КАЧЕСТВО И ОХРАНА ВОД, ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ

УДК 574

РЕГУЛИРОВАНИЕ ЗООПЛАНКТОНОМ РОСТА БИОМАССЫ ФИТОПЛАНКТОНА И ПРОЗРАЧНОСТИ ВОДЫ ВОДОЕМОВ, ЗАГРЯЗНЕННЫХ БИОГЕНАМИ

© 2011 г. П. И. Погожев, Т. Н. Герасимова

Институт водных проблем Российской академии наук 119333 Москва, ул. Губкина, 3 Поступила в редакцию 16.03.2010 г.

Проведены экспериментальные исследования на подмосковном водоеме и в проточной системе на территории удобряемых сельскохозяйственных полей. Показано, что в условиях высокой биогенной нагрузки, при концентрации P_{общ} = 0.14 мг Р/л, P_{мин} = 0.07 мг Р/л, отношении N : P = 7.9 : 1 в начале летнего периода и отсутствии планктоядных рыб зоопланктон регулировал развитие фитопланктона и способствовал сохранению высокой прозрачности воды. При отношении биомассы растительноядного зоопланктона к биомассе съедобного фитопланктона от 0.6 до 42.2 зоопланктон способен за сутки сни-

жать съедобную часть фитопланктона. Основу в потреблении съедобной фракции биомассы фито-

Ключевые слова: зоопланктон, фитопланктон, биоманипуляция, прозрачность воды.

планктона составляли крупноразмерные фильтраторы Daphnia longispina.

Интенсивное поступление в водоемы биогенных веществ (БВ) и пресс ихтиофауны часто приводят к изъятию крупных форм зоопланктона, усилению процессов "цветения" фитопланктона, уменьшению прозрачности воды, заморным явлениям, изменению структуры водной экосистемы. Управление пищевыми цепями, обычно называемое биоманипуляцией, при использовании зоопланктона в качестве природного фильтра, подавляющего процессы цветения, - составная часть природоохранных мероприятий в мире [12]. В этом случае главная цель биоманипуляции в некоторых водоемах, используемых для рекреационных целей, - контроль или, скорее, снижение биомассы водорослей за счет высокой численности фитофагов [10]. Исследования, проведенные в эвтрофных водоемах, при разделении трофических звеньев зоопланктона и ихтиофауны с использованием мезокосмов показали, что крупные фильтраторы Daphnia longispina способны контролировать развитие цианобактерий, которые ранее называли синезелеными водорослями, и продлевать фазу "чистой воды" [6, 7]. Одним из методов для защиты форм зоопланктона, потребляющих фитопланктон, были проточные экосистемы для наращивания численности фильтраторовфитофагов при изоляции ихтиофауны. В условиях проточных экосистем крупноразмерные кладоцеры Daphnia magna, Simocephalus vetulus при изоляции рыб были способны подавлять развитие цианобактерий, что позволило предотвратить активное цветение последних на Патриарших и Чистых прудах [2, 3, 8].

Цель работы состояла в оценке роли зоопланктона в развитии фитопланктона и сохранении прозрачности воды при высокой биогенной нагрузке водоемов в отсутствие рыб планктофагов.

МЕТОДЫ ИССЛЕДОВАНИЯ

Объектом исследования был подмосковный пруд на территории удобряемых сельскохозяйственных полей. Акватория водоема – 100 м², средняя глубина 2, максимальная 4 м. Исследуемый водоем сообщался с прилегающим к нему вспомогательным водоемом - проточной системой (в дальнейшем называемым проточной системой) с площадью поверхности 8 м², средней глубиной 0.75 м. Рабочий объем последнего – 6 м³, полная замена объема воды в нем происходила в течение 2 ч. В пруду обитали четыре взрослых леща (Abramis brama L.), пища которых – беспозвоночные бентоса. Вода из водоема в проточную систему поступала с помощью насоса через губчатый фильтр и перетекала в водоем. Для наращивания биомассы прикрепленных форм фильтраторов Simocephalus vetulus в проточной системе укоренялись высшие водные растения: камыш озерный, рогоз узколистный, рогоз широколистный, аир ирный, элодея канадская. Измерения химических показателей и отбор проб в водоеме и проточной системе проводили еженедельно (с 6 июля по 21 сентября 2006 г.). В период исследований температуру воды T_w, концентрацию растворенного О2 измеряли с помощью прибора Water quality checker U-10 (фирма Horiba,

Рис. 1. Изменения концентраций растворенного кислорода O_2 в поверхностном слое водоема (сплошная кривая) и вспомогательном водоеме — проточной системе (штриховая).

