ВОДНО-ЭКОЛОГИЧЕСКИЕ

ОСОБЕННОСТИ ФОРМИРОВАНИЯ ГИДРОХИМИЧЕСКОГО РЕЖИМА

Новосибирского водохранилища

Проведен анализ изменения качества воды по акватории Новосибирского водохранилища по интегральным (комплексным) показателям для химических веществ, характерных для данного водоема, и по обобщенным оценочным баллам для отдельных приоритетных химических ингредиентов в сезонном разрезе за период 2005-2010 гг.

Введение

абота связана с одной из важнейших фундаментальных проблем гидрохимии — выявлением причинно-следственных связей, определяющих динамику и направление процессов формирования химического состава поверхностных природных вод, и факторов, влияющих на изменение их гидрохимического и гидробиологического режимов. Решение этой проблемы особенно актуально для разработки стратегии водопользования и охраны водных ресурсов.

Новосибирское водохранилище, расположенное на юге Западной Сибири – природно-техногенная система, созданная в середине XX века в бассейне Верхней Оби. Новосибирское водохранилище на р. Обь (рис. 1) – самый крупный искусственный водоем на территории Российской Федерации в Западной Сибири. Это водоем равнинного типа с малой регулирующей призмой (полный объем 8,8 κM^3 , полезный объем 4.4 κM^3), неглубокий (средняя глубина 9 м, максимальная – 22 м), относящийся к высокопроточным водоемам (средний коэффициент водообмена 6,6). Проблема качества воды в водохранилище стала особенно актуальна в последние годы, когда возросла его роль как источника питьевой воды. Это повлекло более серьезные требования не только к рациональному количественному распределению воды, но и к ее

С.Я. Двуреченская*,

кандидат химических наук, доцент, ученый секретарь, Новосибирский филиал ФГБУН Института водных и экологических проблем СО РАН

Т.М. Булычева,

начальник отдела по контролю природных и сточных вод, ФГУ «ВерхнеОбьрегионводхоз»

В.М. Савкин,

доктор географических наук, главный научный сотрудник, ФГБУН Институт водных и экологических проблем СО РАН

качественному составу, как правило, связанному с интенсивным хозяйственным освоением территорий, прилегающих к водохранилищу [1]. Именно поэтому особое значение приобретают исследования качества воды водохранилища и его влияние на гидрохимический режим нижнего бьефа.

Материалы и методы исследования

атурные исследования проводились на основных створах в верхней, средней и нижней частях водохранилища и в устьях основных притоков [2]. Отбор проб воды проводили батометром Молчанова с борта теплохода, а в зимнее время — со льда с глубины 0,6 h, где h — глубина водохранилища в точке отбора. В отдельных случаях отбор проб проводили с нескольких глубин (2-х или 3-х точечным методом) [3]. Пробы воды отбирались, как правило, ежемесячно, в ряде случаев 2-3 раза в месяц. Химико-аналитические работы выполнялись в аккредитованном отделе по контролю качества

^{*} Адрес для корреспонденции: dvur@ad-sbras.nsc.ru, dvur@iwep.nsc.ru

природных и сточных вод ФГУ «Верхне-Обърегионводхоз» Федерального агентства водных ресурсов РФ по стандартным методикам анализа природных вод [4].

Результаты и их обсуждение

сследование качества воды Новосибирского водохранилища и водно-экологических особенностей формирования его гидрохимического режима, влияния водохранилища на качество воды нижнего бъефа проводилось на основе анализа концентраций химических веществ и расчета интегральных показателей качества воды. Оценка состояния загрязненности поверхностных вод за период 2006-2010 гг. проводилась на основе статистической обработки результатов химических анализов и показателей комплексной оценки степени загрязненности поверхностных вод, рассчитываемых в соответствии с [5]. За основу принимался комбинаторный индекс загрязненности воды (КИЗВ) за год, учитывающий число случаев и кратность превышения нормативных значений ПДК для каждого химического ингредиента в течение конкретного года. Отнесение к определенному классу качества воды проводилось с учетом КИЗВ и оценочных баллов загрязненности по каждому ингредиенту (критические показатели загрязненности – КПЗ), а также количества учтенных в оценке показателей загрязненности в соответствии с РД 52.24. 643-2002. Для расчета комбинаторного

Рис. 1. Схема Новосибирского водохранилища.

