ВОДНЫЕ РЕСУРСЫ, 2011, том 38, № 2, с. 205–213

КАЧЕСТВО И ОХРАНА ВОД, ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ

УДК 556.555.7+574.5+550.43

СООТНОШЕНИЕ КОНЦЕНТРАЦИИ Fe/P В ОТЛОЖЕНИЯХ МОЖАЙСКОГО ВОДОХРАНИЛИЩА КАК ИНДИКАТОР СОРБЦИИ ФОСФАТОВ

© 2011 г. М. В. Мартынова

Институт водных проблем Российской академии наук 119333 Москва, ул. Губкина, 3 Поступила в редакцию 16.06.2009 г.

Получена связь между внутригодовыми колебаниями соотношения Fe_{общ}/P_{общ} в поровом растворе и содержанием в твердой фазе отложений органических соединений Р. В илах Можайского водохранилища переход системы FeOOH—P от аэробных условий к анаэробным, как правило, сопровождается растворением FeOOH и десорбцией фосфатов. Смена анаэробных условий на аэробные в весенний и осенний сезоны характеризуется гистерезисом окисления соединений Fe в илах, причем изменения величины Fe/P в твердой фазе ила не согласуются с таковыми в поровом растворе.

Ключевые слова: поровый раствор, железо, фосфор, сорбция фосфатов.

При исследованиях механизмов формирования потока P со дна (внутренней нагрузки по P) большое внимание уделяется процессам сорбции фосфатов коллоидным комплексом гидроокиси (FeOOH) и в связи с этим, — величине соотношения Fe/P (в некоторых публикациях — P/Fe) в разных фазах донных отложений (ДО). Величина Fe/P используется как индикатор свободных сорбционных мест на поверхности FeOOH, которые могут быть заняты фосфатами, если известно "критическое" значение Fe/P.

Впервые связь между циклами P и Fe в эвтрофных озерах была описана B. Айнзеле [23]. Исходя из соотношения Fe/P в железо-фосфатном комплексе, выпавшем из озерной воды в период дестратификации озерного гиполимниона, он заключил, что в системе твердая фаза–раствор минимальное "критическое" мольное соотношение Fe/P равно ~2 (весовое 3.6). При Fe/P < 2 фосфаты остаются в растворе, при Fe/P > 2 – осаждаются вместе с выпадающим из раствора Fe. При этом предполагалось, что основной механизм, определяющий связь между Fe и P, – образование труднорастворимого соединения FePO₄.

К. Мортимер [37] в лабораторных экспериментах впервые показал ведущую роль гидроксидов железа в регулировании потока Р из ДО в зависимости от окислительно-восстановительных условий среды.

У. Тессенов [43] экспериментально продемонстрировал, что взаимодействие Fe—P в природных водах независимо от их солености является химически принужденным посредством стехиометрии Fe/P ~ 2. До настоящего времени на это соотношение ориентируются многие исследователи, изучающие морские и озерные отложения [30, 33].

Л. Ликлема [34], исследуя сорбцию фосфатов свежеосажденной гидроокисью железа, нашел, что в ней мольное соотношение Fe/P = 5.0 (весовое 9). Критическая величина Fe/P \approx 4 для поверхностной адсорбции фосфатов на свежих частицах Fe(III)-гидроокисла при pH 7.5 получена в [45].

Бо́льшая критическая величина весового отношения Fe/P \geq 15 (мольное \geq 8.3) для твердой фазы ДО приводится группой датских исследователей [32], экспериментально нашедших связь между величиной потока P со дна и соотношением общих форм Fe/P в верхнем 5-см слое ДО.

В современной русскоязычной литературе соотношение Fe/P практически не обсуждается, исключая работу [14]. Фактический материал, полученный автором данной статьи на Можайском водохранилище в 1970-е гг., позволяет проанализировать особенности внутригодовой динамики этого соотношения в твердой фазе и поровом растворе разных слоев илистых отложений и выявить регулирующие его факторы.

ОБЪЕКТ И МЕТОДЫ ИССЛЕДОВАНИЯ

Можайское водохранилище — водоем долинного типа, созданный в верхнем течении р. Москвы и заполненный до нормального подпорного горизона (НПГ) весной 1961 г. Площадь бассейна 1360 км², акватории водохранилища 30.7 км², максимальная глубина 22.6 м, средняя 7.7 м, средний водообмен 1.8 год⁻¹. Внутригодовые колебания уровня воды достигают 7 м. Продолжительность ледостава в

Символ	Значение	Метод определения	Ссылка
pН	Отрицательный логарифм концентра- ции Н ⁺ в растворе	Электрометрический, стеклянный электрод	[16]
Eh	Окислительно-восстановительный по- тенциал	Электрометрический, гладкий платиновый элек- трод	[16]
Р _{мин р}	Растворенный минеральный фосфор	Образование фосфатно-молибдатного комплекса с использованием аскорбиновой кислоты в качестве восстановителя	[15]
P _{opr p}	Растворенный органический фосфор	Как разность между общим растворенным фосфором, определенным после сжигания пробы с K ₂ S ₂ O ₈ , и минеральным растворенным фосфором	[15]
NH ₄	Растворенный аммонийный азот	Несслеризация с последующей фотометрией	[16]
Fe(II)	Растворенное закисное железо	Фотометрический, с ортофенантролином	[16]
Fe _{общ}	Растворенное общее железо	То же, после восстановления всех форм Fe до Fe(II) гидроксиламином	[16]
Fe(III)	Растворенное окисное железо	Как разность между общим и двухвалентным желе- зом	[16]
Mn	Марганец в поровом растворе	Фотометрический, с раствором Hg/Ag	[28]
Р _{минтф}	Минеральный фосфор твердой фазы ила	Модификация метода Мета	[11]
Роргтф	Органический фосфор твердой фазы ила	То же	[11]
Са _{обм} , Мд _{обм}	Обменные формы кальция и магния	Трилонометрическое титрование после трехкратной экстракции 2 н раствором KCl	[1]
P_{π} , Fe_{π}	Подвижные формы элементов	Определение в экстракте ила 0.1 н $\mathrm{H_2SO_4}$	[18]