Япония). В водоеме и проточной системе измерения проводили послойно до дна (через 20 см). Прозрачность воды измеряли с помощью диска Секки. Отбор проб воды для определения концентраций БВ, фитопланктона, Хл "а" и феофитина проводили батометром с глубины 20 см из водоема и проточной системы. Пробы воды из водоема для оценки ракообразного зоопланктона отбирали планктонной сетью Апштейна из капронового газа № 77. Для учета мелких форм коловраток применяли трубчатый батометр, вырезающий столб воды от поверхности до глубины 100 см. Пробы зоопланктона в проточной системе отбирали с помощью емкости объемом 100 мл из пяти точек. Затем сливали в одну интегральную пробу до объема 0.5 л. Пробы фито-и зоопланктона фиксировали формалином. Отобранные пробы в течение 1-2 ч анализировали на содержание концентрации форм азота и фосфора, Хл "а" и феофитина. Для этого часть воды пропускали через стеклянный фильтр и в фильтрате определяли концентрации аммония. Остальную воду фильтровали через фильтр "Владипор" с диаметром пор 0.45 мкм. Для определения Хл "а" и феофитина воду с водорослями растирали в ступке с наждачным порошком в 90%-ном растворе ацетона. Затем смесь центрифугировали, после чего в прозрачном растворе определяли спектрофотометрически. Для определения концентрации нитритов использовали реактив Грисса, нитратов - салицилат натрия, аммония – реактив Несслера, фосфора минерального – молибдат аммония в присутствии аскорбиновой кислоты. Робщ и Nобщ определяли после сжигания пробы в автоклаве с персульфатом калия. Массу фитопланктона и коловраток оценивали методом геометрического подобия. Вес ракообразных вычисляли на основе зависимости массы от длины тела планктонных животных [1].

Рис. 2. Динамика биомассы фитопланктона B_{ϕ} (сплошная кривая), съедобной части фитопланктона (штриховая) и прозрачность воды *H* водоема (дно – сплошная жирная кривая, прозрачность – штриховая, поверхность водоема – тонкая).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Водоем

Средняя T_w толщи воды с 6 по 27 июля была выше 20°С. Максимальное значение T_w , зарегистрированное 13 июля, достигало 23.4°С на поверхности, в придонных слоях (на глубине 2 м) — снижалось до 22.6°С. Средние значения T_w толщи воды в августе изменялись от 16.2 до 18.5°С, в сентябре — от 16.7 до 12.4°С. Наименьшие значения растворенного кислорода O₂ (3.9 и 3.4 мг/л) в поверхностных и придонных слоях соответственно были отмечены 20 июля (рис. 1). В период исследования прозрачность воды составляла >2 м. Различия между глубиной водоема и прозрачностью воды (30 см) отмечено с 20 по 27 июля и с 24 по 31 августа. В остальной период исследования прозрачность воды достигала дна (рис. 2).

Максимальное значение P_{obil} (0.14 мг P/л) в воде отмечено 6 июля. В период исследования концентрации P_{MUH} постоянно регистрировались в воде водоема. С 6 по 27 июля значения P_{MUH} составляли 0.05–0.07 мг P/л. При этом 20 июля концентрация P_{MUH} (0.06 мг P/л) составляла 100% P_{obil} . З августа значение P_{MUH} равнялось 0.03 мг P/л, с 10 августа по 21 сентября – 0.01 мг P/л (рис. 3).

ВОДНЫЕ РЕСУРСЫ том 38 № 3 2011

374

Рис. 3. Изменения концентраций форм Р, мг Р/л, в водоеме (сплошная кривая) и вспомогательном водоеме – проточной системе (штриховая).

Увеличение концентрации $N_{oбщ}$ с 1.10 до 2.70 мг N/л (максимальное значение) отмечено с 6 по 27 июля. Изменения концентраций нитратов NO₃⁻ в водоеме характеризовались двумя максимумами. Первый (1.60 мг N/л) зарегистрирован 13 июля, второй (1.17 мг N/л) – 10 августа. Максимальная концентрация нитритов NO₂⁻ (0.04 мг N/л) отмечена 17 августа.

Наибольшее значение аммония $N H_4^+$ (0.79 мг N/л) в воде пруда зарегистрировано 3 августа (рис. 4). Отношение N : Р 6 июля составляло 7.9, с 3 по 10 августа возрастало до максимальных значений – с 65 до 105. Максимальные концентрации Хл "а" (13.0 мкг/л) отмечены 27 июля, феофитина (6.1 мкг/л) – 24 августа.

В сообществе фитопланктона водоема в период исследования зарегистрированы 33 таксономические единицы Chlorophyta, 21 – Diatomea, 4 – Euglenophyta, по 1 представителю Dinophyta и Chrysophyta, 5 – Cyanophyta. Численность фитопланктона с 6 по 20 июля возрастала с 2.8 до 12.0 млн. кл/л, а доля зеленых водорослей снижалась с 89 до 36%. Максимум численности водорослей (39.2 млн. кл/л) зарегистрирован 3 августа. При этом единственный

Рис. 4. Изменения концентраций форм N, мг N/л, в водоеме (сплошная кривая) и вспомогательном водоеме – проточной системе (штриховая).

