ДЕСТРУКЦИЯ **КАРБАМАЗЕПИНА** в ВОДЕ УЛЬТРАФИОЛЕТОВЫМ ИЗЛУЧЕНИЕМ ЭКСИЛАМПЫ

Изучены кинетические закономерности деструкции опасного для гидробионтов лекарственного вещества карбамазепина в деионизированной, синтетической и хозяйственно-бытовой сточной воде ультрафиолетовым излучением KrCl-эксилампы (222 нм) без и в присутствии пероксида водорода. Определены скорости генерации гидроксильных радикалов в различной водной матрице.

Введение

звестно, что карбамазепин (КБЗ) является противоэпилептическим препаратом «первого выбора», широко используемым в медицинской практике [1]. При лечении эпилепсии и нейропатической боли в мире ежегодно потребляется более 1000 т этого вещества, причем около 30 % от терапевтической дозы не метаболизируется в организме человека и выводится [2]. КБЗ устойчив к биодеградации и поступает в природные водные экосистемы, главным образом, с очищенными хозяйственно-бытовыми сточными водами (в том числе медицинских учреждений), а также в составе бытовых фармацевтических отходов. КБЗ также относительно устойчив к прямому фотолизу: период полураспада в воде при воздействии солнечного излучения достигает 100 сут [3]. На сегодняшний день из фармацевтических препаратов КБЗ считается одним из самых распространенных водных микрополлютантов [4, 5]. В Европейской Директиве 92/32/ ЕЕС КБЗ классифицируется как «опасное для водных организмов вещество, способное вызывать долгосрочные неблагоприятные эффекты» [2]. В силу низкого коэффици-

Г.Г. Матафоно-

ва*, кандидат биологических наук, старший научный сотрудник Аналитического центра, ФГБУН Байкальский институт природопользования Сибирского отделения Российской академии наук

В.Б. Батоев,

доктор биологических наук, профессор, заведующий Аналитическим центром, ФГБУН Байкальский институт природопользования Сибирского отделения Российской академии наук ента распределения между водой и твердыми частицами КБЗ слабо сорбируется активным илом или донными осадками, находясь практически только в водной фазе [6, 7]. Так, КБЗ был обнаружен в хозяйственно-бытовых стоках (до 6300 нг/л) и природных поверхностных водах (до 1075 нг/л) в Европе, США, Канаде, Бразилии, Японии и Южной Корее [2]. В России данная проблема остается недостаточно изученной [8]. Хотя КБЗ при данных концентрациях не проявляет острой токсичности по отношению к гидробионтам, этот микрополлютант может биоаккумулироваться и вызывать хронический или синергичный токсический эффект [2, 9].

Для удаления многих фармпрепаратов, в том числе КБЗ, из сточных вод перспективны комбинированные окислительные процессы или AOP («Advanced Oxidation Processes»), в которых они легко окисляются генерированными гидроксильными радикалами (OH•) со скоростью порядка 10⁸-10⁹ М⁻¹ с⁻¹ [10]. Генерацию ОН•, как известно, можно осуществлять при облучении воды ультрафиолетовым (УФ) светом в присутствии пероксида водорода (H₂O₂) [11, 12]. В настоящее время в качестве источников УФ излучения альтернативу традиционным ртутным лампам представляют современные эксиплексные лампы (эксилампы), излучающие в узкой поло-

*Адрес для корреспонденции: g.matafonova@gmail.com

се [13, 14]. Ранее нами показано, что KrClэксилампа (222 нм) обеспечивает более высокий выход OH• при $V\Phi/H_2O_2$ обработке модельного водного раствора по сравнению с ртутными лампами [15]. Исследования окислительной деструкции лекарственных веществ как в модельном растворе, так и в реальной водной матрице с помощью $V\Phi$ эксиламп ранее не проводились. Целью настоящей работы явилось исследование кинетических закономерностей деструкции карбамазепина без и в присутствии H_2O_2 в деионизированной (модельном растворе), синтетической и сточной воде с использованием KrCl-эксилампы.