Таблица 1. Аналитические методы исследования

среднем 5 мес. (с ноября по апрель) [12]. Доля размыва берегов в приходной составляющей баланса взвешенного вещества за 1968 г. составляла ~65% [4].

Около 70% всей площади дна водохранилища при НПГ покрыто алеврито-пелитовыми отложениями [4], содержащими 6–8% органического вещества (OB).

Пробы придонной воды и ила отбирались на русловой станции (глубина 12.7—16.0 м) ежемесячно в течение 1974—1975 гг. Для послойного отбора проб придонной воды использовались стратобатометр и батометр-трубка конструкции автора [5]. Содержание Fe, P и других элементов в придонной воде (6 слоев через каждые 10 см, толщина слоя воды, прилегающего ко дну, 20 см) определялось в фильтрованной (через мембранный фильтр 0.45 мкм) и нефильтрованной воде.

Пробы ила отбирались грунтовой трубкой ударного типа (ТГ-1), колонки делились на слои 0-2, 2-5, 5-10 и т.д. до 20-25 см. Объединялись одинаковые слои ила из четырех колонок. Поровый раствор, получаемый центрифугированием илов при 6000 об/мин в течение 20 мин, фильтровался через мембранный фильтр (0.45 мкм). Обработка проб ила производилась в боксе из оргстекла, заполненном Ar. Влажность ила, его Eh, pH, концентрацию соединений в поровом растворе измеряли не позже 2 ч после отбора проб. Кислотную вытяжку из проб сухого, измельченного ила выполняли позже. Ме-

тодики определения содержания элементов и их форм в воде и отложениях представлены в табл. 1.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

Сведения, приведенные в табл. 2, показывают, что диапазон колебания величины Fe/P в воде, поровом растворе и твердой фазе пресноводных ДО весьма широк. Ориентируясь на критическое соотношение Fe/P ~ 2, можно заключить, что в оз. Цуг, некоторых норвежских и богемских озерах вследствие слабой сорбции фосфатов и, по-видимому, невысокого содержания реактивного Fe (материнские породы представлены гранитами и гнейсами) Р должен энергично мигрировать в воду. В отложениях других озер сорбция фосфатов соединениями Fe должна уменьшать поток из отложений фосфатов, образующихся при деструкции ОВ. В оз. Валентансьён отмечено последовательное снижение Fe/P при переходе от твердой фазы отложений к поровому раствору и потоку Fe со дна, что не противоречит представлению о критической величине Fe/P ~ 2.

Гидроокислы железа, присутствующие в воде и отложениях, обладают огромной сорбционной поверхностью. Так, специфическая площадь поверхности ферригидрида—аморфного гидроокисла Fe(III) — составляет 600 м² г⁻¹ [41]. Поэтому гидроокислы Fe, образующиеся в воде и на поверхности

206

СООТНОШЕНИЕ КОНЦЕНТРАЦИИ Fe/P В ОТЛОЖЕНИЯХ

Водоем	Исследованная среда	Fe/P (мольное)	Ссылка
Оз. Черное, Косино	Водный столб	до ~28	[17]
Оз. Иствейт Уотер, Англия	То же	9.9–18.0	[44]
66 озер США	Твердая фаза отложений	4.7-31.5	[38]
Оз. Онтарио, США	То же	7.6–18.0	[36]
Восемь норвежских озер	»	0.8-55.6	[31]
Семь богемских озер	»	1.4-10.3	[20]
Оз. Цуг, Швейцария	»	<1.0	[19]
Висконсинские озера, США			
карбонатные илы	Оксалатный экстракт	9.0	[47]
некарбонатные илы	То же	12.6	[47]
Оз. Валентансьён, Швеция	Твердая фаза	12.3	[35]
	Поровый раствор	0.6-2.1	[35]
	Поток со дна	0.3-1.0	[35]
Можайское водохранилище	Придонная вода	5.9	Данные автора
	Кислотный экстракт	5.7	То же
	Поровый раствор	5.4	»

Таблица 2. Соотношение Fe/P в разных природных средах водоемов

ДО, считаются основными соединениями, сорбирующими фосфаты в аэробных условиях. Согласно [44] фосфаты покрывают ≤45% адсорбционных мест на поверхности FeOOH. Остальные места заняты Ca, иногда Al или Si [21].

Важную роль в сорбирующей емкости FeOOH, в частности, по отношению к фосфатам, играют возраст его коллоидов, сорбционная емкость которых уменьшается по мере их старения; присутствие органических кислот, действующих на Fe как хелатирующие агенты; высокие концентрации растворенного Si, участвующего в конкурирующем замещении фосфатов. Те и другие могут уменьшить адсорбцию фосфатов на FeOOH, увеличивая отношение Fe/P в твердой фазе ДО [42]. В то же время, невысокие концентрации органических кислот и Si (0.1–1.0 мкМ) ингибируют кристаллизацию аморфных Fe-окислов, повышая их поглотительную способность по отношению к P [41]. Отношение Fe/P при этом уменьшается.