представитель цианобактерий — Aphanizomenon flexuosum и коккоидные формы зеленых водорослей составляли соответственно 74 и 24% численности фитопланктона.

Биомасса фитопланктона B_{ϕ} с 6 по 27 июля возрастала с 0.56 до 2.65 мг/л. При этом доля зеленых водорослей снижалась с 75 до 32% B_{ϕ} . Максимальная биомасса диатомовых (0.83 мг/л) три доминировании до 99% Cocconeis placentula отмечена 27 июля. С 6 июля по 7 сентября А. flexuosum составляла 100% биомассы цианобактерий. Максимальное значение $B_{\rm th}$ (2.72 мг/л), зарегистрированное 3 августа, определено при наибольшей биомассе А. flexuosum (1.97 мг/л). В это же время было зарегистрировано наибольшее число нитей А. flexuosum (417 нитей/мл), среди которых 75% общего количества и 95% биомассы были в диапазоне от 150 до 600 мкм (рис. 2, 5). С 3 по 17 августа водоросли А. flexuosum составляли от 72 до 87% B_{ϕ} . Наименьшее значение B_{ϕ} (0.16 мг/л) было зарегистрировано 21 сентября. При этом зеленые и хризофитовые водоросли Mal-

Рис. 5. Численность нитей различных размерных групп и число клеток Aphanizomenon flexuosum (кривая) в водоеме (а) и вспомогательном водоеме – проточной системе (б). Длина нитей: $1 - \langle 30, 2 - 30 - 60, 3 - 60 - 600 \text{ мкм.}$

lomonas sp. составляли 38 и 40% $B_{\rm p},$ биомасса А. flexuosum была <1% $B_{\rm p}.$

Высшая водная растительность в водоеме была развита слабо и регистрировалась лишь в придонном 20-см слое со второй половины августа.

Для оценки способности растительноядного зоопланктона снижать биомассу водорослей фитопланктон по размерному составу был разделен на съедобный (<40 мкм) и несъедобный (>40 мкм). К съедобной части биомассы А. flexuosum относили нити размером <30 мкм.

С 6 по 27 июля съедобная часть биомассы водорослей возрастала от 0.55 до 2.14 мг/л и составляла 98–63% B_{ϕ} (рис. 2). В этот период биомасса зеленых и хризофитовых водорослей составляла соответственно 78–39 и 35–15% съедобной фракции фитопланктона. Среди зеленых Соепососсия planctonicus и С. ругепоіdosa с размерами клеток 8 и 6 мкм соответственно составляли до 65 и 32% их биомассы.

Рис. 6. Численность N_3 и биомасса B_3 зоопланктона в водоеме (а, б) и вспомогательном водоеме – проточной системе (в, г). Сплошные жирные кривые – общие показатели, тонкие – коловратки, штриховые – кладоцеры, точечные – копеподы, штрихпунктирные – остракоды.

Chlamidomonas sp. — одиночные жгутиковые клетки размером 8 мкм и Pediastrum boreanum, ценобии которых имели размеры 5—40 мкм, среднюю длину 22 мкм, составляли соответственно до 66 и 11% биомассы зеленых. Водоросли Mallomonas sp. — свободноплавающие, жгутиковые, каплеобразной формы клетки длиной 12 мкм — составляли 100% биомассы хризофитовых.

Анализ динамики B_{ϕ} показывает возрастание несъедобной части водорослей с 3 по 17 августа за счет развития А. flexuosum. При биомассе последней 1.97–0.92 мг/л ее съедобная часть составляла лишь 0.7–1.7%. В этот период съедобная биомасса фитопланктона снижалась с 0.76 до 0.16 мг/л, а ее доля – с 30 до 14% B_{ϕ} . Зеленые и диатомовые водоросли составляли соответственно 89–53 и 8–41% съедобной фракции фитопланктона. При этом коккоидные формы с размером клеток 4–5 мкм и Chlamidomonas sp. составляли соответственно 80–19 и 43–22% биомассы зеленых, С. placentula длиной клеток 40 мкм – 99–94% диатомовых водорослей. В этот период прозрачность воды достигала дна (225– 241 см).

С 24 августа по 21 сентября съедобная часть биомассы фитопланктона снижалась от 0.52 до 0.16 мг/л, а ее доля возрастала с 53 до $100\% B_{\phi}$. Диатомовые составляли 71–21% съедобной биомассы фитопланктона, из которых С. placentula составляла 94–98%. Вклад зеленых составлял 15–38% съедобной биомассы водорослей, из них Chlamidomonas sp. и коккоидные формы составляли 51–33 и 20–47% соответственно.

