2008 г.
СБ, КОЕ/мл	$\frac{280-510}{365}$	610-1360 906	160	1500
ГБ, КОЕ/мл	$\frac{1300 - 2900}{2075}$	$\frac{2900-6800}{4400}$	2200	15400
ОБ, КОЕ/мл	3000-8500 5125	$\frac{1900 - 7550}{3543}$	5300	18500
ФРБ, КОЕ/мл	$\frac{40-150}{95}$	$\frac{100-230}{160}$	20	470
НОБ, КОЕ/мл	$\frac{70-160}{130}$	$\frac{50-160}{106}$	110	205
ГБ/СБ	$\frac{2.9 - 9.3}{6.0}$	$\frac{4.3-5.4}{4.9}$	13.8	10.3
ОБ/СБ	$\frac{5.9 - 30.4}{15.9}$	$\frac{2.5-5.6}{3.7}$	33.1	12.3

Индекс трофии (ИТ) – соотношение ГБ/СБ [13] — менялся от 2.9 в р. Ту до 13.8 в р. Селемдже, что свидетельствует о доминировании в микробном сообществе бактерий, утилизирующих умеренные концентрации ОВ. Высокие значения соотношения численностей групп ОБ/СБ в 2007 г. указывают на присутствие в водах притоков биохимически устойчивых соединений [18]. Вероятнее всего, это гуминовые вещества, поступающие в водотоки с поверхностным стоком во время паводка, поскольку в 2008 г. величины данного соотношения в водотоках снижались. На низкую долю легкоокисляемого ОВ в его балансе в исследуемых притоках указывают низкие значения БПК5 и величины соотношения БПК₅/ХПК, составляющие 0.037–0.09 [16]. В 2008 г. во всех водотоках соотношение групп ОБ/СБ, характеризующее роль олиготрофных бактерий в деструкции ОВ, снижалось. Это указывает на то, что в условиях уровенного режима 2008 г. функционирование водных микробоценозов обеспечивалось достаточным количеством легкоокисляемого ОВ, источник которого – фитопланктон. Коэффициенты корреляции между содержанием Хл "а" и численностью групп ГБ и ОБ составили 0.815 и 0.813 соответственно. Слабая корреляция (r = 0.357) отмечена для концентрации Хл "a" и группы СБ. Это связано с тем, что пищевая стратегия СБ связана с утилизацией высоких концентраций ОВ, преимущественно аллохтонной природы.

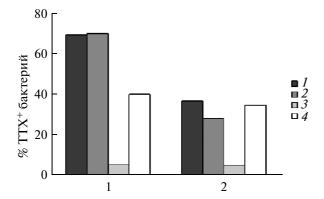

Согласно ГОСТ 17.1.3.07—82 вода в реках Деп, Тыгде, Ту и Граматухе характеризовалась классом II качества (чистая), для которого характерно значение ОЧБ/СБ > 1000 и численности группы сапрофитных бактерий от 0.5 до 5.0 тыс. КОЕ/мл [5]. Численность индикаторных групп ФРБ и НОБ в основной реке и притоках была невысокой и составляла десятки и сотни КОЕ/мл (данные водотоки не подвержены интенсивному загрязнению фенолами и НП).

Иная картина наблюдалась для р. Селемджи, вода которой существенно отличалась от вод других притоков как по численности эколого-трофических групп микроорганизмов, так и по их соотношению. Особенно ярко эти отличия проявились в 2008 г. (табл. 5). Численность всех групп микроорганизмов в р. Селемдже по сравнению с другими притоками существенно увеличивалась. Величины соотношений численностей групп ГБ/СБ, ОБ/СБ, ОБ/ГБ, как и в 2007 г., оставались высокими и соответственно составили 10.3, 12.3, 1.2. Такие высокие показатели соотношений указывают на олиготрофию данного водотока, но вероятнее всего, в такой форме на структуре микробного сообщества отражается воздействие золотодобычи на водосборе реки [9]. Вода р. Селемджи за счет поступающих отработанных грунтов отличается высокой, по сравнению с другими притоками Зеи, мутностью (содержание взвешенных веществ — 82.5 мг/л), не характерной для водотоков олиготрофного типа.