Материалы и методы исследования

работе использовали КБЗ, *п*-хлорбензойную кислоту (*п*-ХБК), $H_2O_2(30\%)$ («Sigma-Aldrich»), ортофосфорную кислоту («Merck») и метанол для хроматографии («Carlo Erba»). Источником УФ излучения являлась KrCl-эксилампа, излучающая при 222 нм (ИСЭ СО РАН, г. Томск). Интенсивность падающего излучения эксилампы измерена актинометрически с использованием атразина [16] и составила 0,64 мВт/см². Для экспериментов взяты буферизованные при рН 8,0 деионизированная вода (ДВ), синтетическая (СТВ) и хозяйственно-бытовая сточная вода (СВ) после биологической очистки. СТВ состояла из растворенного в ДВ стандартного органического вещества (фульвокислот) при исходной концентрации 2,0 мг/л (IHSS Pony Lake Fulvic Acid Reference 1R109F). Величину pH измеряли с помощью pH-метра Metrohm 827 («Metrohm», Швейцария). После отбора образцы СВ были отфильтрованы через фильтры из регенерированной целлюлозы с диаметром пор 0,45 мкм и хранились при 4 °С. Предварительно КБЗ (С₀ = 1 мкМ или 236

Таблица 1

Скорости генерации ОН• (о) при УФ и УФ/ H_2O_2 обработке деионизированной (ДВ), синтетической (СТВ) и сточной воды (СВ)

Водная матрица	о, М мин			
	УФ	$V\Phi/H_2O_2$		
ДВ	-	$1,8 \times 10^{-11}$		
СТВ	-	$1,2 \times 10^{-11}$		
СВ	$1,4 \times 10^{-12}$	$2,2 \times 10^{-12}$		

Ключевые

слова: сточная вода, карбамазепин, деструкция, УФ эксилампа, пероксид водорода

мкг/л) вносили в очищаемую воду и облучали эксилампой при условиях [15] без или в присутствии $H_2O_2(C_0 = 0,2 \text{ мM})$. УФ спектры поглощения растворов снимали на спектрофотометре Shimadzu UV-1800 («Shimadzu», Япония). Дозы УФ излучения определяли как произведение продолжительности облучения и средней интенсивности поглощенного излучения в объеме, рассчитанной с использованием интегрированной формы закона Бугера-Ламберта-Бера [17, 18]. При расчете средней интенсивности учитывается интенсивность падающего на поверхность раствора излучения, поглощение облучаемого раствора при 222 нм и глубина раствора. Квантовый выход прямого фотолиза КБЗ в ДВ рассчитывали по первому порядку для монохроматического излучения [19].

Скорость образования ОН• и их среднюю концентрацию в процессе обработки ДВ и СВ определяли по скорости разложения *n*-ХБК, количественно окисляющейся ими in situ. Для определения константы скорости реакции растворенного органического вещества (**POB**) с ОН• ($k_{\text{OH,POB}}$) в пересчете на мгС/л использовали метод конкурентной кинетики [18]. Метод заключается в установлении кинетики УФ/Н₂О₂ деструкции первого соединения-«ловушки» ОН• (*n*-ХБК, $k_{\text{OH,$ *n* $-ХБК}} = 5 \times 10^9 \text{ M}^{-1} \text{ с}^{-1}$) при исходной концентрации 0,5 мкМ в присутствии второго соединения-«ловушки» ОН• (*трет*-бутанола, $k_{\rm OH}$, *трет*- $_{\rm BuOH}$ = 6 × 10⁸ M⁻¹ с-1) при различной исходной концентрации (0-1000 мкМ). Содержание растворенного органического углерода в СТВ и СВ определяли с помощью ТОС-анализатора Shimadzu TOC-V («Shimadzu», Япония). Содержание NO_3^- , NO_2^- и NH_4^+ ионов определяли на спектрофотометре NanoColor®VIS («Macherey-Nagel», Германия). Остаточную концентрацию КБЗ и *n*-ХБК в процессе разложения определяли методом ВЭЖХ с УФ детектором на хроматографе Ultimate®3000 («Dionex», США). Элюирование осуществляли со скоростью 0,8 мл/мин на колонке Nucleosil 100-5 С18 с использованием смеси метанола и фосфатного буфера (10 мМ Н₃РО₄) в качестве подвижной фазы.