Сероводород, образующийся в ДО при сульфатредукции, способствует формированию Fe(II) сульфида, изымающего заметное количество Fe из порового раствора. В результате, соотношение растворенных форм Fe и P уменьшается. Подобный процесс отмечен в отложениях озер Мендота (США) и Киннерет (Израиль) [39].

Наконец, величина Fe/P в твердой фазе ДО, содержащих ОВ планктонного происхождения, гораздо ниже, чем в случае его макрофитного происхождения [48]. Возможно, это объясняется тем, что содержание P в макрофитах обычно меньше, чем в фитопланктоне [6]. Кроме того, некоторые представители высшей водной растительности (манник, камыш, роголистник и другие) накапливают Fe [2].

Результаты круглогодичных наблюдений на Можайском водохранилище позволили сравнить соотношение разных форм Fe и P в придонной воде (слой 0–20 см от дна), а также в жидкой и твердой фазах верхнего 2-см слоя ила. В воде среднегодовое $Fe_{obm}/P_{obm} < 2$ (табл. 3) вследствие значительного (~50% P_{obm}) содержания соединений органического P. Внутригодовые колебания соотношения Fe_{obm}/P_{obm} также определяются изменением содержания фосфорных органических соединений.

Среднегодовое $Fe_{obul}/P_{muh} > 2$ во всех слоях придонной воды и максимально велико в слое 0–20 см от дна (табл. 3), что объясняется повышенной концентрацией соединений Fe, поступающих из ДО и окисляющихся здесь.

Таблица 3. Среднегодовые и экстремальные мольные отношения Fe/P в разных слоях воды

Слой	Fe _{o6}	щ/Р _{мин}	Fe _{общ} /Р _{общ}		
воды, см от дна	Среднее	минимум— максимум	Среднее	минимум— максимум	
0-20	5.9 ± 4.1	1.4-17.1	1.8 ± 1.3	1.1-9.5	
20-30	2.9 ± 1.9	0.0-4.7	0.8 ± 0.7	0.0-3.6	
30-40	3.0 ± 2.0	0.0-5.5	0.8 ± 0.6	0.0-4.2	
40-50	3.3 ± 3.4	0.0 - 8.0	0.8 ± 0.6	0.0-3.9	
50-60	3.1 ± 2.0	0.0-5.7	0.8 ± 0.7	0.0-4.5	
60-70	3.1 ± 1.9	0.0-5.6	0.8 ± 0.7	0.0-3.8	

МАРТЫНОВА

Таблица 4. Содержание O_2 и Fe_{общ}, мг л⁻¹, в придонной воде (слой 0–20 см от дна), форм Fe и P_{мин}, мг г⁻¹, в поровом растворе и твердой фазе ила (слой 0–2 см)

Месяц			Вода		Поровый раствор			Твердая фаза ила		Мольное соотношение в илах		
	O ₂	pН	Р _{мин}	$Fe(III)/P_{MUH}$	Fe _{общ}	Р _{мин}	Fe(III)	Fe _π	P _π	Fe _{общ} /Р _{мин}	$Fe(III)/P_{MUH}$	Fe_{π}/P_{π}
Октябрь	6.9	8.24	0.13	2.7	1.40	0.08	0.55	10.5	0.63	9.7	3.8	9.3
Ноябрь	9.7	8.00	0.13	1.4	1.14	0.14	0.22	7.7	0.86	4.5	0.9	5.0
Декабрь	2.6	7.55	0.14	1.7	0.28	0.06	0.08	8.0	0.80	2.6	0.7	5.6
Март	0.7	7.15	0.03	12.1	2.56	0.08	1.36	7.9	1.12	17.8	9.4	3.9
Апрель	10.6	7.80	0.08	1.3	0.72	0.13	0.20	9.8	1.16	3.1	0.8	4.7

Таблица 5. Среднегодовые и экстремальные мольные отношения форм Fe и P в разных слоях ила

	$Fe_{n}/P_{n} Fe_{obm}/P_{obm} Fe_{obm}/P_{MUH} Fe(II)/P_{MUH} Fe$							Fe(II)	I)/P _{мин}		
Слой ила,	Кислотні	ый экстракт		Поровый раствор							
СМ	среднее	минимум— максимум	среднее	минимум — максимум	среднее	минимум — максимум	среднее	минимум— максимум	среднее	минимум— максимум	
0-2	5.7 ± 1.4	3.9–9.2	3.6 ± 3.0	0.78-10.2	5.4 ± 3.0	2.8 - 40.7	6.2 ± 2.8	1.8-31.4	3.5 ± 3.1	1.5-17.2	
2-5	4.8 ± 0.9	3.8-6.7	3.5 ± 2.4	1.6-10.1	7.9 ± 5.4	4.8-65.2	10.0 ± 14.7	2.8-53.9	4.7 ± 4.4	2.5 - 28.6	
5-10	5.1 ± 1.1	3.8-7.6	3.9 ± 2.8	1.5-9.9	11.9 ± 8.4	5.6-97.8	12.2 ± 11.2	3.3-44.4	8.6 ± 10.0	2.8-66.7	
10-15	5.0 ± 0.9	3.4-6.7	5.3 ± 2.6	2.3-10.5	18.3 ± 15.0	6.7-174.6	21.2 ± 35.1	3.7-126.0	10.6 ± 9.8	5.5-67.7	
15-20	5.3 ± 1.0	3.8-7.5	4.0 ± 1.8	1.9-7.8	20.0 ± 17.1	6.2 - 194.4	21.5 ± 34.5	0.0-63.9	14.3 ± 23.9	3.5-150.0	
20-25	5.1 ± 0.7	4.2–6.4	4.7 ± 2.9	2.0-6.0	21.9 ± 25.0	2.7-284.4	24.8 ± 53.7	0.0-185.0	11.0 ± 14.2	0.13-93.3	