В сообществе исследованного зоопланктона водоема зарегистрированы 6 таксономических единиц коловраток, 4 вида кладоцер, 2 – копепод и остракоды. Кладоцеры были представлены мелкоразмерными Alona rectangula, Ceriodaphnia affinis, Chydorus sphaericus, длина которых не превышала 0.6 мм, и крупноразмерными фильтраторами Daphnia longispina. С 6 по 20 июля коловратки доминировали по численности зоопланктона N_3 (рис. 6). Его максимальное количество (7.2 тыс. экз/л) отмечено 13 июля (рис. 6). Коловратки составляли 97% N₃ при развитии Keratella cochlearis cochlearis (7.0 тыс. экз/л). С 20 июля по 14 сентября копеподы Eudiaptomus gracilis и Mesocyclops leuckarti составляли 52-73% N₃. Наибольшая численность остракод, зарегистрированная 6 июля, равнялась 19 экз/л, или 2% *N*₂. Их размеры составляли 0.3–0.6 мм.

Биомасса исследованного зоопланктона B_3 изменялась от 1.39 до 10.16 мг/л. Биомасса растительноядного зоопланктона составляла 43–100% B_3 . Крупноразмерные кладоцеры D. longispina были зарегистрированы в водоеме в период всего исследования и составляли 49–98% биомассы растительноядного зоопланктона. Только 13 июля биомасса особей D. longispina (0.16 мг/л) составляла 5% B_3 и 11% биомассы растительноядного зоопланктона. В

Биомасса растительноядного зоопланктона $B_{3 \text{ раст}}$, съедобной части фитопланктона $B_{\phi \text{ съед}}$, мг/л, и потребление растительноядным зоопланктоном съедобной части биомассы фитопланктона *C*, мг/(л сут), в водоеме в 2006 г. (прочерк – не обнаружены)

Показатели	6.07	13.07	20.07	27.07	3.08	10.08	17.08	24.08	31.08	7.09	14.09	21.09
<i>B</i> _{3 раст} / <i>B</i> _{ф съед}	3.9	1.2	5.1	0.6	2.4	14.1	42.2	4.4	7.4	7.4	32.2	8.5
<i>В</i> _{ф съед}	0.55	1.12	0.83	2.14	0.76	0.28	0.16	0.53	0.52	0.44	0.32	0.16
Зоопланктон растительноядный (С)	2.02	1.41	3.77	1.18	1.5	3.52	6.8	2.3	3.95	2.66	11.47	0.98
D. longispina (C)	1.44	0.18	3.45	0.87	1.35	3.32	6.64	2.08	3.22	2.5	11.44	0.79
Мелкие кладоцеры (С)	_	_	0.01	0.09	0.06	0.07	0.02	0.05	0.66	0.03	0.001	0.002
Остракоды (С)	0.5	1.12	0.16	0.17	_	_	_	0.13	_	_	_	0.05
Eu. gracilis (C)	0.07	0.04	0.13	0.04	0.06	0.12	0.13	0.03	0.06	0.08	0.02	0.11
Коловратки (С)	0.01	0.07	0.02	0.01	0.01	0.01	0.01	0.02	0.01	0.09	0.01	0.09

это время биомасса крупноразмерных хищных Asplanchna brightwelli и остракод составляла соответственно 48 и 22% B_3 .

Максимальная биомасса хищных особей М. leuckarti, возможных регуляторов численности фильраторов-фитофагов, была зарегистрирована 20 июля и составляла 0.92 мг/л. В остальной период биомасса последних не превышала 0.49 мг/л. В водоеме личинки стрекоз и гидры обнаружены не были.

На основе полученных данных по динамике численности и биомассы фито- и зоопланктона оценивалась способность растительноядного зоопланктона контролировать съедобную часть фитопланктона в водоеме в отсутствие пресса ихтиофауны. При расчете потребления зоопланктоном фитопланктона принималось, что особи D. longispina и Ch. sphaericus сырой массой 1 мг способны за сутки потребить 1.150 и 1.563 мг съедобного фитопланктона соответственно [9]. Суточное потребление фитопланктона — 1 мг мелкоразмерных особей А. rectangula, C. affinis и Ostracoda приравнивалось к показателям для Ch. sphaericus. Суточный рацион Eudiaptomus gracilis соответствовал 12.5, мелких коловраток – 33.5% их веса [4, 11]. Рассчитанные значения суточного потребления водорослей растительноядным зоопланктоном С были выше биомассы съедобной фракции фитопланктона в 1.2-42.5 раз, лишь 27 июля данное отношение составляло 0.6 (таблица). Полученные значения свидетельствуют о том, что зоопланктон за сутки способен был потребить съедобную биомассу планктонных водорослей. Основную долю (71-100%) в потреблении последней составляли особи D. longispina. Только 13 июля вклад особей D. longispina и остракод составлял соответственно 13 и 79% суточного потребления съедобной биомассы фитопланктона растительноядным зоопланктоном. В период исследования мелкие кладоцеры, особи Eu. gracilis и коловратки способны были потребить за сутки лишь 0-17, 0.2-5 и 0.1-9% съедобной части фитопланктона соответственно. В популяции D. longispina особи длиной 1.5–2.1 мм составляли до 14–77% размерного состава. В высокотрофных водоемах Чистые и Патриаршие пруды в условиях пресса рыб наибольший размер особей D. longispina не превышали 1.1 мм [2, 8].

