ДЕГРАДАЦИЯ гербицида 2,4-Д и 2,4-дихлорфенола в воде при ДЕЙСТВИИ УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ ЭКСИЛАМП

Изучена деградация 2,4-дихлорфеноксиуксусной кислоты и 2,4-дихлорфенола в воде в зависимости от длины волны и мощности УФ излучения эксиламп KrCl и XeBr. После фотообработки водных растворов 2,4-Д в течение 120 мин концентрация гербицида снижалась на 60-70 %. Биолюминесцентный тест показал, что длительное облучение растворов исследуемых молекул не приводит к увеличению токсичности растворов.

Введение

ирокое использование пестицидов и гербицидов в сельском хозяйстве в течение прошлых нескольких десятилетий привело к значительному увеличению числа устойчивых органических соединений в природной воде [1, 2]. Изучение превращений устойчивых токсичных соединений в природе и выбор наиболее оптимальных методов утилизации гербицидов являются важными задачами охраны окружающей среды и рационального природопользования [3]. Хлорированные вещества являются канцерогенами и имеют тенденцию накапливаться в жировых тканях живых организмов [4, 5]. Поэтому возрастает интерес к удалению этих загрязнителей их окружающей среды после использования [6]. В последние годы актуальным становится исследование эффективности новых источников УФ-излучения, позволяющих

Н.О. Вершинин*,

аспирант, ФГБОУ ВПО Национальный исследовательский Томский государственный универ-

О.Н. Чайковская, доктор физико-математических наук, ведущий научный сотрудник, ФГБОУ ВПО Национальный исследовательский Томский государственный универ-

ситет

оказывать влияние на различные электронно-возбужденные состояния органических молекул. Такими источниками являются эксиплексные лампы, которые находят все более широкое применение в области фотолиза токсикантов [7, 8]. Перспективной технологией для разрушения хлорированных органических соединений является применение комбинации физико-химических методов с использованием УФ излучения и биодеградации [9-11].

Целью данной работы является изучение закономерностей фототрансформации 2,4-дихлорфеноксиуксусной кислоты (2,4-Д) и 2,4-дихлорфенола (2,4-ДХФ) от длины волны и мощности УФ излучения эксиламп.

Исходя из поставленной цели, были сформулированы следующие задачи:

- 1. определение основных продуктов фототрансформации гербицида методом хромато-масс-спектрометрии;
- 2. оценка степени минерализации водных растворов гербицида после облучения на основании анализа на общий органический углерод;

^{*}Адрес для корреспонденции: nik vershinin@mail.ru

- 3. исследование динамики изменения концентрации хлорид-иона и суммарного содержания хинонов в зависимости от времени и волны длины облучения;
- 4. оценка токсичности водных растворов 2,4-Д после облучения;
- 5. исследование устойчивости полученных фотопродуктов к дальнейшему биоразложению на основании определения химического и биологического потребления кислорода (**ХПК и БПК** $_5$).

Материалы и методы исследования

бъектам исследования были выбраны 2,4-Д и 2,4-ДХФ, химическая чистота 95% (фирма «Aldrich»). Исследуемая концентрация веществ в водных растворах варьировалась от 5' 10^{-5} до 2' 10^{-3} М.

В качестве источников УФ излучения для фотохимических исследований были использованы импульсные эксилампы KrCl с длиной волны излучения $l_{_{\rm изл}}=222$ нм и XeBr ($l_{_{\rm изл}}=283$ нм) с параметрами Dl = 5-10 нм, $W_{_{\rm пик}}=18$ мВт×см⁻², $_{_{\rm I}}^{|}=200$ кГц, длительность импульса 1 мкс [7-9].

Водные растворы объемом 50 мл при рН 5,6 облучали при постоянном перемешивании, расстояние от лампы до облучаемого раствора составляло 9,5 см. За время облучения (15-120 мин) поглощенная исследуемым раствором энергия составляла $1 \div 10$ Дж/см³.