Влияние рН на внутригодовые колебания Fe(III)/Р_{мин} в воде не обнаруживается даже при pH > 8 (октябрь, ноябрь) (табл. 4). В октябре-ноябре на фоне уменьшения содержания Fe(III) концентрация фосфатов остается неизменной. Подобная ситуация не соответствует утверждению о том, что десорбция Р из Fe(III)-гидроксида возрастает при pH > 8, поскольку обусловлена конкурирующим лигандным замещением фосфатов на ОН- [39]. "Отсутствие" подобного эффекта в осенние месяцы может быть объяснено маскирующим влиянием на концентрацию фосфатов полного перемешивания водного столба. Факт неизменности этой концентрации (при осенней дестратификации вод она должна уменьшиться) свидетельствует в пользу дополнительного источника фосфатов, которым может быть их десорбция из Fe(III)-гидроксида – ведь его концентрация убывает.

Среднегодовые величины соотношений форм Fe/P в разных средах близки друг к другу при заметных внутригодовых различиях. Среднегодовое отношение Fe_{ofull}/P_{MHH} в слое воды 0–20 см, равное 5.9 (табл. 3), очень близко к среднегодовому Fe_n/P_n в кислотном экстракте из слоя ила 0–2 см, равном 5.7 (табл. 5), и слегка убывает вглубь ила. Это можно объяснить либо слабой подвижностью большей части экстрагированных форм Fe и P, либо сбаланси-

рованностью процессов их внутригодового перераспределения.

Согласно оценкам автора, наиболее лабильная (аморфная) часть Fe_п составляет 30-57% его содержания в верхних 10 см ила, резко убывая в более глубоких слоях иловой колонки. Это не превышает 20% содержания Fe_{обш} в илах, которое равно 2.5%. Простые подсчеты, выполненные с учетом приведенных выше сведений о площади поверхности FeOOH, показывают, что поверхность аморфных соединений Fe в исследуемых илах должна составлять $\sim 3 \text{ м}^2 \text{ г}^{-1}$ ила. Согласно [4], содержание глинистого материала в русловых илах Красновидовского плеса в конце 1960-х-начале 1970-х гг. соответствовало ~55% всех фракций. Из условия, что поверхность смеси глин обычно принимается равной 7 м² г⁻¹ [13], следует, что в илах водохранилища она составит ~ 4 м² г⁻¹ ила. Следовательно, в русловых ДО Можайского водохранилища вклад аморфного Fe в увеличение общей сорбционной способности исследуемых илов в среднем находится на уровне глин.

В поровом растворе илов среднегодовая величина отношения Fe_{obut}/P_{obut} слегка варьирует от слоя к слою. В ее изменениях можно выделить слой максимально высокого соотношения (10–15 см). Величина Fe_{obut}/P_{obut} в слоях ила глубже 10 см больше, чем в верхних 10 см (табл. 5). Эта особенность проявляется и в изменении среднегодовых значений Fe_{obut}/P_{mut} и

Месяцы	О ₂ , мг л ⁻¹	рН ила	Eh ила, мB	Fe _π	P _π	Fe /P	Поровый раствор, мг л ⁻¹						
				МГ Γ	¹ ила	т с _п / т _п	Fe(II)	Fe(III)	Fe _{общ}	Р _{мин}	Fe(II)/P _{мин}	Fe(III)/P _{мин}	Fe _{общ} /Р _{мин}
Сентябрь	0.55	7.20	-50	5.63	0.56	5.6	0.75	0.65	1.4	0.125	2.7	2.9	6.2
Октябрь	6.87	6.93	-130	10.50	0.63	9.2	0.85	0.55	1.4	0.080	5.9	3.8	9.7
Февраль	2.37	7.30	-50	8.06	0.69	6.5	0.52	0.32	0.84	0.079	3.6	2.3	5.9
Март	0.69	7.30	-120	7.87	1.12	3.9	1.20	1.36	2.56	0.079	8.4	9.6	18.1
Апрель	10.60	7.27	-80	9.75	1.16	4.7	0.52	0.20	0.72	0.129	2.2	0.9	3.1
Май	3.55	7.45	-70	9.94	1.00	9.9	1.08	1.16	2.24	0.336	3.2	3.5	6.7
Июнь	3.39	7.05	+40	9.19	0.83	6.2	1.44	1.68	3.12	0.410	1.9	2.3	4.2
Июль	0.33	7.15	-50	10.63	1.05	5.6	1.48	1.16	2.64	0.179	4.6	3.6	8.2
Август	6.37	7.10	+10	7.81	0.99	4.4	0.68	0.20	0.88	0.012	31.5	9.3	40.7

Таблица 6. Содержание и мольное соотношение Fe/P в разных фазах ила (слой 0–2 см) в периоды перехода от аэробных условий к субанаэробным в придонной воде (слой 0–20 см от дна)

Fe(III)/P_{мин}. Соотношение Fe_{обш}/P_{мин} > 2 в течение всего года. Величина Fe(III)/P_{мин} < 2 наблюдается в ноябре, декабре и апреле (слой ила 0–2 см) и не совпадает во времени с минимальными концентрациями O₂ в придонной воде (табл. 4, 6). В ноябре и апреле уменьшение Fe(III)/P_{мин} сопровождается понижением концентрации Fe(III) и увеличением концентрации P_{мин}. В декабре величина Fe(III)/P_{мин} < 2 соответствует снижению концентрации Fe(III) при уменьшения концентрации фосфатов. Причина уменьшения концентрации Fe(III) в декабре (и апреле) состоит в выпадении Fe из раствора с соосаждением некоторой части фосфатов. Действительно, в эти месяцы наблюдается увеличение содержания Fe_п и P_п в слое ила 0–2 см (табл. 4).