Таблица 1

Сопоставление КИЗВ и классов качества воды на входном створе Новосибирского водохранилища и нижнем бъефе гидроузла

Годы		Входной створ	Нижний бьеф			
	КИЗВ	Класс качества	КИЗВ	Класс качества		
2006	53,23	очень загрязненная	44,55	загрязненная		
2007	47,84	очень загрязненная	34,29	загрязненная		
2008	46,52	очень загрязненная	39,74	загрязненная		
2009	42,18	очень загрязненная	43,29	грязная		
2010	41,56	очень загрязненная	39,50	очень загрязненная		

индекса загрязненности воды и оценки класса качества воды был использован обязательный перечень ингредиентов, включающий следующие 15 показателей: растворенный в воде кислород, органическое вещество (по значению $\mathrm{Б\Pi K}_5$, $\mathrm{X\Pi K}$), фенолы, нефтепродукты, нитрит-ионы, нитрат-ионы, ионы аммония, железо общее, ионы меди, цинка, никеля, марганца, хлориды, сульфаты.

Как видно из табл. 1, значения КИЗВ воды в нижнем бьефе водохранилища, по сравнению с входным створом, уменьшались в 2006—2008 гг. и в 2010 г. и увеличивались в 2009 г. Наибольший вклад в общую оценку степени загрязненности воды во входном створе вносили ионы железа, марганца и меди, которые достигали уровня критических показателей загрязненности. В нижнем бъефе наибольший вклад в общую оценку степени загрязненности воды также вносили ионы железа, марганца и меди, но уровень КПЗ они достигали лишь в 2009-2010 гг., что и повлияло на класс качества воды, т.к. класс качества воды, как уже было указано, опре-

деляется как с учетом значений КИВЗ, так и количества КПЗ.

Табл. 1 иллюстрирует, что во входном створе вода водохранилища характеризуется как «очень загрязненная», а в нижнем бьефе, в основном, уже как «загрязненная». Обращает на себя внимание, что в 2009 г. класс качества воды в нижнем бьефе определяется как «грязная». Это понижение класса качества воды можно объяснить тем, что уровня КПЗ во входном створе достигали лишь ионы железа, а в нижнем бьефе – ионы железа, марганца и меди. Следует отметить, что, как показывают многолетние исследования, для бассейна Верхней Оби содержание целого ряда химических веществ зависит не только от антропогенной нагрузки, но и от природных факторов, контролирующих поступление химических веществ в поверхностные воды [6, 7]. Поэтому к характеристике «класса качества воды» и оценке степени загрязненности следует подходить весьма осторожно, поскольку в этот показатель заложены значения как антропогенной, так и природной составляющей концентраций веществ.

Тем не менее, оценка состояния загрязненности воды Новосибирского водохранилища за период 2006-2010 гг. по принятым интегральным показателям подтверждает вывод о позитивной, в основном, роли водохранилища в формировании качества воды в нижнем бьефе по химическим показателям. Химический состав воды в Новосибирском водохранилище формируется, в основном, за счет основного притока р. Обь. Поступление химических веществ с речной водой в приходной статье баланса является преобладающим (93-95 %), т.е. на долю боковых притоков и диффузионного стока приходится незначительная часть. Новосибирское водохранилище не принадлежит к числу крупных водоемов, является неглубоким и достаточно проточным, поэтому химический состав воды нижнего бьефа определяется,

Ключевые слова:

Новосибирское водохранилище, качество воды, загрязнение

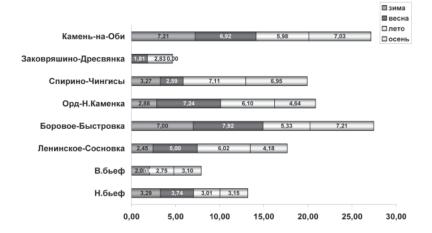
прежде всего, стоком основной реки, на который могут накладываться при определенных условиях внутриводоемные процессы. Однако отдельные повышенные концентрации химических веществ в воде водохранилища и нижнем бьефе могут свидетельствовать об эпизодических техногенных загрязнениях. Так, в 2009 г. были зафиксированы повышенные концентрации ионов железа, марганца и меди в нижней части водохранилища, подверженной повышенной антропогенной нагрузке со стороны городов Бердск и Искитим, что и определило класс качества воды в нижнем бьефе. Наблюдающееся в водохранилищах улучшение качества воды подтверждают и литературные данные [8]. Известно, что крупные водохранилища при прочих равных условиях улучшают качество речной воды и выравнивают его в сезонном разрезе. Причем акцент делается именно на том, что основные изменения в нижнем бьефе связаны с выравниванием химического состава воды по сезонам года по сравнению с естественными условиями; при этом поступление питательных веществ (азота, фосфора и др.) в нижний бьеф, как правило, уменьшается, так как они задерживаются в водохранилище. Основным условием поддержания необходимого качества воды в водохранилищах, как и в других водоемах, является прекращение сброса в них промышленных и коммунальных сточных вод без надлежащей очистки. Выполненный анализ позволяет судить о роли водохранилища в формировании качества воды лишь в целом за годовой период и не дает возможности оценить динамику формирования гидрохимического режима по отдельным химическим веществам. Для более полной оценки роли водохранилища представляется целесообразным провести анализ по отдельным химическим ингредиентам в сезонном разрезе по всей акватории водохранилища. Характеристикой загрязненности воды по конкретному химическому веществу является обобщенный оценочный балл (ООБ), учитывающий частоту и кратность превышения ПДК для каждого ингредиента. Чем больше значение ООБ, тем с большей частотой и в большей степени наблюдается кратность превышения ПДК для данного вещества. Значения ООБ для приоритетных химических веществ по акватории водохранилища в разные гидрологические сезоны за период 2005-2010 гг. приведены в табл. 2. Анализ данных табл. 2 и рис. 1 позволяет сделать следующие выводы: по железу, меди и марганцу наблюдается характерная повторяемость среднего уровня по акватории водохранилища в течение всех

Таблица 2

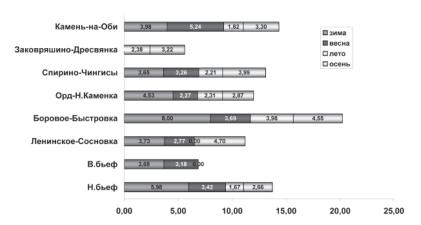
Обобщенные оценочные баллы для комплекса показателей качества воды Новосибирского водохранилища (сезонные особенности за период 2005-2010 гг.)

	Сезон/ створы	Обобщенные оценочные баллы для ингредиентов								
Показатели качества воды		Камень-на- Оби	Выше Спирино – Чингисы	Спирино – Чингисы	Ордынское – Н.Каменка	Боровое – Быстровка	Ленинское – Сосновка	Верхн. бьеф	Нижн. бьеф	
железо общее	Зима	8,16	д/о	8,68	8,04	5,08	9,6	9,4	8,24	
	Весна	10,1	9,91	9,64	8,76	9,14	9,78	9,76	9,86	
	Лето	8,92	9,28	8,6	8,18	8,08	8,24	8,46	8,36	
	Осень	8,18	8,84	8,0	8,08	7,18	8,44	8,2	8,08	
медь (Cu ²⁺)	Зима	9,04	д/о	9,76	8,8	8,48	10,0	8,76	8,8	
	Весна	8,94	8,88	8,76	9,04	8,76	8,64	9,48	9,4	
	Лето	8,84	8,72	8,9	8,34	8,82	8,91	8,9	8,5	
	Осень	8,96	8,86	9,28	8,44	9,1	9,24	8,5	9,35	
	Зима	12,0	д/о	10,7	10,7	8,62	8,71	9,32	8,72	
марганец	Весна	8,32	8,22	8,16	9,52	8,92	8,8	9,84	9,24	
(Mn ²⁺)	Лето	8,18	8,54	8,18	8,05	7,54	8,64	7,52	8,94	
	Осень	8,4	6,98	8,12	8,28	8,24	8,72	6,5	8,96	
	Зима	6,4	д/о	6,12	6,4	7,04	6,17	6,04	6,32	
органическое вещество (по БПК ₅)	Весна	6,69	5,40	6,48	6,91	6,83	6,98	6,48	5,84	
	Лето	6,29	5,86	6,85	6,0	5,99	5,92	5,76	6,16	
	Осень	6,2	7,01	7,08	6,33	6,17	6,45	5,72	6,88	
нитриты (NO ₂ -)	Зима	_	д/о	_	_	-	_	_	1,08	
	Весна	1,44	_	1,81	_	1,88	_	3,02	2,11	
	Лето	_	_	_	1,27		_	_	3,4	
	Осень	-	_	_	_	_	_	2,93	1,33	
азот аммонийный (NH ₄ +)	Зима	2,58	д/о	_	2,27	3,0	5,48	2,15	1,38	
	Весна	2,96	4,93	3,74	5,27	4,46	1,52	4,17	3,72	
	Лето	1,73	_	1,56	1,85	-	_	2,82	1,43	
	Осень	-	_	1,71	_	_	_	-	-	
фенолы	Зима	7,21	д/о	3,27	2,88	7,0	2,45	2,05	3,29	
	Весна	6,92	1,81	2,59	7,24	7,92	5,0	_	3,74	
	Лето	5,98	2,83	7,11	6,1	5,33	6,02	2,75	3,01	
	Осень	7,03	_	6,95	4,64	7,21	4,18	3,1	3,15	
нефте- продукты	Зима	3,98	д/о	3,65	4,53	8,0	3,73	3,68	5,98	
	Весна	5,24	_	3,26	2,27	3,69	2,77	3,18	3,42	
	Лето	1,82	2,38	2,21	2,31	3,98	_	_	1,67	
	Осень	3,3	3,22	3,99	2,87	4,55	4,70	-	2,66	