Спектры поглощения 2,4-Д и 2,4-ДХФ до и после облучения регистрировали

E.A. Каретникова, кандидат биологических наук, старший научный сотрудник лаборатории

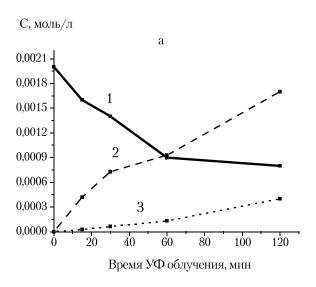
ник лаборатории биотехнологий, ФГБУН Институт водных и экологических проблем Дальневосточного отделения

Российской акаде-

мии наук

ситет)

И.В. Соколова, доктор физико-математических наук, главный научный сотрудник, Сибирский физико-технический институт (ФГБОУ ВПО Национальный исследовательский Томский государственный универ-


с помощью спектрофотометра UV-Vis Spectrometry UNICAM (США). Спектры флуоресценции и биолюминесценции регистрировали на флуориметре Cary Eclipse (Австралия). Оценка токсичности продуктов фототрансформации 2,4-Д проводили с помощью биолюминесцентного биотеста Микробиосенсор-677Ф на основе лиофильно высушенных люминесцентных бактерий Photobacterium phosphoreum, производимого в Институте биофизики СО РАН по ранее описанной методике [12]. Биодеградабельность растворов до и после облучения оценивали по соотношению БПК₅/ХПК [13]. Для определения БПК использовали активный ил с очистных сооружений г. Томска. Ил пропускали через бумажный фильтр, а затем через мембранный фильтр с диаметром пор 1 мкм (Владипор, Россия). Бактериальные клетки отделяли на мембранном фильтре с диаметром пор 0,2 мкм, промывали физиологическим раствором (0,5 % NaCl) и полученную суспензию использовали для исследования биодеградации молекул до и после облучения.

Для определения концентрации 2,4-Д и качественного состава фотопродуктов после УФ облучения пробы предварительно подкисляли HCl до рН 1 и экстрагировали диэтиловым эфиром. Экстракты упаривали в токе воздуха до объема 0,5 мл. Хроматомасс-спектрометрический анализ образцов проводили на приборе Finnigan, модель Trace DSQ (фирма «Thermo Electron Chromatography and Mass Spectrometry Division», США). Условия определения: колонка Trace TR-5MS, температура 100 °C (5 мин), нагрев со скоростью 10 °С/мин до $180 \, ^{\circ}$ С (5 мин), нагрев со скоростью $100 \, ^{\circ}$ С/ мин до 300 °C (1 мин), газ-носитель — гелий. Фототрансформация 2,4-ДХФ была исследована на факультете химических технологий Университета Мурсии в Испании с помощью высокоэффективной жидкостной хроматографии Varian Prostar 210 с UV-VIS детектором и фазовой колонкой C18.

Определение содержания хлорид-иона в воде производили титрованием азотнокислой ртутью в присутствии индикатора дифенилкарбазона [4]. Суммарное содержание хинонов определяли фотометрическим методом с помощью стандартов бензолсульфоновой кислоты и 4-бензохинона [4]. Общий органический углерод ($C_{\rm opr}$) определяли методом высокотемпературного каталитического окисления на TOC-анализаторе Shimadzu TOC-V.

Таблица 1 Соотношение различных параметров водных растворов 2,4-Д (C = 2 х 10^{-3} M) до и после УФ облучения

Эксилампа	Время облучения, мин	Биолюминесцентный индекс ${f EM} = I/I_0$	$C_{ m opr}$, M $ m / cm^3$	БПК ₅ /ХПК
-	-	0,58	187	0,1
KrCl	60	0,73	179	0,2
RfCl	120	0,69	170	0,15
V a D m	60	0.98	182	0,11
XeBr	120	0,87	175	0,14