Микробное сообщество воды р. Селемджи отличается низкой метаболической активностью трех эколого-трофических групп бактерий с различными пищевыми стратегиями по сравнению с другими водотоками (рис. 3). По-видимому, такая низкая метаболическая активность эколого-трофических групп микроорганизмов на фоне их высокой численности в воде обусловлена тем, что основной вклад в состав бактериопланктона р. Селемджи вносят слабо адаптированные к условиям водотока терригенные микроорганизмы, ассоциированные с частицами грунта. На это указывает высокая степень положительной корреляции численности эколого-трофических групп бактериопланктона и содержания взвешенных веществ: для $\Gamma B r = 0.990$, для OE r = 0.982, для CE r = 0.759. В воде р. Селемджи, по сравнению с другими притоками, увеличивалась численность ФРБ и НОБ – индикаторов наличия соответствующих поллютантов в водной среде, что наряду с данными химического анализа свидетельствует о загрязнении вод реки фенолами и нефтепродуктами.

Сравнительная оценка численности и соотношения групп микроорганизмов в воде по поперечному сечению р. Зеи ниже устья р. Деп (верхний разрез) и ниже с. Мазаново (нижний разрез) представлена в табл. 6.

Температура воды на нижнем участке р. Зеи была в среднем на 2.5°С выше, чем на верхнем, но в большей степени, чем температурный фактор, на формирование микробных комплексов нижнего участка Зеи оказывали влияние воды р. Селемджи. Об


Рис. 3. Процентное содержание бактерий с активным транспортом электронов (TTX^+) в эколого-трофических группах микробных сообществ воды рек Селемджи и Ту в сентябре 2008 г. I-CБ, $2-\Gamma Б$, 3-OБ, 4-ФРБ.

этом свидетельствуют высокие показатели численности всех эколого-трофических групп бактерий у левого берега и на середине реки. Воды р. Селемджи привносят в р. Зею OB, в составе которого преобладает трудноразлагаемое OB (БПК $_5$ /ХПК = 0.04—0.05), а в микробном сообществе середины и левобережной части русла р. Зеи доминируют микроорганизмы группы ГБ, на что указывает увеличение соотношения ГБ/СБ и снижение соотношения ОБ/ГБ по сравнению с правобережной частью водного потока.

Оценка метаболической активности микроорганизмов сообществ верхнего и нижнего разрезов р. Зеи представлена на рис. 4. В микробном сообще-

Таблица 6. Численность и соотношение эколого-трофических и индикаторных групп бактериопланктона по верхнему и нижнему разрезам р. Зеи в сентябре 2008 г. (прочерк — не определялось)

Место отбора проб Т, °	$T \circ C$	Численность микроорганизмов, КОЕ/мл					ГБ/СБ
	1, C	СБ	ГБ	ОБ	ФРБ	НОБ	ОБ/ГБ
	Ниже устья р. Депа						
Правый берег	6.8	765	4400	1550	_	10	5.8 0.35
Середина	6.4	500	2300	3850	25	110	4.6 1.67
Левый берег	6.6	770	4450	_	_	10	5.8
Ниже с. Мазаново							
Правый берег	8.5	600	4350	5750	200	20	7.3 1.32
Середина	9.5	1065	20350	14400	275	190	19.1 0.7
Левый берег	9.0	940	15500	10500	270	75	16.5 0.67

Рис. 4. Процентное содержание бактерий с TTX^+ в эколого-трофических группах микробных сообществ верхнего (1) и нижнего (2) разрезов р. Зеи в сентябре 2008 г. $I - \Gamma$ Б, 2 - CБ, 3 - OБ, $4 - \Phi$ РБ.

стве воды нижнего участка метаболическая активность групп, ассимилирующих легкоокисляемое ОВ (СБ и ГБ), была существенно ниже, чем у микроорганизмов верхнего участка р. Зеи, что подтверждает влияние вод р. Селемджи на формирование микробных сообществ воды нижнего участка р. Зеи.

ВЫВОДЫ

Комплексная оценка состояния водных экосистем в районе размещения гидроузла, водохранилища и нижнего бъефа проектируемой Нижне-Зейской ГЭС показала, что качество воды исследованных водных объектов зависит от гидрологического режима, особенностей территории водосбора и степени антропогенного воздействия.