Анализ состава особей D. longispina в исследуемом водоеме показал, что их средняя плодовитость не превышала одного, максимальная — двух яиц на самку. Последняя была зарегистрирована 3 августа при наибольшем развитии А. flexuosum. В то же время повышение плодовитости могло происходить за счет повышения пищевой обеспеченности для D. longispina и связано с тем, что со сдвигом в неделю назад, 27 июля, отношение биомассы растительноядного зоопланктона к съедобной биомассе фитопланктона (0.6) было минимальным (таблица).

Зарегистрированное наибольшее количество нитей А. flexuosum (417 нитей/мл) при наибольшей биомассе этих водорослей и прозрачности воды, достигающей дна, не было критическим для остановки роста и репродукции и, в конечном счете, вымирания D. longispina. Исследованиями показано, что скорость роста у четырех видов Daphnia становится отрицательной при возрастании концентраций нитей до 67 тыс/мл [13]. Количество последних было в 160 раз выше по сравнению с максимальным числом нитей в исследуемом водоеме. В гиперэвтрофных озерах количество нитей водорослей может достигать 150 тыс/мл [14].

Низкая плодовитость D. longispina в исследуемом водоеме – отклик популяции на низкую пищевую обеспеченность. В эвтрофном водоеме (Ярославская обл.) при биомассе фитопланктона 35 мг/л и доминировании зеленых водорослей (до 84% B_{ϕ}) плодовитость особей D. longispina достигала 8 яиц на самку, биомасса – 16 мг/л. Далее, после нереста при выходе большого количества молоди рыб происходило выедание особей D. longispina и развитие биомассы Anabaena flos-aquae (до 11.2 мг/л), что привело к снижению прозрачности воды в три раза – до 15 см [7].

Вспомогательный водоем — проточная система

Динамика изменения T_w в поверхностном слое воды вспомогательного водоема — проточной системы была сходной с таковой для водоема. Значения O₂ в поверхностном слое с 27 июля по 31 августа были меньше зарегистрированных в водоеме на 2.7—4.4 мг/л. Минимальные концентрации O₂ в толще воды (2.9—2.3 мг/л) были отмечены 20 июля (рис. 1). Различия между глубиной и прозрачностью воды (10 см) отмечены 13 июля и 7 сентября. В остальной период исследования прозрачность воды достигала дна.

Наибольшее значение $P_{o fut}$ (0.17 мг P/л) и $P_{мин}$ (0.09 мг P/л) было отмечено 6 июля. Концентрации $P_{мин}$, как и в водоеме, постоянно регистрировались в период исследования. Значения $P_{мин}$ 6 и 27 июля составляли 0.09 и 0.08 мг P/л, с 3 по 10 августа – 0.03 мг P/л и превышали таковые в водоеме. При этом концентрация $P_{мин}$ с 20 июля по 10 августа составляла 100 – 81% $P_{o fut}$ (рис. 3).

Максимальные значения N_{obm} и NO_3^- 10 августа были соответственно в 1.6 и 1.8 раза выше, чем в то же время в водоеме. Наибольшие значения NH_4^+ (1.24 мг N/л) и NO_2^- (0.06 мг N/л), определенные

27 июля, были в два раза выше, чем в то же время в водоеме (рис. 4). 6 июля соотношение N : Р равнялось 7. Наибольшая концентрация феофитина (13.0 мкг/л) зарегистрирована 10 августа.

Численность фитопланктона с 6 по 27 июля увеличивалась с 2.8 до 26.6 млн. кл/л, 3 августа достигала 2460.3 млн. кл/л. В это время отмечен пик численности водорослей А. flexuosum (2453.7 млн. кл/л) и наибольшее число их нитей (55.5 тыс. нитей/мл). Количество последних в 133 раза превосходило таковых в водоеме (рис. 5).