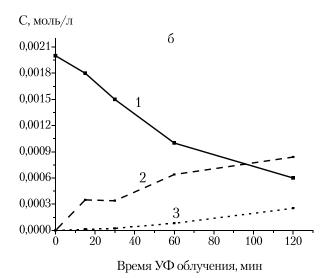


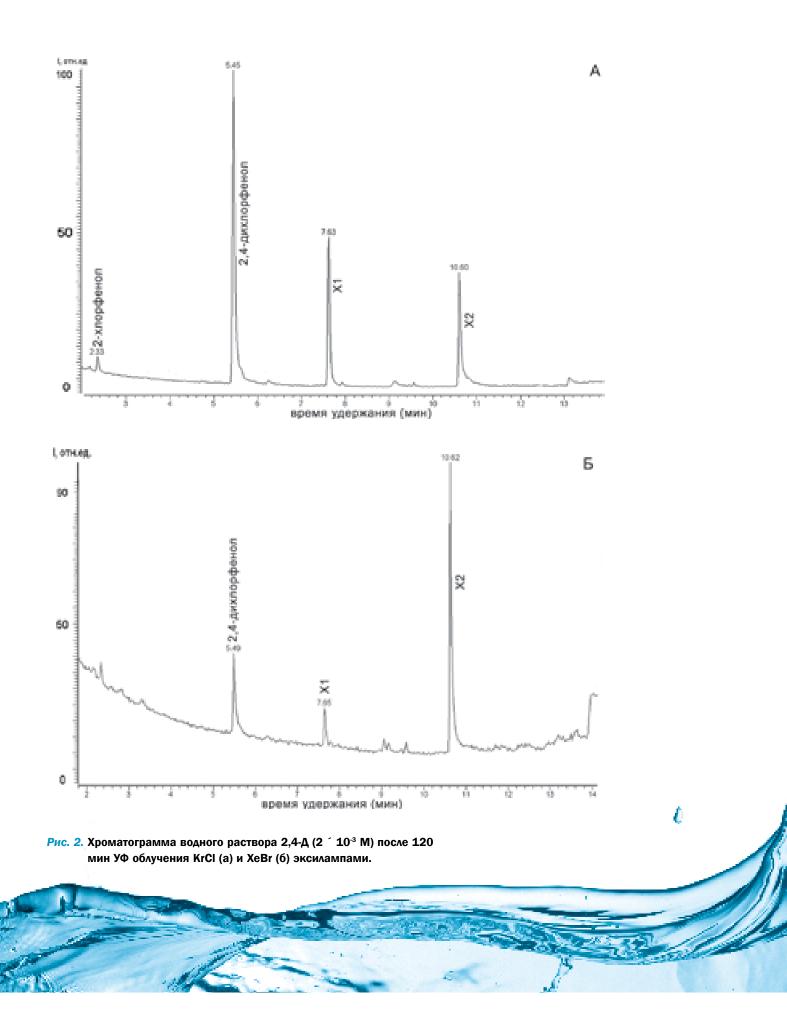
Рис. 1. Фотолиз 2,4-Д (1), образование хлорид-иона (2), образование соединений хиноновой структуры под действием KrCl (а) и XeBr (б) эксиламп.

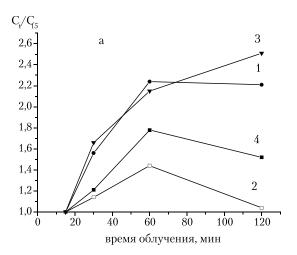
Результаты и их обсуждение

ототрансформация 2,4-дихлорфеноксиуксусной кислоты

По данным хромато-масс-спектрометрического анализа через 15 мин облучения начальная концентрация 2,4-Д (2′ 10⁻³ М) под действием излучения KrCl эксилампы слабо снижалась на 20 %, под действием XeBr эксилампы на 10 %, а через 120 мин на 60 и 70 %, соответственно. Для обеих длин волн излучения скорость исчезновения 2,4-Д была подобной (рис. 1). Квантовый выход фотопревращения 2,4-Д составляет всего 0,07 для обеих длин волн излучения. Содержание Сорг в растворе за время облучения 120 мин уменьшалось только на 10 % (табл. 1).