Результаты и их обсуждение

а первом этапе оценены скорости генерации и связывания ОН• в исследуемой воде. Содержание растворенного органического углерода в СТВ и СВ составило

Доза УФ излучения, мДж/см²

Рис. 1. Скорости деструкции карбамазепина в деионизированной (ДВ), синтетической (СТВ) и сточной воде (СВ) без УФ и в присутствии пероксида водорода (УФ/H₂O₂). [КБЗ]₀ = 1 мкМ, [H₂O₂]₀ = 0,2 мМ, рН = 8.0.

1,1 и 5,2 мг/л, соответственно. Установлено, что в присутствии Н₂O₂ скорость генерации ОН• в СТВ выше, чем в СВ и составила 1,2×10-11 М мин. Это ниже максимальной скорости (1,8×10-11 М мин), установленной нами ранее при УФ/H₂O₂ обработке этой же эксилампой модельного водного раствора, не содержащего фонового органического вещества [15]. Константа $k_{\rm OH, POB}$ в СТВ составила 1,3×10⁵ мгС⁻¹ с⁻¹ л, что выше найденной для СВ (7,7×10⁴ мгС⁻¹ с⁻¹ л), а также средней константы для ртутных ламп — $2,5 \times 10^4$ мгС⁻¹ с⁻¹ л [18]. Как ожидалось, в силу более высокого содержания РОВ скорость связывания им генерированных ОН• в СВ была выше, чем в СТВ, и составила 4,0×10⁵ с⁻¹.

По разложению *n*-ХБК генерация ОН• также наблюдалась при прямом облучении СВ, без дополнительного внесения окислителя. Причем, в содержащей фульвокислоты СТВ образование ОН• не отмечено. Сравнительный анализ показал, что преобладающий вклад в генерацию ОН• вносит прямой фотолиз фонового РОВ (*табл. 1*).

Из линейных зависимостей $\ln(C/C_0)$ от дозы УФ излучения рассчитаны кажущиеся константы скорости деструкции КБЗ по первому порядку (k_1). Как видно из *рис*.

1, в модельном растворе (ДВ), исключающем влияние фоновой органической матрицы, КБЗ прямым фотолизом практически не разлагается, о чем также свидетельствует низкий квантовый выход (0,0087). Поскольку КБЗ легко окисляется ОН• радикалами (k_{OH} = $8,8 \times 10^9 \,\mathrm{M}^{-1}\,\mathrm{c}^{-1}$), при УФ/ Н₂О₂ обработке ДВ скорость деструкции увеличивается на порядок и становится сопоставимой с найденной при прямом УФ облучении СВ (рис. 1).

Установлено, что в CB наблюдаются максимальные скорости деструкции КБЗ, причем величины констант k_1 при УФ и УФ/ H_2O_2 обработке различаются незначительно. Этот факт согласуется

с результатами исследований деструкции КБЗ симулятором солнечного излучения [20, 21]. Авторами выявлено, что период полураспада КБЗ в синтетической (содержащей РОВ, NO₃⁻ и HCO₃⁻) и природной воде (речной и морской) значительно ниже, чем в ДВ. Известно, что при возбуждении фотосенсибилизаторов (POB, NO₃⁻, NO₂⁻ и др.), присутствующих в природных и сточных водах, также генерируются формы активированного кислорода, в том числе ОН•, гидропероксильные радикалы HO₂•, синглетный кислород ¹O₂ [22]. В нашем случае основным источником ОН•, предположительно, является фотолиз РОВ в силу низкого содержания в CB NO_3^- (6,3 мг/л), NO_2^- (0,074 мг/л) и NH₄⁺ (<0,2 мг/л). Важная роль РОВ также отмечалась ранее при фотосенсибилизированном фотолизе КБЗ солнечным излучением в поверхностных водах [23]. Полагаем, что в процессе деструкции КБЗ излучением KrCl-эксилампы в CB доминируют окислительные реакции с ОН•, что также подтверждают близкие величины скоростей их генерации при УФ обработке СВ без и в присутствии Н₂O₂ (табл. 1). Поскольку этот эффект для СТВ, содержащей в качестве РОВ только фульвокислоты автохтонного происхождения, достоверно не выявлен, последние, вероятно, в

Таблица 2

Константы скорости УФ и УФ/H₂O₂ деструкции карбамазепина в единицах дозы излучения (*k*₁) и времени (*k*₂) в деионизированной (ДВ), синтетической (СТВ) и сточной воде (СВ) при использовании различных УФ источников.