Водотоки при низкой минерализации характеризуются значительными межгодовыми вариациями Цв., взвешенного вещества, соотношений ионов Ca^{2+}/Mg^{2+} , содержания ионов аммония, НП в зависимости от гидрологической обстановки на водосборе и незначительными колебаниями содержания ОВ и фенолов. Уровни концентраций компонентов макро- и микросостава определяются природными процессами формирования химического состава вод. На их распределение в пространстве определенное влияние оказывает зарегулирование основной реки. В составе ОВ преобладает трудноминерализуемое ОВ, содержание которого определяет Цв. исследуемых водотоков, обусловленная особенностями территорий водосборов. Антропогенное загрязнение носит эпизодический характер и связано с поступлением взвешенных веществ, фенолов и НП с водами р. Селемджи.

Оценки трофического статуса исследованных водотоков по гидробиологическим и микробиологическим показателям совпадают и характеризуют рассматриваемые водные экосистемы как олиготрофные с качеством воды категории "чистые", за исключением р. Селемджи. За счет золотодобычи

на водосборе р. Селемджи ее воды содержат большое количество взвесей (82.5мг/л) и ассоциированных с ними терригенных микроорганизмов, имеющих низкую метаболическую активность. С другой стороны, развитие фитопланктона (по Хл "а") в р. Селемдже несколько превышало средние характеристики для других водотоков, что, вероятнее всего, связано с повышением содержания ионов аммония и нитратных ионов в воде за счет стока промывных и хозбытовых вод с объектов золотодобычи. Диагностика трофического статуса холодноводных водотоков, испытывающих воздействие золотодобычи, затруднена, поскольку проявлению процесса евтрофирования в них препятствуют низкие температуры и слабое развитие автохтонных планктонных ценозов. Последнее может быть следствием загрязнения воды токсической частью поллютантов. В результате, минуя выраженные мезотрофную и эвтрофную стадии, экосистемы таких водотоков могут переходить в дистрофную стадию. Негативное воздействие золотодобычи отражается не только на трофическом статусе р. Селемджи, но может проявиться в процессе формирования качества воды при зарегулировании исследуемого участка р. Зеи и заполнении водохранилища.

В самоочищении вод р. Зеи и ее притоков участвуют микроорганизмы различных эколого-трофических групп. Метаболическая активность микробных сообществ воды, складывающаяся из активности бактерий с различными пищевыми стратегиями, в целом была достаточно высокой. В частности, процентное содержание СБ с активной системой транспорта электронов в воде р. Зеи и ее притоков составляло 40–70%, что сопоставимо с показателями активности данной группы бактерий для эвтрофных водоемов в осенний период и свидетельствует об активной бактериальной деструкции содержащихся в воде ОВ.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Алекин О.А*. Основы гидрохимии. Л.: Гидрометеоиздат, 1970. 444 с.
- 2. *Богатов В.В.* Экология речных сообществ российского Дальнего Востока. Владивосток: Дальнаука, 1994. 210 с.
- 3. *Богатов В.В.* Основные итоги изучения структурно-функциональной организации пресноводных экосистем Дальнего Востока России // Чтения памяти Владимира Яковлевича Леванидова. Владивосток: Дальнаука, 2003. Вып. 2. С. 5—11.
- 4. *Бульон В.В.* Закономерности первичной продукции в лимнических экосистемах. СПб.: Наука, 1994. 222 с.
- 5. Государственный контроль качества воды. М.: Изд-во стандартов, 2001. 688 с.
- 6. Дзюбан А.Н., Косолапов Д.Б., Кузнецова И.А. Микробиологические процессы в Горьковском водохранилище // Вод. ресурсы. 2001. Т. 28. №1. С. 47—57.