С одной стороны, содержание хлоридионов в растворе за время облучения KrCl эксилампой в течение 30 мин в 2 раза больше, чем для излучения l = 283 нм (рис. 1), что указывает на факт эффективного дехлорирования исходного соединения. С другой стороны, эффективность образования 2,4-ДХФ после 120 мин облучения была в 2,5 раза выше под действием излучения KrCl эксилампы, чем под действием ХеВг эксилампы (рис. 1).


Это свидетельствует о том, что за указанный период времени облучения происходит трансформация 2,4-Д до различных фотопродуктов, включая как моно-, так и


Ключевые слова:

вода, эксилампы, деградация, гербициды, биолюминесценция дихлорированные соединения, но не минерализация исходного токсиканта до ${\rm CO}_2$. Это согласуется с литературными данными об эффективности фототрансформации хлорзамещенных ароматических соединений в высоких концентрациях [14] и образованием 2,4-ДХФ как доминирующего фотопродукта в ходе прямого фотолиза при воздействии ртутной лампы.

Данные хромато-масс-спектрометрического анализа показали, что главным продуктом прямого фотолиза 2,4-Д под действием излучения KrCl эксилампы является 2,4-ДХФ (время удержания 5,45 мин). Содержание 2,4-ДХФ в растворе 2,4-Д после 120 мин облучения в 2,5 раза превышало содержание 2,4-ДХФ в случае XeBr эксилампы (рис. 2), в то время как доминирующим фотопродуктом для последней лампы являлось соединение со структурой **Х2** (время удержания 10,62 мин) с одним атомом хлора. Фотопродукт Х1 (время удержания 7, 65 мин) гораздо менее значим по содержанию в облученном водном растворе. К сожалению, база данных прибора Finnigan, не позволила нам установить точные структуры полученных фотопродуктов.

При воздействии KrCl эксилампы в это же время в следовых количествах были зафиксированы 2-хлорфенол (под действием XeBr эксилампы данное соединение в растворе появлялось только через 60 мин) и 2-хлоргидрохинон, наличие которого при

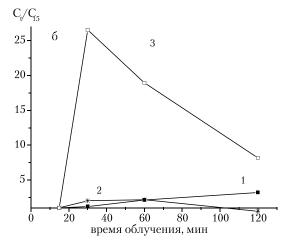


Рис. 3. Динамика изменения концентрации основных фотопродуктов 2,4-Д после УФ облучения KrCl (а) и XeBr (б) эксилампами: $1-2,4-\Delta X\Phi$; 2-X1; 3-X2; 4-2-xлорфенол.

воздействии XeBr эксилампы в растворах не было зафиксировано. Концентрация 2-хлоргидрохинона с увеличением времени УФ воздействия увеличивалась. Вероятнее всего, наличие высокого содержания хлорид-ионов в растворе 2,4-Д после облучения KrCl эксилампой и приводит к образованию фотопродуктов с большим содержанием хлора в структуре по сравнению с применением излучения XeBr эксилампы.

Динамика изменения концентраций доминирующих фотопродуктов представлена на puc. 3 (C_t/C_{15} — отношение текущей концентрации (C_t) к концентрации на 15 минуте (C_{15}) облучения). Через 120 мин облучения KrCl эксилампой в растворе был обнаружен в следовых количествах дигидроксибензальдегид. Особенностью фототрансформации 2,4-Д под действием XeBr эксилампы являлось резкое увеличение концентрации неизвестного фотопродукта X2

после 30 мин воздействия. Фотохимическая трансформация 2,4-Д при воздействии KrCl и XeBr эксилампами сопровождается образованием одинакового качественного состава доминирующих фотопродуктов, но отличается динамикой изменения концентраций фотопродуктов в течение облучения.

