КОМБИНИРОВАННАЯ окислительная деструкция орто- и пара-хлорфенола В ВОДЕ УЛЬТРАФИОЛЕТОВЫМ ИЗЛУЧЕНИЕМ ЭКСИЛАМП

Проведено сравнительное исследование эффективности прямого фотолиза и комбинированной окислительной деструкции *орто*- и *пара*-хлорфенола в водном растворе ультрафиолетовым излучением KrCl (222 нм) и XeBr (282 нм) эксиламп в присутствии пероксида водорода. При комбинированной обработке достигнута высокая степень минерализации исходных загрязнителей и количественно подтверждена генерация гидроксильных радикалов.

Введение

р настоящее время одними из наиболее перспективных технологий очистки природных и сточных вод являются технологии на основе комбинированных окислительных процессов («Advanced Oxidation Processes», AOP), заключающихся в окислении органического вещества генерированными высокореакционными формами активированного кислорода, главным образом, гидроксильными (ОН) радикалами. Известно, что к АОР относится обработка воды ультрафиолетовым (УФ) излучением в присутствии сильных окислителей или катализаторов. В качестве источников УФ излучения в последние годы все более широкое применение находят эксимерные и эксиплексные лампы (эксилампы), излучающие в узкой полосе [1]. Тем не менее, большинство работ по окислению органических загрязнителей в воде с использованием эксиламп посвящено прямому УФ-фотолизу [2-7]. К настоящему времени опубликовано несколько работ по деструкции 4-хлорфенола с помощью АОР на основе эксиламп [8-10]. Выбор хлорфенолов в качестве модельных загрязнителей обусловлен их токсичностью для организмов, потенциальной мутагенной и канцерогенной активностью и низким концентрационным порогом (до 0,1 мкг/л), вызывающим неприятный запах и вкус воды. Исследования эффективности комби-

Н.И. Воробьева,

аспирант, ФГБУН Байкальский институт природопользования Сибирского отделения Российской академии наук

Г.Г. Матафонова*,

кандидат биологических наук, старший научный сотрудник, ФГБУН Байкальский институт природопользования Сибирского отделения Российской академии наук

В.Б. Батоев,

доктор биологических наук, профессор, заведующий Аналитическим центром, ФГБУН Байкальский институт природопользования Сибирского отделения Российской академии наук нированной окислительной деструкции хлорфенолов эксилампами в зависимости от рН среды и количества образующихся при этом ОН радикалов ранее не проводились.

Целью настоящей работы является сравнительное исследование эффективности деструкции орто-хлорфенола (**2-ХФ**) и пара-хлорфенола (**4-ХФ**) УФ излучением эксиламп в присутствии пероксида водорода ($\mathbf{H_2O_2}$) и без него при различных исходных значениях pH раствора. В работе также впервые проведено количественное определение образующихся при комбинированной обработке OH радикалов.

Материалы и методы исследования

ля исследования были взяты 2-ХФ и 4-ХФ фирмы «Merck», гексацианофер-— рат (II) калия и 4-аминоантипирин фирмы «Sigma-Aldrich», H₂O₂ (33 %, OOO «Техпром», г. Дзержинск). В качестве источников УФ излучения использовали KrCl- и XeBr-эксилампы, излучающие при 222 и 282 нм, соответственно (Институт сильноточной электроники СО РАН, г. Томск). В первой серии экспериментов проводили облучение раствора, содержащего 2-ХФ или 4-ХФ при исходной концентрации 20 мг/л, в присутствии Н₂О₂ при условиях, использованных для прямого фотолиза [6]. Интенсивность падающего излучения KrCl- и XeBr-эксилампы измерена ранее производителем с помощью фотодетектора («Hamamatsu Photonics KK») и составила 6,6 и 2,3 мВт/см², соответственно. Н₂О₂ вносился в раствор непосредственно перед облучением для достижения концентрации 24,4, 74,0 и 132,2 мг/л, что соответствует мольному соотношению 1:4,6,

* Адрес для корреспонденции: g.matafonova@gmail.com

1:14 и 1:25 (хлорфенол: H_2O_2), соответственно. Исходную величину pH раствора доводили до 2 или 11 внесением раствора H_2SO_4 или NaOH и контролировали с помощью иономера И-16 (РУП «Гомельский завод измерительных приборов», Беларусь). Остаточную концентрацию 2- и 4-ХФ в процессе разложения определяли колориметрическим методом по реакции с 4-аминоантипирином [11]. Величину химического потребления кислорода (**XIIK**) растворов хлорфенолов после УФ/ H_2O_2 обработки определяли стандартным бихроматным методом [12]. Скорость образования OH радикалов в