д/о – данные отсутствуют;


« - » - превышения ПДК не обнаружено.

гидрологических сезонов; аналогично и для значения $\mathrm{Б\Pi K}_5$, кроме отличия в уровне загрязненности (для $\mathrm{Б\Pi K}_5$ — низкий). Для нитритов и аммонийных соединений в большинстве случаев превышение ПДК отсутствовало либо было единичным или неустойчивым с низким уровнем загрязненности. Лишь в отдельных случаях (паводковый и зимний периоды) имел место средний уровень загрязненности в средней и нижней частях водохранилища.


Puc. 2 и *3* в качестве примера иллюстрируют динамику загрязненности водохранилища по значениям ООБ для фенолов и нефтепродуктов.

На рис. 2 представлено изменение загрязненности водохранилища по обобщенным оценочным баллам для фенолов. По значениям ООБ для них наблюдается устойчивая повторяемость загрязненности среднего уровня в верхней и средней частях водохранилища, переходящая в неустойчивую повторяемость с низким уровнем загрязненности в нижней части водохранилища.

Рис. 3 иллюстрирует изменение загрязненности водохранилища по ООБ для нефтепродуктов. По этим значениям наблюдается единичная или неустойчивая повторяемость загрязненности низкого уровня по всей акватории водоема во все гидрологические сезо-

Puc. 2. Изменение обобщенных оценочных баллов для фенолов по акватории Новосибирского водохранилища в сезонном разрезе 2005–2010 гг.

Рис. 3. Изменение обобщенных оценочных баллов для нефтепродуктов по акватории Новосибирского водохранилища в сезонном разрезе 2005–2010 гг.

ны, кроме зимнего периода в средней и нижней частях водохранилища. Так, для средней части имеет место устойчивая повторяемость низкого уровня, а для нижней части водохранилища – характерная среднего уровня.

Как для фенолов, так и для нефтепродуктов выделяется створ Боровое - Быстровка в нижней части водохранилища (рис. 1) повышенными значениями ООБ в сравнении с одноименными значениями на остальной акватории водохранилища. На данном участке водохранилища расположен мелководный и достаточно широкий Ирменский плес, характеризующийся высокой степенью зарастания высшей водной растительностью и размывом берегов под воздействием волн от ветров господствующей ЮЗ четверти. Кроме того, исследуемый период времени 2008-2009 гг. был наиболее маловодным. В целом эти факторы способствуют накоплению загрязняющих веществ и ухудшению качества воды в водохранилище.

Особенности изменения гидрологического режима водохранилища в многолетнем аспекте оказывают влияние на формирование водных экосистем, процессы эвтрофирования водоема, его биопродуктивность, гидрохимию и качество воды в отдельные годы и сезоны. Сравнительный анализ гидрологического режима Новосибирского водохранилища за многолетний, годовой и сезонный периоды показывает, что наблюдается увеличение повторяемости маловодных лет и проявление маловодных циклов от 2 до 4 лет, а также уменьшение водности весеннего сезона. В многолетнем разрезе происходит постоянное снижение среднегодовой величины водности. Наблюдается уменьшение коэффициентов водообмена в водохранилище за весенние сезоны и в целом за год. Среднегодовой коэффициент водообмена в последние годы - 6,43 при среднемноголетнем - 6,62, коэффициенты водообмена в весенние сезоны составляют от 3,03 до 3,11. Как показывает анализ, режим уровней воды в водохранилище и его основные фазы по годам отличаются как по продолжительности, так и по срокам начала и окончания. В течение последних 20 лет наблюдается значительное сокращение продолжительности стабилизации уровня воды на отметке НПУ (нормальный подпорный уровень), которая в отдельные годы была в 2 раза меньше среднемноголетней величины. При обеспеченности по водности зимней межени более 60 %, возможен годовой дефицит водных ресурсов полезного объема водохранилища от 1,0 до 1,5 км³. В современных условиях это приводит к вынужденному понижению уровня водохранилища ниже УМО (уровень мертвого объема) в марте-апреле от 0,5 до 1,5 м. За период существования водохранилища сработка уровня воды ниже УМО перед весенним наполнением водохранилища наблюдалась в 32 годах из 50. Однако если в начальный период существования водохранилища понижение уровня воды (кроме экстремально маловодного периода 1981-1982 гг.) носило эпизодический характер, то в последние годы снижение уровня воды ниже УМО происходит практически ежегодно. Приведенные особенности гидрологического режима во многом определяют динамику и направление процессов формирования химического состава поверхностных природных вод и факторов, влияющих на изменение их гидрохимического и гидробиологического режимов. В дальнейшем представляет несомненный интерес выявление взаимосвязей значений комплексных показателей степени загрязненности воды (в т.ч. и обобщенных оценочных баллов для