Оценка токсичности 2,4-Д и продуктов фотолиза после облучения KrCl и XeBr эксилампами показала, что после воздействия УФ-излучением биолюминесцентный индекс увеличивался, т.е. токсичность растворов уменьшалась (табл. 1).

Биодеградабельность растворов 2,4-дихлорфеноксиуксусной кислоты после фототрансформации

Исследование возможности совмещения процессов фото- и биодеградации является актуальной задачей, поскольку комбинирование методов позволяет проводить более полную очистку вод от токсичных соединений. В то же время биологические методы очистки являются одними из самых простых в плане аппаратурного оснащения. В связи с этим была исследована биодеградабельность растворов 2,4-Д после фототрансформации. Величина БПК, после фотолиза возрастала по сравнению с необлученным вариантом (43 мгО/л) и составляла 93 и 71 мгО/л для растворов, обработанных KrCl и XeBr эксилампами, соответственно. Однако соотношение БПК₅/ХПК для облученных растворов незначительно возрастало по сравнению с необлученным (табл. 1). Значения данного соотношения были

Таблица 3

Концентрация (мкМ) фотопродуктов в растворе 2,4ДХФ после облучения по данным хроматографии

Соединение	Эксилампа	Время облучения, мин						
Соединение		2	4	8	15	30	45	60
хлоркате- хол	KrCl	4	10	22	23	58	67	76
	XeBr	3	7	14	25	40	43	40
хлоргидро- хинон	KrCl	3	7	16	43	48	63	77
	XeBr	46	0	0	3	8	15	19
хлорбензо-	KrCl	0	0	0	0,7	0	0	0
хинон	XeBr				0			
	KrCl	6	6	4	18	24	46	59
гидрохинон	XeBr	0	31	28	6	21	57	90

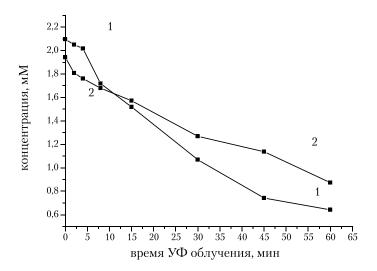


Рис. 4. Динамика убыли 2,4-ДХФ при облучении KrCl (1) и XeBr (2) эксилампами.

ниже величины 0,4, которая является границей между соединениями устойчивыми к биоразложению и биодеградабельными, т.е. УФ облучение раствора 2,4-Д в течение 120 мин не приводило к увеличению биодеградабельности. Это объясняется несколькими причинами. Во-первых, в течение указанного времени не происходит полной трансформации 2,4-Д. Во-вторых, основные фотопродукты, накапливающиеся в рас-

творе после 120 мин облучения, являются хлорсодержащими и их биологическая утилизация требует периода адаптации микроорганизмов-деструкторов.

Фототрансформация 2,4-дихлорфенола по данным хромато-масс-спектрометрии

Убыль 2,4-ДХФ после 60 мин облучения KrCl эксилампой составила примерно 80 %, XeBr — около 70 %. Фототрансформация 2,4-ДХФ сопровождалась дехлорированием и замещением атома хлора гидроксильной группой с образованием 2-гидрокси-4-хлорфенола и 2-хлор-4-гидроксифенола.

Авторы работ [15, 16] указывают на то, что гидроксильные радикалы принимают активное участие в деградации хлорированных фенолов. Механизм взаимодействия гидроксильного радикала с 2,4-Д и 2,4-ДХФ имеет схожий характер.