	Источник	k₁ ×10-3, см²/мДж		k₂ ×10⁻³, с⁻¹		2	
Вода		УФ	$\mathbf{y}\Phi/\mathbf{H}_2\mathbf{O}_2$	УФ	$egin{array}{c} \mathbf{y} \Phi / \ \mathbf{H}_2 \mathbf{O}_2 \end{array}$	Экспериментальные условия	Ссылка
ДВ СТВ (1,1 мгС/л) СВ (5,2 мгС/л)	KrCl-эксилампа (222 нм)	0,8 1,0 17	15 8,0 20	0,5 0,8 2,4	8,7 4,4 2,6	С ₀ =1 мкМ, [H ₂ O ₂] ₀ = 0,2 мМ (6,8 мг/л)	H.p.1
ДВ	Нд-лампа НД ² (254 нм)	0,02	10,9	0,022	22,3	С ₀ = 1-3 мкМ, [H ₂ O ₂] ₀ = 10 мг/л	[24]
ДВ	Нд-лампа СД ³ (200-300 нм)	0,1	14,9	0,33	44,3	С ₀ = 1-3 мкМ, [H ₂ O ₂] ₀ = 10 мг/л	[25]
ДВ ДВ ДВ	Нд-лампа НД (254 нм)	_4 - -	- -	- - -	0,27 0,6 2,1	[H ₂ O ₂] ₀ = 0,5 мМ (17 мг/л) [H ₂ O ₂] ₀ = 1 мМ (34 мг/л) [H ₂ O ₂] ₀ = 5 мМ (170 мг/л) C ₀ = 21,16 мкМ	[5]
ДВ	Хе-лампа (300-800 нм)	-	-	0,0056	-	С ₀ = 10–40 мг/л (42–169 мкМ)	[21]

¹ настоящая работа

² ртутная лампа низкого давления

³ ртутная лампа среднего давления

⁴- данные отсутствуют.

Рис. 2. Дозы УФ излучения KrCl-эксилампы, необходимые для деструкции 90 % карбамазепина в различной водной матрице. [KБ3]₀ = 1 мкМ, [H₂O₂]₀ = 0,2 мМ, pH = 8.0.

генерации ОН• при 222 нм решающей роли не играют.

Полученные величины k_1 в единицах дозы для прямого фотолиза КБЗ в ДВ превышают найденные ранее для ртутной лампы низкого и среднего давления в силу более высокого коэффициента экстинкции и квантового выхода при 222 нм (*табл.* 2). При УФ/H₂O₂ обработке ДВ константы скорости k_1 для эксилампы и ртутных ламп сопоставимы, причем в нашем случае использована более низкая концентрация окислителя.

Сравнение констант скорости в единицах времени, представленных в большинстве работ с использованием ртутных ламп (*табл. 2*), не представляется корректным в силу разных значений интенсивности УФ излучения. Поэтому нами проведен сравнительный анализ доз УФ излучения, требуемых для разложения 90 % микрополлютанта (D_{90}).