системе «У Φ/H_2O_2 » и их среднюю концентрацию в процессе облучения оценивали по скорости разложения *пара*-хлорбензойной кислоты (п-ХБК) («ICN Biomedicals Inc», США), которую использовали в качестве «ловушки» ОН радикалов (1):

 $-d[\pi - X B K]/dt = k_{OH}, \pi - X B K [\pi - X B K] [OH]_{cp}, (1)$

где $k_{OH,\ \pi\text{-}X \overline{b} K}$ – константа скорости реакции п-ХБК с ОН радикалами, 5 × 109 1/М с [13], [ОН]ср – средняя концентрация ОН радикалов. Скорость образования радикалов рассчитывали как произведение [OH]_{ср} и продолжительности облучения [14, 15]. С этой целью во второй серии экспериментов проводили облучение раствора п-ХБК при аналогичных условиях. Остаточную концентрацию п-ХБК в процессе облучения определяли методом ВЭЖХ с детектированием при 235 нм на хроматографе «Agilent 1100» (США). Элюирование осуществляли со скоростью 0,5 мл/мин на колонке «BDS Hypersil C18» (4,6 × 250 мм) с использованием смеси метанола и воды в качестве подвижной фазы (60:40 об. %).

Результаты и их обсуждение

а первом этапе оценены скорости деструкции псевдо-первого порядка 2и 4-ХФ при исходном значении рН раствора (5,6-5,7) и мольных соотношениях 1:4,6, 1:14 и 1:25 (хлорфенол:Н₂O₂). Установлено, что по разложению исходного хлорфенола более высокие скорости комбинированного окисления по сравнению с прямым фотолизом наблюдались при использовании обеих эксиламп только для 2-ХФ. На рис. 1 представлены зависимости соотношения остаточной концентрации (С) и исходной концентрации (С0) 2-ХФ от дозы УФ излучения эксиламп. Константы скорости разложения 2-ХФ обеими эксилампами при мольном соотношении 1:25 были в 2-2,4 раза выше найденных ранее для прямого фотолиза, без участия окислителя. В случае 4-ХФ, скорости деструкции без H2O2 и в его присутствии были одинаковыми при всех использованных мольных соотношениях. Тем не менее, в результате комбинированной окислительной обработки 4-ХФ при мольном соотношении 1:25 и дозе 4,1 Дж/см² наблюдалось существенное снижение ХПК очищаемой воды по сравнению с прямым фотолизом, что свидетельствует о разложении его фотопродуктов. Облучение же раствора 2-ХФ при этих условиях обеспечило практически полную его минерализацию (рис. 2). Эффективное мольное соотношение 1:25 согласуется с результатами работы [8] по деструкции 4-ХФ эксилампами в водном растворе без перемешивания и значительно ниже оптимального соотношения (1:75 и 1:150), найденного ранее для случая облучения ртутной лампой низкого давления (254 нм) [16]. Установлено, что при концентрации Н₂О₂ 132,2 мг/л, соответствующей мольному соотношению 1:25, достигались максимальные скорости образования ОН радикалов (рис. 3). Причем более высокая скорость образования

Рис. 1. Зависимости C/C_0 от дозы УФ излучения KrCl (A) и XeBr (Б) эксиламп при прямом фотолизе (1) и комбинированной деструкции 2-ХФ при мольном соотношении 2-ХФ и H_2O_2 1:4,6 (2), 1:14 (3) и 1:25 (4).

Рис. 2. ХПК растворов 2-ХФ и 4-ХФ после прямого фотолиза (УФ) и комбинированной деструкции (УФ/H₂O₂) при мольном соотношении 1:25 и дозе УФ излучения 4.1 Дж/см².

ОН радикалов при одной и той же дозе УФ излучения наблюдалась при использовании KrCl-эксилампы (1,8 \times 10⁻¹¹ М мин или 3,1 \times 10-7 мг мин/л, доза 4,1 Дж/см²). Полагаем, что это обусловлено более высоким коэффициентом экстинкции Н₂О₂ при 222 нм, чем при 282 нм (максимум поглощения молекул H₂O₂ ~220 нм). Найденная скорость на два порядка превышает установленные ранее при УФ/H₂O₂ обработке воды с помощью ртутной лампы среднего давления (1,2-2,6 × 10⁻¹³ М мин или 2–4,5 × 10⁻⁹ мг мин/л) [15]. Максимальные скорости генерации ОН радикалов при дозе 4.1 Дж/см² и концентрации пероксида 132,2 мг/л (1:25) коррелируют с наименьшими значениями ХПК после комбинированной обработки 2- и 4-ХФ при этих же условиях (рис. 2).