Значения $B_{\rm d}$ с 6 по 27 июля изменялись от 0.96 до 3.41 мг/л. Увеличение биомассы в 62 раза (до 168.7 мг/л) по сравнению с максимальным значением $B_{\rm cb}$ в водоеме было зарегистрировано 3 августа. При этом биомасса А. flexuosum была в 85 раз выше, чем в водоеме, и составляла 166.8 мг/л, или 99% $B_{\rm d}$. Крупноразмерные нити последних длиной от 150 до 600 мкм достигали наибольшего развития и составляли 47% их общего количества и 88% биомассы. Через неделю, 10 августа, биомасса А. flexuosum (0.20 мг/л) и значения B_{ϕ} (0.80 мг/л) уменьшились в 830 и 220 раз соответственно. При этом численность и биомасса фитопланктона с 10 августа до 14 сентября снижались с 4.5 до 0.7 млн. кл/л и с 0.76 до 0.20 мг/л и были ниже таковых в водоеме. В этот период вклад диатомовых водорослей достигал 66% В_ф за счет развития С. placentula.

В сообществе зоопланктона проточной системы были зарегистрированы 6 таксономических единиц коловраток, 16 видов кладоцер и 3 вида копепод. Число видов кладоцер было в 4 раза выше, чем тако-

ВОДНЫЕ РЕСУРСЫ том 38 № 3 2011

вое в водоеме. Кладоцеры состояли из мелкоразмерных и двух представителей крупноразмерных фильтраторов – D. longispina и S. vetulus. При этом последний в водоеме зарегистрирован не был. Помимо мелкоразмерных кладоцер, отмеченных в водоеме, были зарегистрированы Alona quadrangularis, Alonella nana, Alonopsis ambigua, A. elongate, Ceriodaphnia megalops, Graptoleberis testudinaria, Oxyurella tenuicaudis, Pleuroxus similis, P. striatus и P. trigonellus.

Значение B_2 изменялось от 4.63 до 232.48 мг/л. Биомасса коловраток составляла <1% В, при максимальной численности мелкоразмерных Keratella cochlearis (2640 экз/л) и К. quadrata (3500 экз/л) соответственно 6 июля и 31 августа. Наибольшая биомасса особей крупноразмерной хищной коловратки A. brightwelli — 18.4 мг/л, составляющая $58\% B_3$, была отмечена 13 июля. Биомасса кладоцер изменялась от 1.2 до 13.5 мг/л. Только 31 августа их биомасса возросла до 150.3 мг/л, 99% ее были представлены мелкоразмерными фильтраторами. В это время были отмечены максимальная численность (13.0 тыс. экз/л) и биомасса зоопланктона (рис. 6). В составе кладоцер доля биомассы крупноразмерных фильтраторов с 6 по 27 июля снижалась с 63 до 35%, в сентябре — не превышала 30%.

Особи D. longispina были зарегистрированы с 6 по 20 июля. Их численность снижалась от 80 до 2 экз/л, биомасса — от 2.1 до 0.9 мг/л. Наибольшее число яиц (3) в выводковой камере D. longispina было отмечено 6 июля.

Наибольшая численность (44 экз/л) и биомасса (9.5 мг/л) особей S. vetulus были отмечены 10 августа (после вылета личинок стрекоз с 3 по 10 августа). Средний размер S. vetulus в период исследования изменялся от 1.0 до 1.6 мм. Минимальный размер особей составлял 0.4, максимальный – 2.2 мм. Минимальный размер половозрелых самок S. vetulus составлял 1.5 мм. Наибольшее число яиц (9) в выводковой камере S. vetulus было зарегистрировано 27 июля — в начале интенсивного цветения A. flexuosum. Среди хищных копепод развивались особи Acanthocyclops vulgaris, которые в водоеме отмечены не были. Биомасса последних достигала 3.7 мг/л. Биомасса хищных особей М. leuckarti была выше таковой в водоеме и достигала максимальных значений — 23.6 и 48.6 мг/л 27 июля и 31 августа соответственно. Наибольшая численность хищных личинок стрекоз (12 экз/л) была зарегистрирована 14 сентября, гидр (200 экз/л) – 24 августа.