Лишь в ноябре понижение значений отношения Fe(III)/P_{мин} происходит за счет высвобождения фосфатов, так как только в ноябре отмечено увеличение содержания Fe(II) в поровом растворе, соответствующее растворению гидроксида Fe. В двух других случаях концентрация Fe(II) в поровом растворе ила уменьшается.

В 1970-е гг. в ходе лабораторных экспериментов с илами Можайского водохранилища автором было получено, что при аэробных условиях в придонной воде существует небольшой (<1 мг м⁻² сут⁻¹) поток Р со дна. Обратная внутригодовая связь между концентрацией соединений Fe во взвесях придонного слоя воды и содержанием Р_{мин} в поровом растворе и твердой фазе верхних 2 см ила [7] свидетельствует о влиянии внутригодовых потоков Fe в системе вода–ДО на формирование потоков Р со дна, в том числе – в аэробных условиях в придонной воде.

В течение года выделены три периода минимально низких концентраций O_2 в воде (0.33– 0.70 мг л⁻¹) – осенний, весенний и летний. При понижении O_2 до минимальных значений Fe_п/P_п в слое ила 0–2 см уменьшается до 3.9–5.6 на фоне роста концентраций Fe и P и их соотношения в поровом растворе. Содержание P_{obut} в нефильтрованной придонной воде увеличивается в ~1.5 раза, в фильтрованной — убывает. По-видимому, фосфаты, поступившие из ила, в воде сорбируются на взвесях. Повышение концентрации O_2 в воде сопровождается ростом Fe_n/P_n до 9.2 осенью и 4.7 — весной. Таким образом, в илах водохранилища обнаруживается сорбционно-десорбционный механизм в системе FeOOH—фосфаты, обусловленный переходом от окисных условий в придонной воде к субокисным в илах и в большинстве случаев согласующийся с изменениями концентрации O_2 в воде.

Отмечен ряд несоответствий изменения величины Fe_n/P_n изменениям Fe/P в поровом растворе, Eh ила и концентрации O₂ (табл. 6). При взаимосвязанных изменениях перечисленных параметров увеличение концентрации O₂ в воде должно сопровождаться ростом Eh верхнего слоя ила, уменьшением Fe(II)/P в поровом растворе и увеличением Fe_n/P_n в твердой фазе ила.

В сентябре—октябре повышение концентрации O_2 в придонной воде совпадало с резким понижением Eh ила, увеличением Fe_п/P_п в твердой фазе и ростом соотношения форм Fe/P в поровом растворе (табл. 6). Наблюдалось нарушение связи между изменениями Fe/P в твердой и жидкой фазах ила, а также между изменениями концентрации O_2 в воде и величиной Eh ила.

В апреле—мае значительное увеличение соотношения Fe/P в поровом растворе и твердой фазе ила (табл. 6) отмечено на фоне уменьшения концентрации O_2 с 10.6 до 3.4 мг л⁻¹ и очень небольшого роста Eh ила (с -80 до -70). Налицо нарушение связи между изменениями концентрации O_2 , соотношениями Fe/P в твердой фазе ила и поровом растворе. Возможно, несоответствия этих изменений обусловлены увеличением pH ила, причина которого не ясна.

Внутригодовая связь между весовым соотношением общих форм Fe/P в поровом растворе и содержанием $P_{opf \tau \phi}$ в илах для слоя ила 0–2 см; уравнение связи y = 0.20x - 0.84 ($r = 0.91 \pm 0.05$).

Наконец, в июле—августе повышение концентрации O_2 в воде до 6.37 мг л⁻¹, а Eh илов до +10 мВ соответствовало уменьшению Fe_п/P_п до минимальной в году величины (4.4) и резкому повышению Fe/P в поровом растворе вследствие минимально низкой концентрации P_{мин} в поровом растворе в августе (табл. 6).

Во всех трех случаях отмечается гистерезис окисления (восстановления) соединений Fe, обусловленный наложением на окислительно-восстановительные процессы гидрогеологических (весенняя разгрузка грунтовых вод в ложе водохранилища) и химико-биологических (изменение интенсивности жизнедеятельности микроорганизмов в конце лета) факторов. Существование гистерезиса (продолжительностью ~1 мес и более) не позволяет назвать величину Fe/P в экстракте или поровом растворе четким индикатором, характеризующим сорбционнообменные процессы с участием Fe и P в зависимости от показателей окислительно-восстановительных процессов (концентрации в воде O_2 и величины Eh ила). В то же время, как показано выше, миграция Fe(II) из илов с последующим его окислением до Fe(III) значимо влияет на динамику фосфатов в системе вода—ДО в течение года и изменение соотношения Fe/P в илах нередко соответствует колебаниям окислительно-восстановительных условий.