На втором этапе изучено влияние исходной величины рН раствора на эффективность комбинированного окисления 2- и 4-ХФ при мольном соотношении 1:25. Как известно, при pH < pKa (pKa = 8,5 (2-XФ), 9,4 (4-XФ)) монохлорфенолы в водном растворе находятся, преимущественно, в молекулярной форме, а при рН > рКа – в диссоциированной форме [17]. Из *рис.* 4 А видно, что эффективность деструкции 2-ХФ KrCl-эксилампой в присутствии Н2О2 при рН 2 и 11 также выше, чем при прямом фотолизе при этих же значениях рН раствора. Сравнение полученных результатов с литературными данными об эффективности УФ/H2O2 обработки с применением других УФ источников и типов фотореакторов затрудняет тот факт, что в них деструктивный эффект выражен в виде зависимостей концентрации разлагаемого соединения от продолжительности облучения, а не от примененной дозы излучения. Несмотря на это, нами предпринята попытка сопоставить общие закономерности. Так, более высокая эффективность комбинированного окисления молекулярной формы 2-ХФ при рН 2 KrCl⁻ и XeBr-эксилампой по сравнению с прямым фотолизом согласуется с данными, полученными ранее при рН 2,5 [18] (C₀=51,4 мг/л (0,4 мМ), [2-ХФ]:[H₂O₂]=1:10, ртутная лампа низкого давления, 254 нм) и при рН 3 [19] (С₀ = 197,1 мг/л (1,53 мМ), [2-ХФ]:[H₂O₂] = 1:5, ртутная лампа низкого давления). При этом эффект УФ/H₂O₂ обработки для окисления анионной формы 2-ХФ в этих работах при рН 9 [18] и 11 [19] не был обнаружен. Это подтверждено нами только при использовании XeBr-эксилампы (рис. 4Б). Полученные результаты позволяют предположить, что анионы 2-ХФ труднее подвергаются атаке ОН радикалов.

В отличие от 2-ХФ, преимущество комбинированного окисления 4-ХФ обеими эксилампами было установлено только для анионной формы при pH 11 (*puc.* 4B и 4Γ), что указывает на высокую скорость взаимодействия анионов 4-ХФ с ОН радикалами. Напротив, скорости окисления молекулярной формы 4-ХФ при рН 2 без Н₂О₂ и в его присутствии были сравнимыми, что согласуется с литературными данными по окислению молекулярной формы 4-ХФ при исходном рН $(C_0 = 100, 250 \text{ мг/л}, [4-X\Phi]:[H_2O_2] = 1:25,$ KrČl-эксилампа) [8] и при pH 2 (С₀=38.6 мг/л (0.30 мМ), [4-ХФ]:[H₂O₂] = 3:5, ртутная лампа высокого давления) [20, 21]. Эффект комбинированного окисления анионной формы 4-ХФ при рН 9,5 и 11 ртутной лампой (254 нм) ранее не отмечался [16, 18].

Рис. **3**. Скорость генерации гидроксильных радикалов при различных мольных соотношениях и дозах УФ излучения: ◆ KrCl (1:4,6), ◊ XeBr (1:4,6), • KrCl (1:14), • XeBr (1:14), ▲ KrCl (1:25), Δ XeBr (1:25).

Заключение

Сомбинированное окисление орто- и пара-хлорфенола в молекулярной форме УФ излучением KrCl- и XeBrэксиламп при мольном соотношении 1:25 и дозе 4,1 Дж/см² обеспечивает практически полную минерализацию исходных загрязнителей. Впервые экспериментально подтверждено образование гидроксильных радикалов при облучении воды эксилампами в присутствии H_2O_2 . Полученные результаты свидетельствуют о перспективности использования эксиламп в комбинированных окислительных технологиях очистки и обеззараживания воды.

Авторы выражают благодарность д.б.н., проф. Цыренову В.Ж. (Восточно-Сибирский государственный университет технологий и управления) за предоставленную возможность проведения анализа методом ВЭЖХ.

Литература

 Sosnin E.A. Applications of capacitive and barrier discharge excilamps in photoscience / E.A. Sosnin, T. Oppenländer, V.F. Tarasenko // J. Photochem. Photobiol. C: Photochem. Rev. 2006. № 7. P. 145-163.

Рис. 4. Сравнительная эффективность прямого фотолиза (УФ) и комбинированной деструкции (УФ/H₂O₂) хлорфенолов в молекулярной (pH 5,6-5,7 и 2) и анионной форме (pH 11): 2-XΦ+KrCl (A), 2-XΦ+XeBr (Б), 4-XΦ+KrCl (В) и 4XΦ+XeBr (Г). ▲ pH 5,6-5,7 УΦ, Δ pH 5,6-5,7 УΦ/H₂O₂, • pH 2 УΦ, \circ pH 2 УΦ/H₂O₂, ■ pH 11 УΦ, \Box pH 11 УΦ/H₂O₂.

2. Matafonova G. Degradation of chlorophenols in aqueous media using UV XeBr excilamp in a flow-through reactor / G. Matafonova, N. Christofi, V. Batoev, E. Sosnin // Chemosphere. 2008. № 70. P. 1124-1127.