Времена жизни 2,4-ДХФ и 2,4-Д после облучения различными источниками с одинаковой дозой энергии разные. В случае 2,4-ДХФ эта величина является большей. Так период полураспада при воздействии дозой 5,3 крад/мин для 2,4-ДХФ составило 13 мин, для 2,4-Д — 9 мин. При взаимодействии гидроксильного радикала с 2,4-Д, независимо от используемого физико-химического метода, 2,4-ДХФ является доминирующим промежуточным продуктом. В табл. 2 приведены результаты фотолиза водных растворов 2,4-ДХФ, сопровождающегося

Таблица 2

Изменение содержания 2,4-ДХФ, хлорид-иона и суммарного содержания соединений хиноновых структур в водных растворах 2,4-ДХФ после УФ облучения

				Концентрация, М		
№	Эксилампа	Время воздей- ствия, мин	Е, Дж/см ³ (±0,001)	Хлорид-ион × 10 ⁻⁴ (± 1 × 10 ⁻⁵)	Хиноны $ imes$ 10 ⁻⁵ (\pm 1 $ imes$ 10 ⁻⁶)	
1		0	0	0	0	
2		8	0,6	1,8	16,1	
3		15	1,2	4,8	21,2	
4	KrCl	30	2,4	7,1	29,2	
5		60	9,6	12,8	40,9	
6		8	0,48	1,3	5,2	
7		15	0,96	1,9	7,4	
8	XeBr	30	1,92	3,9	11,6	
9		60	7,68	5,8	23,6	

процессами дехлорирования и образования соединений хиноновых структур.

Из данных (рис. 4) следует, что до 8 мин УФ облучения эффективность фотолиза при возбуждении XeBr эксилампы выше, чем при воздействии KrCl. Это можно объяснить разным механизмом фототрансформации 2,4-дихлорфенола. До 4 мин облучения XeBr эксилампой происходит прямой фотолиз связи C-Cl и образование хлоргидрохинона и гидрохинона (табл. 3). После дальнейшего облучения этот процесс резко замедляется и интенсивно образуется хлоркатехол, в то время как при возбуждении KrCl эксилампой, по-видимому, процесс фототрансформации 2,4-дихлофенола происходит по многоканальному механизму с интенсивным образованием хлоркатехола и хлоргидрохинона уже на первых минутах облучения.

Заключение

аким образом, воздействие УФ излучением эксиплексных ламп на 2,4-Д приводит к трансформации гербицида. Облучение KrCl эксилампой приводит к более интенсивному дегалогенированию исходного токсиканта и образующихся фотопродуктов, что подтверждается появлением в растворе дигидробензальдегида через 120 мин воздействия. Известно, что многие ток-

сиканты обладают эффектом синергизма, что обуславливает их экологическую опасность и необходимость более глубокой деструкции. Биолюминесцентный индекс подтвердил, что после фотолиза как исходного токсиканта, так и фотопродуктов растворы не обладали высокой токсичностью, что делает возможным комбинирование фотохимических и биологических методов очистки.

Работа выполнена при финансовой помощи гранта президента РФ на поддержку ведущей научной школы (№НШ-512.2012.2) и гранта РФФИ №10-08-90706-моб ст.

Литература

- 1. Елин Е.С. Фенольные соединения в биосфере. Новосибирск: СО РАН, 2001. 392 с.
- 2. Муравьев А.Г. Руководство по определению показателей качества воды полевыми методами. СПб.: Крисмас+, 2004. 248 с.
- 3. Карасевич Ю.Н. Основы селекции микроорганизмов, утилизирующих синтетические органические соединения. М.: Наука, 1982. 144 с.
- 4. Кузубова Л.И. Органические загрязнители питьевой воды. Аналит. обзор / С.В. Морозов. Новосибирск: Изд-во Ин-та орган. химии, 1993. 166 с.
- 5. Nicolaisen M.H. Transcription dynamics of the functional tfdA gene during MCPA herbicide degradation by Cupriavidus necator AEO106