Высокая теснота связи $Fe_{\text{общ}}/P_{\text{общ}}$ в поровом растворе илов с содержанием $P_{\text{орг т. } \phi}$. (рисунок, табл. 7) позволяет утверждать, что основной процесс, регулирующий внутригодовые колебания значений соотношения общих форм Fe и P в жидкой фазе ила, минерализация ОВ с высвобождением соединений Р в поровый раствор. Чем больше Рорг в твердой фазе ила, тем меньше его в поровом растворе и тем выше величина Fe_{общ}/Р_{общ} . Этот факт подтверждает важную роль деструкции ОВ в формировании сорбционно-обменного пула FeOOH-P и, как следствие, потока Р со дна. Подобное заключение, впервые высказанное автором в [10], поддерживается в ряде более поздних зарубежных публикаций [24, 26, 31, 35]. В опытах с бентическими камерами, установленными на разной глубине континентального шельфа, отмечена связь между окислением ОВ в ДО и потоками растворенного Fe со дна [24].

Автор полагает, что в продуктивных водоемах содержание в ДО автохтонного ОВ (с учетом продукции фитопланктона) — более четкий индикатор внутренней фосфорной нагрузки, чем величина Fe/P [6].

Значимая прямая связь между Fe_n/P_n и концентрацией в поровом растворе NH_4^+ свидетельствует о накоплении Fe в твердой фазе ДО параллельно с ростом концентрации аммонийного азота, что может быть обусловлено окислением растворенного Fe(II) в ходе нитратредукции. Исследование окисления

Слой ила, см	Среда	Связь	Коэффициент корреляции	Число членов ряда
0-2	Поровый раствор	Fe _{общ} /Р _{общ} -Р _{оргтф}	$\overline{F}e_{\rm offm}/P_{\rm offm}-P_{\rm oprt\phi} \qquad 0.91\pm0.05$	
		Fe(II)/P _{мин} -Mg _{обм}	-0.67 ± 0.17	11
	Экстракт	$Fe_{n}/P_{n}-NH_{4}$	0.63 ± 0.18	11
2-5	Поровый раствор	Fe(II)/P _{мин} -Ca _{обм}	0.64 ± 0.18	10
		Fe(III)/P _{мин} -Mg _{обм}	-0.61 ± 0.20	11

Таблица 7. Связь между соотношением форм Fe и P и другими свойствами ила

Fe(II) нитратредуцирующими микроорганизмами $(\sim 10^6 \text{ кл мл}^{-1})$ в ДО ветланда показало, что при нитратредукции наряду с другими формами N накапливается NH_4^+ [46]. Восстановление NO_3^- до NH_4^+ наблюдалось и при абиотическом окислении искусственного хлорида Fe(II) [29]. На возможность существования нитратзависимого окисления Fe(II) в верхнем слое илов Можайского водохранилища указывает присутствие нитратов и нитритов в поровом растворе слоя ила 0-2 см, сумма которых здесь составляет 0.12-1.43 мг N л⁻¹ [6], а также прямая связь между концентрацией Fe(III) в поровом растворе слоев ила 0-2 и 2-5 см и концентрацией $NO_3^$ в придонной воде в течение большей части года [5].

Представляется интересной значимая обратная связь между отношениями Fe(II)/P_{мин} и Fe(III)/P_{мин} и Mg_{обм}. Она не может быть объяснена связыванием фосфатов магнием или конкуренцией Мg с фосфатами за сорбционные места на поверхности FeOOH. В этих случаях логична прямая связь, как в слое 2-5 см – связь с Саобм (табл. 7). Обратная связь соотношений Fe(II)/P_{мин} и Fe(III)/P_{мин} с Mg_{обм}, возможно, обусловлена жизнедеятельностью микроорганизмов. Ион Mg²⁺ стимулирует механохимическое образование АТФ (синтез новой дополнительной химической связи Р-О), в которой запасается ~ 10 ккал моль $^{-1}$ энергии. Без Mg²⁺ синтез АТФ не идет [3]. Бактериальная биомасса — важная составляющая форм Р в ДО и может играть значимую роль в сезонных изменениях соотношения органической и минеральной форм Р в илах [8, 26]. Чем больше биомасса микрофлоры, тем больше образуется фосфатов при минерализации ОВ, тем больше расходуется Мg и тем меньше рассматриваемые отношения. Факт обнаружения обратной связи Fe(II)/P_{мин} и Fe(III)/P_{мин} с Mg_{обм} только в двух слоях наиболее активной жизнедеятельности микроорганизмов свидетельствует в пользу этой гипотезы.

При анализе соотношения Fe/P в природных средах очень важно учитывать, о каких формах Fe и Р идет речь. В ДО высокопродуктивных озер значительная часть Fe представлена аморфными соединениями, в отложениях водохранилищ с абразионными берегами и крупных озер - кристаллическими, обладающими меньшими сорбционными способностями и слабо реагирующими на изменения редокспотенциала вблизи границы раздела вода-ДО (сорбция фосфатов на глинах определяется величиной рН [22]). Кристаллический (глинистый) материал, поступающий на дно водохранилищ при разрушении берегов, "разбавляя", как в случае Можайского водохранилища, концентрацию аморфного Fe и OB в илах, уменьшает влияние окислительно-восстановительных процессов на десорбцию фосфатов, связанных с железом.

ВОДНЫЕ РЕСУРСЫ том 38 Nº 2 2011

выводы

Среднегодовые величины соотношения форм Fe/P в разных средах близки друг к другу при заметных внутригодовых различиях.

Неравномерность внутригодового перераспределения концентрации Fe и P в поровом растворе заметно влияет на средние значения соотношений их форм.