отдельных приоритетных химических ингредиентов) и гидрологических параметров (водности года, годовых и сезонных коэффициентов водообмена, уровней воды водохранилища).

Заключение

ценка качества воды водохранилищ по принятым в настоящее время комплексным интегральным показателям не отражает истинную картину загрязненности воды, т.е. отнесение воды к определенному классу качества следует считать условным, т.к. эти показатели не дают возможности разделить вклад природной и антропогенной составляющих. Более корректно было бы сопоставление концентраций химических веществ с региональными фоновыми значениями. Тогда можно было бы совершенно четко вычленить вклад антропогенного загрязнения. На это, как нам кажется, и должны быть направлены дальнейшие усилия.

Литература

- 1. Савкин В.М. Эколого-географические изменения в бассейнах рек Западной Сибири (при крупномасштабных водохозяйственных мероприятиях). Новосибирск: Наука, 2000. 152 с.
- 2. РД 52.24.309-2004. Организация и проведение режимных наблюдений за загрязнением поверхностных вод суши на сети Роскомгидромета. М.: Метеоагентство Росгидромета, 2005.

- 3. Двуреченская С.Я. О влиянии сезонного фактора на формирование качества воды Новосибирского водохранилища в условиях изменения природно-техногенной ситуации //Сибирский экологический журнал, 2006. Вып. 6. С. 803-808.
- 4. Перечень методик, внесенных в государственный реестр методик количественного химического анализа /часть І. количественный химический анализ вод (http://www.gosnadzor.ru/about/p 1.doc).
- 5. РД 52.24.643—2002 «Метод комплексной оценки степени загрязненности поверхностных вод по гидрохимическим показателям». Росгидромет. СПб.: Гидрометеоиздат, 2003. 36 с.
- 6. Савичев О.Г. Результаты геоэкологических исследований р. Томи в зимнюю межень / О.Г.Савичев, С.Л. Шварцев, С.В. Морозов, С.Я. Двуреченская С.В. Темерев. О.В. Шуваева, Ю.С.Колмаков // Эколого-биогеохимические исследования в бассейне Оби. Под ред. В.В.Зуева, А.В. Куровского, С.Л. Шварцева. Томск: РАСКО. 2002. С. 99-116.
- 7. Балыкин С.Н. Динамика содержания растворимых форм железа в поверхностных водах Алтая / С.Н. Балыкин, Д.Н. Балыкин, А.В. Салтыков, А.В. Пузанов В кн. «Фундаментальные и инновационные аспекты биогеохимии: Материалы VII международной Биогеохимической Школы». Отв. ред. В.В. Ермаков. М: ГЕОХИ РАН. 2011. 365 с.
- 8. Авакян А.Б. Водохранилища гидроэлектростанций / Авакян А.Б., Шарапов В.А. М.: Энергия, 1977. 399 с.

S.Ya. Dvurechenskaya, T.M. Bulycheva, V.M. Savkin

HYDROCHEMICAL REGIME OF NOVOSIBIRSK RESERVOIR: WATER AND ENVIRONMENTAL FEATURES

The analysis of changes in water quality of the waters of the Novosibirsk reservoir for the integral (complex) indices for characteristic chemical substances, and a generalized evaluation scores for individual priority chemical ingredients in the seasonal section for the period 2005 to 2010 has been performed.

Key words: Novosibirsk Reservoir, water quality, pollution