Как видно из *рис.* 2, для прямого фотолиза КБЗ в ДВ и СТВ требуются максимальные дозы D₉₀, тогда как в присутствии окислителя необходимые дозы существенно снижались и составляли 161 (ДВ) и 316 мДж/см² (СТВ). После облучения СВ эксилампой при дозах 472 (УФ) и 434 мДж/ см² (УФ/H₂O₂) достигнуто разложение 90 % КБЗ, тогда как при дозе 500 мДж/см² эффективность деструкции КБЗ в СВ (6,6 мгС/л)

ртутной лампой низкого давления составила <10 (УФ) и 73 % (УФ/H₂O₂, 10 мг/л H₂O₂) [26]. Найденные величины D₉₀ также ниже доз, необходимых для разложения 90 % КБЗ в CB (3,9-4,0 мгС/л) УФ (5413 мДж/см²) и УФ/H₂O₂ (605 мДж/см²) обработкой с использованием ртутной лампы низкого давления [27]. Вместе с тем, метод $V\Phi/H_2O_2$ считается предпочтительнее в силу меньшей продолжительности обработки, например, для удаления из воды 90 % исходного загрязнителя [11, 12]. В данном случае это справедливо только для ДВ (77 мин – УФ и 4 мин — УФ/Н₂О₂) и СТВ (48 мин — УФ и 9 мин — УФ/H₂O₂). Различий же в продолжительности облучения СВ без и в присутствии Н₂О₂ для достижения эффективности ее очистки 90 % не установлено.

Заключение

рисутствие растворенного органического вещества в хозяйственно-бытовой сточной воде вызывает существенное увеличение скорости деструкции карбамазепина УФ излучением KrCl-эксилампы без пероксида водорода; в этом случае преобладает вклад фотосенсибилизированных окислительных реакций. Это подтверждают сравнимые скорости генерации гидроксильных радикалов и дозы излучения, необходимые для разложения 90 % данного микрополлютанта без и в присутствии пероксида водорода. Полагаем, что излучение KrClэксилампы эффективно для очистки хозяйственно-бытовых сточных вод от карбамазепина.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта №12-08-31283 мол_а.

Литература

1. Илларионова Т.С. Карбамазепин: новые перспективы золотого стандарта // Международный неврологический журнал. 2010. №4. С. 87–89.

2. Zhang Y. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies / Y. Zhang, S.U. Geiβen, C. Gal // Chemosphere. 2008. №73. P. 1151–1161.

3. Andreozzi R. Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment / R. Andreozzi, M. Raffaele, N. Paxeus // Chemosphere. 2003. №50. P. 1319–1330. 4. Donner E. Ecotoxicity of carbamazepine and its UV photolysis transformation products / E. Donner, T. Kosjek, S. Qualmann, K.O. Kusk, E. Heath, D.M. Revitt, A. Ledin, H.R. Andersen // Sci. Tot. Environ. 2013. №443. P. 870–876.

5. Deng J. Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water / J. Deng, Y. Shao, N. Gao, S. Xia, C. Tan, S. Zhou, X. Hu // Chem. Eng. J. 2013. №222. P. 150–158.

6. Ternes T.A. A rapid method to measure the solid-water distribution coefficient (K_d) for pharmaceuticals and musk fragrances in sewage sludge / T.A. Ternes, N. Herrmann, M. Bonerz, T. Knacker, H. Siegrist, A. Joss // Water Res. 2004. N \otimes 38. P. 4075–4084.

7. Carballa M. Determination of the solid–water distribution coefficient (K_d) for pharmaceuticals, estrogens and musk fragrances in digested sludge / M. Carballa, G. Fink, F. Omil, J.M. Lema, T. Ternes // Water Res. 2008. Nº42. P. 287–295.

8. Гетьман М.А. Лекарственные средства в окружающей среде / М.А. Гетьман, И.А. Наркевич // Ремедиум. 2013. №2. С. 50–54.

9. Cunningham V.L. Human health risk assessment of carbamazepine in surface waters of North America and Europe / V.L. Cunningham, C. Perino, V.J. D'Aco, A. Hartmann, R. Bechter // Regul. Toxicol. Pharmacol. 2010. №56. P. 343–351.

10. Wols B.A. Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water / B.A. Wols, C.H.M. Hofman-Caris // Water Res. 2012. №46. P. 2815–2827.

11. Legrini O. Photochemical processes for water treatment / O. Legrini, E. Oliveros, A.M. Braun // Chem. Rev. 1993. №93. P. 671–698.

12. Oppenländer T. Photochemical purification of water and air. Advanced oxidation processes (AOPs): Principles, Reaction Mechanisms, Reactor Concepts. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2003. 383 p.