Вклад аморфного Fe в увеличение общей сорбционной способности илов Можайского водохранилища в среднем находится на уровне глин.

Наиболее низкие значения Fe(III)/P_{мин} < 2 в поровом растворе не совпадают во времени с минимальными концентрациями О₂ в придонной воде, что свидетельствует о гистерезисе окисления (восстановления) соединений Fe.

Существование гистерезиса (продолжительностью ~1 мес и более) не позволяет назвать величину Fe/P в экстракте или поровом растворе четким индикатором сорбционно-обменных процессов с участием Fe и P.

В течение большей части года в системе FeOOHфосфаты илов обнаруживается сорбционно-десорбционный механизм, согласующийся с изменениями концентрации О₂ в придонной воде.

Выявлены значимые связи между весовым отношением общих форм Fe/P и содержанием P_{орг т.ф}, между Fe_п/P_п и концентрацией в поровом растворе

 NH_4^+ , между Fe(II)/P_{мин} и Fe(III)/P_{мин} и Mg_{обм}.

При анализе соотношения Fe/P в природных средах очень важно учитывать, о каких формах Fe идет речь – аморфных (в случае FeOOH) или кристаллических (в случае Fe глин), поскольку это определяет основной фактор (редокспотенциал или рН), который регулирует сорбцию фосфатов в илах.

СПИСОК ЛИТЕРАТУРЫ

- 1. Аринушкина Е.В. Руководство по химическому анализу почв. М.: Изд-во МГУ, 1961. 490 с.
- 2. Бреховских В.Ф., Казмирук В.Д., Вишневская Г.Н. Биота в процессах массопереноса в водных объектах. М.: Наука, 2008. 312 с.
- 3. Бугаенко А.Л., Кузнецов Д.А. Ядерно-магнитное управление синтезом энергоносителей в живых организмах // Вестн. РАН. 2008. Т. 78 № 6. С. 579-583.
- 4. Виноградова Н.Н. Взвешенные вещества и донные отложения // Комплексные исследования водохранилищ. М.: Изд-во МГУ, 1979. Вып. III. С. 231–261.
- 5. Мартынова М.В. Пробоотборники для изучения придонной воды // Вопросы гидрологического приборостроения. Л.: Гидрометеоиздат, 1977. С. 75-77.
- 6. Мартынова М.В. Азот и фосфор в донных отложениях озер и водохранилищ. М.: Наука, 1984. 160 с.
- 7. Мартынова М.В. Особенности пространственновременного распределения соединений фосфора в

придонной воде небольшого водохранилища // Вод. ресурсы. 2004. Т. 31. № 3 . С. 315–324.

- 8. *Мартынова М.В.* Влияние химического состава донных отложений на внутреннюю фосфорную нагрузку // Вод. ресурсы. 2008. Т. 35. № 3. С. 358–363.
- 9. *Мартынова М.В.* О соотношении Fe(II)/Fe(III) в поровом растворе илов небольшого водохранилища // Вод. ресурсы. 2009. Т. 36. № 6. С. 705–710.
- 10. *Мартынова М.В., Козлова Е.И.* Фосфор в отложениях двух высокотрофных озер // Вод. ресурсы. 1987. № 2. С. 103–112.
- Мартынова М.В., Шмидеберг Н.А. О методах определения различных форм фосфора в донных наносах // Гидрохим. материалы. 1983. Т. 85. С. 49–55.
- Моделирование режима фосфора в долинном водохранилище / Под ред. Эдельштейна К. К. М.: Изд-во МГУ, 1995. 79 с.
- 13. Пивоваров С.А. Физико-химическое моделирование поведения тяжелых металлов (Cu, Zn, Cd) в природных водах: комплексы в растворе, адсорбция, ионный обмен, транспортные явления. Дис. ... канд. хим. наук. М.: ИГЕМ, 2003. 137 с.
- 14. *Савенко А.В.* О взаимосвязанности внутриводоемных циклов фосфора и железа // Вод. ресурсы. 1998. Т. 25. № 3. С. 330–334.
- 15. Сапожников В.В., Носова В.В. Методика и некоторые предварительные результаты определения различных форм фосфора в воде Можайского водохранилища // Гидрохимические исследования поверхностных и подземных вод района Можайского водохранилища. М.: Изд-во МГУ, 1977. С. 23–34.
- 16. Унифицированные методы анализа вод. М.: Хи-мия, 1973. 212 с.
- Фатчихина О.Е. Динамика содержания фосфора и железа в Черном озере // Гидрохим. материалы. 1948. Т. 15. С. 180–204.
- Хейфец Д.М. Методы определения фосфора в почве // Агрохимические методы исследования почв. М.: Сельхозгиз, 1965. С. 83–127.
- Baccini P. Phosphate interactions at the sediment-water interface // Chemical processes in lakes /Ed. Stumm W. N. Y.: John Wiley & Sons, 1985. P. 189–205.
- Borovek Ja. Chemical composition and phosphorus fractionation of sediments in the Bohemian forest lakes // Silva Gabreta. 2000. V. 4. P. 179–184.
- 21. Buffle J., De Vitre R.R., Perret D., Leppard G.G. Physicochemical characteristics of a colloidal iron phosphate species formed at the oxic-anoxic interface of a eutrophic lake // Geochim. Cosmochim. Acta. 1989. V. 53. № 2. P. 399–408.
- Edzwald J.K., Toensing D.C., Leung M. Phosphate adsorption reactions with clay minerals // Environ. Sci. Technol. 1976. V. 10. № 5. P. 485–490.
- 23. *Einsele W*. Über die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See // Arch. Hydrobiol. 1936. B. 29. № 6. S. 664–686.
- Elrod V.A., Berelson W.M., Coale K.H., Johnson K.S. The flux of iron from continenetal shelf sediments: a missing source of global budgets // Geophys. Res. Lett. 2004. V. 31. P. L 12307/1 – L 12307/4.