- (pRO101) in agricultural soil / M. H. Nicolaisen, J. Bælum, C. S. Jacobsen, J. Sørensen // Environmental Microbiology. 2008. V. 10. № 3. P. 571-579.
- 6. Laganà A. Occurrence and determination of herbicides and their major transformation products in environmental waters / A. Laganà, A. Bacaloni, I. De Leva, A. Faberi, G. Fago, A. Marino // Anal. Chim. Acta. 2002. V. 462. P. 187-198.
- 7. Соснин Э.А. Эксилампы ёмкостного разряда / Э.А. Соснин, М.В. Ерофеев, В.Ф. Тарасенко, Д.В. Шитц // Приборы и техника эксперимента. 2002. № 6. С. 116-117.
- 8. Соснин Э.А. Исследование эксплутационных характеристик эксиламп ёмкостного разряда / Э.А. Соснин, М.В. Ерофеев, А.А. Лисенко, В.Ф. Тарасенко, Д.В. Шитц // Оптический журнал. 2002. Т. 69. № 7. С. 77-80.
- 9. Sosnin E. Applications of capacitive and barrier discharge excilamps in photoscience / E. Sosnin, T. Oppenlander, V. Tarasenko // J. Photochem. Photobiol. C: Reviews. 2006. V. 7. P. 145-163.
- 10. Соколов Э.М. Технология очистки промышленных сточных вод от фенольных соединений / Э.М. Соколов, Л.Э. Шейнкман, Д.В. Дергунов // Вода: химия и экология. 2012. № 4. С. 26-32.
- 11. Воробьева Н.И. Комбинированная окислительная деструкция орто- и пара-хлорфенола в воде ультрафиолетовым излучением эксиламп / Н.И. Воробьева, Г.Г Матафонова, В.Б. Батоев // Вода: химия и экология. 2012. № 9. С. 32-36.

- 12. Tchaikovskaya O. The role of UV-irradiation pretreatment on the degradation of 2,4-dichlorophenox yacetic acid in water / O. Tchaikovskaya, I. Sokolova, G. Mayer, E. Karetnikova, E. Lipatnikova, S. Kuzmina, D. Volostnov // Luminescence. 2011. V. 26. P. 156-161.
- 13. Ledger T. Chlorophenol Hydroxylases Encoded by Plasmid pJP4 Differentially Contribute to Chlorophenoxyacetic Acid Degradation / T. Ledger, D. H. Pieper, B. González // Appl. Envir. Microbiol. 2006. V. 72. No. 4. P. 2783-2792.
- 14. Pichat P. Destruction of 2,4-dichlorophenoxyethanoic acid (2,4-D) in water by ${\rm TiO_2}$ -UV, ${\rm H_2O_2}$ -UV or direct photolysis / P. Pichat, J. C. D'Oliveira, J. F. Maffre, D. Mas // Photocatalytic Purification and Treatment of Water and Air / Eds. Ollis D. F., Al-Ekabi H. Elsevier: Amsterdam. 1993. P. 683-688.
- 15. Pulgarin C. Strategy for the coupling of photochemical and biological flow reactors useful in mineralization of biorecalcitrant industrial pollutants / C. Pulgarin, M. Invernizzi, S. Parra, V. Sarria, R. Polania, P. Peringer // Catal. Today. 1999. V. 54. P. 341-352.
- 16. Kamat P. Hydroxyl radical's role in the remediation of the a common herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D) / P. Kamat, O. Wiest, J. Peller // J. Phys. Chem. A. 2004. V. 108. P. 10925—10933.

N.O. Vershinin, O.N. Chaikovskaya, E.A. Karetnikova, I.V. Sokolova

WATER DEGRADATION OF 2,4-D AND 2,4-DICHLOROPHENOL HERBICIDES UNDER UV EMISSION FROM EXCIMER SOURCES

Water degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and,4-dichlorophenol was studied depending on wave length and power of UV emission from KrCl and XeBr excimer sources. After 120 min photoprocessing of water-dissolved 2,4-D its concentration was down by 60-70 per cent. A bioluminescent test showed that long-term UV exposure of solutions under discussion does not result in increasing toxicity.

Key words: water, excimer sources, degradation, herbicides, bioluminescence