- Иванов А.В., Власов Н.А. Влияние криогенных процессов на формирование гидрокарбонатно-натриевых вод // Гидрохим. материалы. 1974. Т.61. С. 56–61.
- 8. Кондратьева Л.М.. Чухлебова Л.М. Роль микробных комплексов в формировании качества воды в Бурейском и Зейском водохранилищах //Чтения памяти Владимира Яковлевича Леванидова. Владивосток: Дальнаука, 2005. Вып. 3. С. 166—173.
- 9. *Кренева С.В., Кренева К.В.* Особенности эвтрофирования и контроля в реках разных широт // Экосистемы малых рек: биоразнообразие, экология, охрана. Тез. докл. всерос. конф. Борок, 2004. С. 44—45.
- 10. Кузнецов С.И., Дубинина Г.А. Методы изучения водных микроорганизмов. М.: Наука, 1989. 228 с.
- 11. *Левшина С.И*. Растворенное и взвешенное органическое вещество вод Амура и Сунгари // Вод. ресурсы. 2008. Т. 35. № 6. С. 745—755.
- 12. Лопатко А.С., Карандашов А.И., Юдина И.М., Пискунов Ю.Г. Состав воды Зейского водохранилища спустя 30 лет после его заполнения // Научные основы экологического мониторинга водохранилищ. Матер. всерос. науч.-практ. конф. Хабаровск: ИВЭП ДВО РАН, 2005. С. 69—71.
- Марголина Г.Л. Микробиологические процессы деструкции в пресных водоемах: М.: Наука, 1989. 120 с.
- 14. Медведева Л.А. Результаты первого обследования фитопланктона Зейского водохранилища // Научные основы экологического мониторинга водохранилищ, Матер всерос. науч.-практ. конф. Хабаровск: ИВЭП ДВО РАН, 2005. С. 92—94.
- Медведева Л.А. Результаты санитарно-биологического обследования среднего течения реки Зея и некоторых ее притоков // Регионы нового освоения: экологические проблемы. Пути решения. Матер. межрегион. науч.-практ. конф. Хабаровск: ДВО РАН, 2008. Кн. 2. С. 404—408.
- 16. *Мусатов А.П.* Оценка параметров экосистем внутренних водоемов. М.: Науч. мир, 2001. 192 с.
- 17. *Олейник Г.Н., Кабакова Т.Н.* Бактериопланктон Сасыкского водохранилища // Гидробиол. журн. 1995. Т. 32. № 3. С. 47—58.
- 18. Олейник Г.Н., Старосила Е.В. Микробиологическая характеристика водоемов с высокой антропогенной нагрузкой // Гидробиол. журн. 2005. Т. 41. № 4. С. 70—81.

- 19. Петров Е.С., Мордовин А.М., Шестеркин В.П. Гидроклиматология и гидрохимия Зейского водохранилища. Владивосток: Дальнаука, 1997. 138 с.
- 20. Ресурсы поверхностных вод СССР. Л.: Гидрометеоиздат, 1966. Т. 18. Вып. 1. 781 с.
- 21. *Романенко В.И.* Микробиологические процессы продукции и деструкции органического вещества во внутренних водоемах. Л.: Наука, 1985. 295 с.
- 22. Руководство по методам гидробиологического анализа поверхностных вод и донных отложений. Л.: Гидрометеоиздат, 1983. 239 с.
- 23. *Сиренко Л.А*. Проблемы евтрофирования водоемов // Экологическая химия водной среды. Матер. I Всесоюзн. шк. М., 1988. С.125—147.
- 24. Сиротский С.Е. К вопросу о трофической классификации водоемов и водотоков на основании величин первичной продукции и концентрации хлорофилла "а" // Биогеохимические и гидроэкологические исследования на Дальнем Востоке. Владивосток: Дальнаука, 1998. С. 77–83.
- Сиротский С.Е. Трофический статус водотоков бассейна рек Бурея, Зея, Бурейского и Зейского водохранилищ // Научные основы экологического мониторинга водохранилищ. Матер. всерос. науч.-практ. конф. Хабаровск: ИВЭП ДВО РАН, 2005. С. 95—99.
- Сиротский С.Е., Медведева Л.А. Пигментные характеристики водорослей перифитона водотоков Дальнего востока // Биогеохимические и экологические исследования природных и техногенных экосистем Дальнего Востока. Владивосток: Дальнаука, 1995. С. 86–96.
- 27. Шестеркин В.П., Шестеркина Н.М. Влияние Зейского и Бурейского водохранилищ на зимний гидрохимический режим Среднего Амура // Научные основы экологического мониторинга водохранилищ. Матер. всерос. науч.-практ. конф. Хабаровск: ИВЭП ДВО РАН, 2005. С. 63–65.
- 28. *Boot J.T., Dunn C.S., Naiman R.J.* Benthic community metabolism in four temperate stream systems: An interbiome comparison and evaluation of the river continuum concept // Hydrobiologia. 1985. V. 123. № 1. P. 1–45.
- 29. *Tominaga H., Ichimura S.* Ecological studies on the organic matter production in mountain river ecosystem // Bot. Mag. 1966. V. 73. P. 815–829.