- Gächter R., Meyer J.S., Mares A. Contribution of bacteria to release and fixation of phosphorus in lake sediments // Limnol. Oceanogr. 1988. V. 33. № 11. 1542–1558.
- 26. Gächter R., Müller B. Why the phosphorus retention of lakes does not necesserily depend on the oxygen supply to their sediment surface // Limnol. Oceanogr. 2003. V. 48. № 7. P. 929–933.
- 27. Golterman H.L. The labyrinth of nutrient cycles and buffers in wetlands: results based on research in the Camarague (southern France) // Hydrobiologia. 1995. V. 315. № 1. P. 39–58.
- Golterman H.L., Glumo R.S. Methods for chemical analysis of fresh water. Oxford: Blackwell Scientific Publ., 1969. 174 p.
- 29. Hansen H.C.B., Guldberg S., Erbs M., Koch C.B. Kinetics of nitrate reduction by green rusts – effects of interlayer anion and Fe(II) : Fe(III) ratio // Appl. Clay Sci. 2001. V. 18. № 1. P. 81–91.
- Holdren G.C., Armstrong D.E. Interstitial ion concentrations as an indicator of phosphorus release and mineral formation in lake sediments // Sediments and Water Interactions / Ed. Sly P.G. N. Y.: Springer, 1986. P. 133–147.
- 31. *Hongve D*. Chemical stratification and stability of meromectic lakes in the Upper Romerike district // Schweiz. Z. Hydrol. 1981. B. 42. № 2. S. 171–195.
- 32. Jensen H.S., Kristensen P., Jeppen E., Skytthe A. Iron : phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes // Hydrobiologia. 1992. V. 235/236. P. 731–743.
- Lehtoranta J., Heiskanen A.-S. Dissolved iron: phosphate ratio as an indicator of phosphate release to oxic water of the inner and outher coastal Baltic Sea // Hy-drobiologia. 2003. V. 492. Pt 1. P. 69–84.
- Lijklema L. Interaction of ortophosphate with iron (III) and aluminium hydroxides // Environ. Sci. Technol. 1980. V. 14. № 2. P. 537–541.
- 35. *Löfgren S., Boström B.* Interstitial water concentration of phosporus, iron and manganese in a shallow eutrophic Swedish lake implications for phosphorus cycling // Water Res. 1989. V. 23. № 9. P. 1115–1125.
- Manning P. G., Birchall T., Jones W. The partitioning of non-apatite inorganic phosporus in sediments from lakes Erie and Ontario // Can. Mineral. 1984. V. 22. № 3. P. 357–365.
- 37. Mortimer C. H. The exchange of dissolved substances between mud and water in lakes // J. Ecol. 1941. № 2. P. 280–329.
- Ostrofsky M.L. Phosphorus species in the surficial sediments of lakes of eastern North America // Can. J. Fish. Aquat. Sci. 1987. V. 44. № 5. P. 960–966.
- Petersson K. The fractional composition of phosphorus in lake sediments of different characteristics // Sediment and Water Interactions / Ed. Sly P.G. N. Y.: Springer, 1986. P. 149–155.
- Schindler D.W. The coupling of elemental cycles by organisms: evidence from whole-lake chemical perturbations // Chemical processes in lakes / Ed. Stumm W. N. Y.: John Wiley & Sons, 1985. P. 225–250.
- 41. Schwertmann U., Carlson L., Fechter H. Iron oxide formation in artifical ground waters // Schweiz. Z. Hydrol. 1984. B. 46. № 2. S. 185–191.

ВОДНЫЕ РЕСУРСЫ том 38 № 2 2011

- 42. *Stauffer R.E., Armstrong D.E.* Cycling of iron, manganese, silica, phosphorus, calcium and potassium in two stratified basins of Shagawa lake, Minnesota // Geochim. Cosmochim. Acta. 1986. V. 50. № 2. P. 215–229.
- Tessenow U. Lösungs-, Diffusions- and Sorptions Processe in der Oberschicht von Seesedimenten // Arch. Hydrobiol. 1974. Suppl. 47. S. 1–79.
- 44. *Tipping E., Woof C., Cooke D.* Iron oxide from seasonally anoxic lake // Geochim. Cosmochim. Acta. 1981. V. 45. № 12. P. 1411–1419.
- 45. *Von Gunten U., Schneider W.* Primary products of the oxygenation of iron (II) at an oxic-anoxic boundary: nucleation, aggregation, and aging // J. Coll. Interf. Sci. 1991. V. 145. № 1. P. 127–139.
- Weber K.A., Urrutia M.M., Churchill P.F. et al. Anaerobic redox cycling of iron by freshwater sediment microorganisms // Environ. Microbiol. 2006. V. 8. № 1. P. 100–113.
- 47. Williams J. D.H., Syers J.K., Armstrong D.E., Harris R.F. Levels of inorganic and total phosphorus in lake sediments as related to other sediments parameter // Environ. Sci. Technol. 1971. V. 5. № 4. P. 1113–1120.
- Zhu G.-W., Qin B.-Q., Zhang L., Luo L.-C. Geochemical forms of phosphorus in sediments of three large, shallow lakes of China // Pedosphere. 2006. V. 16. № 6. P. 726–734.