В период интенсивного цветения А. flexuosum, 3 августа, численность и биомасса кладоцер была минимальной за весь период исследования. В их составе были отмечены А. rectangula и Ch. sphaericus численностью 80 и 240 экз/л и биомассой 0.2 и 1.1 мг/л соответственно.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Обычно, при избыточной концентрации в воде Р и соотношении N : P < 11, преимущественное развитие получают цианобактерии, поскольку некоторые виды этой группы способны утилизировать свободный азот [16]. Исследование Чистых и Патриарших прудов показало, что в условиях высокой биогенной нагрузки и трофического пресса рыб на зоопланктон последний не контролировал развитие фитопланктона. В Чистых прудах с 7 по 14 августа 2000 г. при соотношении N : P = 10.0-9.8 биомасса фитопланктона достигала максимума - 44.72 и 37.23 мг/л. При этом доля цианобактерий достигала 97% B_{ϕ} , из них Anabaena spiroides составляла соответственно 88 и 68% B_{ϕ} . В этот период прозрачность воды была наименьшей – 60–58 см при средней глубине водоема 2 м. Биомасса растительноядного зоопланктона составляла лишь 0.41-0.94, а особей D. longispina – 0.15–0.03 мг/л, максимальный размер кладоцер не превышал 0.6 мм. В то же время концентрация Р_{мин} равнялась нулю, что свидетельствует о его полном расходе на создание биомассы водорослей. При этом мелкоразмерный растительноядный зоопланктон способен был потребить за сутки лишь 0.6-1.5 мг/л съедобной биомассы фитопланктона, или 1-4% В_ф. Таким образом, имеюшийся мелкоразмерный зоопланктон не способен был подавлять развитие фитопланктона, не контролировал прозрачность воды [2]. В эвтрофном водоеме Патриаршие пруды в условиях пресса рыб в конце августа 2000 г. при соотношении N : P = 1.8 -2.0 и концентрации $P_{\text{мин}} = 0.17 - 0.11 \text{ мг/л}$ при нулевой концентрации NO₃⁻ биомасса нитчатых ци-

вой концентрации NO₃ ойомасса нитчатых цианобактерий Anabaena hassalii составляла 19.8 мг/л, или 97% B_{ϕ} . В это время особи D. longispina в планктоне зарегистрированы не были. Биомасса хищных особей A. brightwelli и растительноядных особей Ch. sphaericus составляла 46.0 и 0.47 мг/л, или 96% B_3 . Мелкоразмерный растительноядный зоопланктон способен был потребить за сутки лишь 0.7 мг/л съедобной фракции фитопланктона, или 3% B_{ϕ} . В то же время прозрачность воды не превышала 66 см при глубине водоема 2 м. В данной ситуации, как и в Чистых прудах, зоопланктон не контролировал биомассу планктонных водорослей [8].

В исследуемом водоеме наличие $P_{\text{мин}}$ в воде показывает, что фитопланктон находился под контролем зоопланктона. $P_{\text{мин}}$ недоиспользовался съедобным фитопланктоном, поскольку подавлялся крупноразмерными особями D. longispina. Даже при максимальной биомассе A. flexuosum в водоеме прозрачность воды достигала дна. Концентрация $P_{\text{мин}} = 0.01$ мг P/л не была пороговой для дальнейшего наращивания биомассы A. flexuosum со второй половины августа.

Роль бактериопланктона в деструкции планктонного органического вещества была высокой в периоды низких концентраций растворенного O₂, о чем свидетельствует высокая прозрачность воды.

Критерий производительности проточной системы — разность между значениями B_{d} в водоеме и на выходе из нее в течение определенного отрезка времени. Время пребывания воды в проточной системе не превышало 2 ч. При значении $\Delta B_{\phi} > 0$ происходит очищение водоема за счет потребления фитопланктона водоема зоопланктоном проточной системы. 13 июля и с 10 августа по 19 сентября при значении $B_{\rm d}$ от 1.4 до 0.35 мг/л значения $\Delta B_{\rm d}$ были положительными и составляли 0.69-0.14 мг/л. Таким образом, зоопланктон снижал биомассу фитопланктона в проточной системе. 6 июля и с 20 по 27 июля значения $\Delta B_{\rm d}$ были отрицательными и составляли от -0.54 до -0.76 мг/л. При "цветении" А. flexuosum в проточной системе 3 августа значение ΔB_{ϕ} составляло —166.0 мг/л. Зоопланктон проточной системы в этот период не очищал водоем, не снижал биомассу планктонных водорослей.

Пресс хищных беспозвоночных ограничивал развитие крупных фильтраторов зоопланктона. Отсутствие в планктоне проточной системы D. longispina с 27 июля — следствие выедания особей хищными личинками стрекоз и особями M. leuckarti [5, 15]. Развитие особей S. vetulus с плотным хитиновым карапаксом происходило в проточной системе благодаря их меньшей уязвимости к хищничеству беспозвоночных по сравнению с особями D. longispina [2, 8]. Фильтрационная способность особей S. vetulus в снижении B_{ϕ} , поступающей в проточную систему в результате низкой пищевой обеспеченности и пресса хищных беспозвоночных, не была реализована. В проточных экосистемах Патриарших прудов в августе 2001 г. при изоляции ихтиофауны, отсутствии пресса хищных беспозвоночных, значении биомассы съедобной части фитопланктона 2.3 мг/л, составляющей 100% В_ф, и доминировании зеленых водорослей до 79% В_ф численность и биомасса особей S. vetulus составляли 6 тыс. экз/л и 860 мг/л соответственно, или 98% В₃. В это время максимальная плодовитость особей S. vetulus достигала 27 яиц на самку, что было в три раза выше их максимума, зарегистрированного во вспомогательном водоеме - проточной системе. При этом особи S. vetulus за 1 ч в проточной экосистеме Патриарших прудов снижали биомассу фитопланктона в 12.8 раз — до 0.18 мг/л [8].