13. Бойченко А.М. Ультрафиолетовые и вакуумно-ультрафиолетовые эксилампы: Физика, техника и применения / А.М. Бойченко, М.И. Ломаев, А.Н. Панченко, Э.А. Соснин, В.Ф. Тарасенко. Томск: STT, 2011. 512 с.

14. Matafonova G. Recent progress on application of UV excilamps for degradation of organic pollutants and microbial inactivation / G. Matafonova, V. Batoev // Chemosphere. 2012. №89. P. 637–647.

15. Воробьева Н.И. Комбинированная окислительная деструкция *орто-* и *пара*-хлорфенола в воде ультрафиолетовым излучением эксиламп / Н.И. Воробьева, Г.Г. Матафонова, В.Б. Батоев // Вода: химия и экология. 2012. №9. С. 32–36.

16. Canonica S. Phototransformation of selected pharmaceuticals during UV treatment of drinking water / S. Canonica, L. Meunier, U. von Gunten // Water Res. 2008. №42. P. 121–128.

17. Christensen J. How particles affect UV light in the UV disinfection of unfiltered drinking water / J. Christensen, K.G. Linden // J. AWWA. 2003. №95. P. 179–189.

18. Katsoyiannis I.A. Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O_3/H_2O_2 and UV/H_2O_2 / I.A. Katsoyiannis, S. Canonica, U. von Gunten // Water Res. 2011. Nº45. P. 3811–3822.

19. Wong C.C. The direct photolysis and photocatalytic degradation of alachlor at different TiO_2 and UV sources / C.C. Wong, W. Chu // Chemosphere. 2003. No 50. P. 981–987.

20. Lam M.W. Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters / M.W. Lam, S.A. Mabury // Aquat. Sci. 2005. №67. P. 177–188.

21. Matamoros V. Photodegradation of carbamazepine, ibuprofen, ketoprofen and 17α -Ethinylestradiol in fresh and seawater / V. Matamoros, A. Duhec, J. Albaiges, J.M. Bayona // Water Air. Soil Pollut. 2009. No196. P. 161–168.

22. Dong M.M. Photochemical formation of hydroxyl radical from effluent organic matter / M.M. Dong, F.L. Rosario-Ortiz // Environ. Sci. Technol. 2012. №46. P. 3788–3794.

23. Doll T.E. Fate of pharmaceuticals — photodegradation by simulated sunlight / T.E. Doll, F.H. Frimmel // Chemosphere. 2003. №52. P. 1757–1769.

24. Pereira V.J. UV degradation kinetics and modeling of pharmaceutical compounds in laboratory grade and surface water via direct and indirect photolysis at 254 nm / V.J. Pereira, H.S. Weinberg, K.G. Linden, P. Singer // Environ. Sci. Technol. 2007. №41. P. 1682–1688.

25. Pereira V.J. Evaluation of UV irradiation for photolytic and oxidative degradation of pharmaceutical compounds in water / V.J. Pereira, K.G. Linden, H.S. Weinberg // Water Res. 2007. №41. P. 4413–4423.

26. Rosario-Ortiz F.L. Evaluation of UV/H_2O_2 treatment for the oxidation of pharmaceuticals in wastewater / F.L. Rosario-Ortiz, E.C. Wert, S.A. Snyder // Water Res. 2010. No 44. P. 1440–1448.

27. Kim I. Photodegradation of pharmaceuticals and personal care products during UV and UV/H_2O_2 treatments / I. Kim, N. Yamashita, H. Tanaka // Chemosphere. 2009. No77. P. 518–525.

G.G. Matafonova, V.B. Batoev

DESTRUCTION OF CARBAMAZEPINE IN WATER BY UV EXCILAMP

Kinetics regularities of destruction of carbamazepine which is dangerous for hydrobionts drug in deionized, artificial and domestic waste water using UV KrCl-excilamp (222 nm) with or without hydrogen peroxide were studied. Rates of hydroxyl radical generation in different water matrices were evaluated.

Key words: wastewater, carbamazepine, UV excilamp, hydrogen peroxide