Во вспомогательном водоеме — проточной системе снижение концентраций O_2 до 2.9—2.3 мг/л и возрастание $P_{\text{мин}}$ до 0.09 мг Р/л, вероятно пополняемого из придонных слоев, при низкой биомассе растительноядных кладоцер (1.3 мг/л) были причиной вспышки цветения А. flexuosum.

выводы

Обобщение результатов проведенных исследований показало, что в условиях биогенной нагрузки, при высоких концентрациях форм N и P, отношении N : P, равном 7.9 в начале лета, и отсутствии рыб планктофагов крупноразмерные фильтраторы зоопланктона подавляют "цветение" фитопланктона и определяют высокую прозрачность воды в водоеме. Постоянное присутствие в воде водоема Р_{мин} свидетельствует о том, что он полностью не используется съедобной частью фитопланктона при трофическом прессе фильтраторов-фитофагов. Показано, что даже при максимальном значении биомассы фитопланктона прозрачность воды оставалась высокой (>2 м) и достигала дна. В данных условиях зоопланктон основного водоема в летне-осенний период снижал развитие фитопланктона и определял высокую прозрачность воды.

Вспомогательные водоемы — проточные системы, служащие для увеличения численности фитофагов, могут быть использованы для снижения биомассы фитопланктона в водоемах при изменении состава БВ и трофическом прессе ихтиофауны.

СПИСОК ЛИТЕРАТУРЫ

- Балушкина Е.В., Винберг Г.Г. Зависимость между массой и длиной тела у планктонных животных // Общие основы изучения водных экосистем Л.: Наука, 1979. С. 169–172.
- 2. *Герасимова Т.Н., Погожев П.И.* Снижение трофического статуса водоемов с помощью крупноразмерного зоопланктона // Вод. ресурсы. 2002. Т. 29. № 4. С. 450–459.
- 3. *Герасимова Т.Н., Погожев П.И.* Изучение потенциала фильтраторов пищевых цепей в процессах деевтрофирования водоемов // Вод. ресурсы. 2008. Т. 35. №3. С. 370–379.
- 4. Маловицкая Л.М., Сорокин Ю.И. Экспериментальное исследование питания Diaptomus (Crustacea, Copep-

oda) с помощью С¹⁴ // Тр. Ин-та биологии водохранилищ АН СССР. 1961. № 4 (7). С. 262–272.

- 5. *Монаков А.В.* Питание и пищевые взаимоотношения пресноводных копепод. Л.: Наука, 1976. 170 с.
- 6. Погожев П.И., Герасимова Т.Н. Исследование условий обитания зоопланктона эвтрофного озера в мезокосмах с различной проницаемостью стенок // Вод. ресурсы. 1997. Т. 24. № 2. С. 218–223.
- 7. Погожев П.И., Герасимова Т.Н. Влияние зоопланктона на цветение микроводорослей при евтрофировании вод // Вод. ресурсы. 2001. Т. 28. № 4. С. 461–469.
- 8. Погожев П.И., Герасимова Т.Н. Роль фильтрующего зоопланктона при деевтрофировании водоемов // Вод. ресурсы. 2005. Т. 32. № 3. С. 371–379.
- Сущеня Л.М. Количественные закономерности питания ракообразных. Минск: Наука и техника, 1975. 208 с.
- Bernardi R., Guissani G. Are blue-green algae a suitable food for zooplankton? An overview // Hydrobiologia. 1990. V. 200/201. P. 29–41.
- 11. *Duncan A.* Assessment of factors influencing the composition, body size and turnover rate of zooplankton in Paracrama Samudra, an irrigation reservoir in Sri Lanka // Hydrobiologia. 1984. V. 113. P. 201–215.
- Gliwicz Z.M. Daphnia growth at different concentrations of blue-green filaments //Arch. Hydrobiol. 1990. V. 120. № 1. P. 51–65.
- 13. *Gliwicz Z.M.* Why do cladocerans fail to control algal blooms? // Hydrobiologia. 1990. V. 200/201. P. 83–97.
- 14. *Gulati R.D., Sieversten K., Postema G.* Zooplankton structure and grazing activities in relation to food quality and concentration in Dutch Lakes // Arch. Hydrobiol. Beih. Ergebn. Limnol. 1985. V. 21. P. 91–102.
- 15. Norlin J.I., Bayley S.E., Ross C.M. Submerget macrophytes, zooplankton and predominance of lowover highchlorophyll states in western boreal, shallow-water wetlands // Freshwater Biol. 2005. V. 50. № 5. P. 868–881.
- 16. *Schindler D.W.* Evolution of phosphorus limitation in lake // Science. 1977. V. 195. № 4275. P. 260–262.