3. Gómez M. Comparison of alternative treatments for 4-chlorophenol removal from aqueous solutions: Use of free and immobilized soybean peroxidase and KrCl excilamp / M. Gómez, G. Matafonova, J.L. Gómez, V. Batoev, N. Christofi // J. Hazard. Mater. 2009. № 169. P. 46-51.

4. Gómez M. Testing a KrCl excilamp as new enhanced UV source for 4-chlorophenol degradation: Experimental results and kinetic model / M. Gómez, M.D. Murcia, J.L. Gómez, G. Matafonova, V. Batoev, N. Christofi // Chem. Eng. Process. 2010. № 49. P. 113-119.

5. Gómez M. Photodegradation of 4-chlorophenol using XeBr, KrCl and Cl₂ barrierdischarge excilamps: A comparative study / M. Gómez, M.D. Murcia, N. Christofi, E. Gómez, J.L. Gómez // Chem. Eng. J. 2010. № 158. P. 120-128.

6. Батоев В.Б. Прямой фотолиз хлорфенолов в водных растворах ультрафиолетовым излучением эксиламп / В.Б. Батоев, Г.Г. Матафонова, Н.И. Филиппова // Журн. прикл. химии. 2011. Т. 84. № 3. С. 415-419.

7. Tchaikovskaya O.N. The phototransformation of 4-chloro-2-methylphenoxyacetic acid under KrCl and XeBr excilamps irradiation in water / O.N. Tchaikovskaya, E.A. Karetnikova, I.V. Sokolova, G.V. Mayer, D.A. Shvornev // J. Photochem. Photobiol. A: Chem. 2012. № 228. P. 8-14.

8. Gómez M. Enhancement of 4-chlorophenol photodegradation with KrCl excimer UV lamp by adding hydrogen peroxide / M. Gómez, M.D. Murcia, E. Gómez, J.L. Gómez, R. Dams, N. Christofi // Separ. Sci. Technol. 2010. № 45. P. 1603-1609.

9. Gómez M. A KrCl exciplex flow-through photoreactor for degrading 4-chlorophenol: Experimental and modelling / M. Gómez, M.D. Murcia, J.L. Gómez, E. Gómez, M.F. Maximo, A. Garcia // Appl. Catal. B: Environ. 2012. № 117-118. P. 194-203.

10. Murcia M.D. A new substrate and byproduct kinetic model for the photodegradation of 4-chlorophenol with KrCl exciplex UV lamp and hydrogen peroxide / M.D. Murcia, M. Gómez, E. Gómez, J.L. Gómez, A.M. Hidalgo, N. Christofi // Chem. Eng. J. 2012. № 187. P. 36-44. 11. Greenberg A.E. Standard methods for the examination of water and wastewater / A.E. Greenberg, L.S. Clesceri, A.D. Eaton. Washington D.C.: APHA AWWA WEF, 1992.

12. Методика выполнения измерений химического потребления кислорода в пробах природных и очищенных сточных вод титриметрическим методом. ПНД Ф 14.1:2.100-97, М.: Госкомитет РФ по охране окружающей среды, 2004. 13 с.

13. Elovitz M. Hydroxyl radical/ozone ratios during the ozonation processes. I. The Rct

Ключевые слова:

хлорфенол, ультрафиолетовые эксилампы, пероксид водорода Concept / M. Elovitz, U. von Gunten // Ozone Sci. Eng. 1999. № 221. P. 239-260.

14. Cho M. Linear correlation between inactivation of E. coli and OH radical concentration in TiO_2 photocatalytic disinfection / M. Cho, H. Chung, W. Choi, J. Yoon // Water Res. 2004. No 38. P. 1069–1077.

15. Mamane H. Inactivation of E. coli, B. subtilis spores, and MS2, T4, and T7 phage using UV/H_2O_2 advanced oxidation / H. Mamane, H. Shemer, K.G. Linden // J. Hazard. Mater. 2007. No 146. P. 479-486.

16. Çatalkaya E.Ç. Photochemical degradation and mineralization of 4-chlorophenol / E.Ç. Çatalkaya, U. Bali, F. Sengül // Environ. Sci. Pollut. Res. 2003. № 10. P. 113-120.

17. Rayne S. Mechanistic aspects regarding the direct aqueous environmental photochemistry of phenol and its simple halogenated derivatives. A review / S. Rayne, K. Forest, K.J. Friesen // Environ. Int. 2009. № 35. P. 425-437.

18. Hirvonen A. Formation of hydroxylated and dimeric intermediates during oxidation of chlorinated phenols in aqueous solution / A. Hirvonen, M. Trapido, J. Hentunen, J. Tarhanen // Chemosphere. 2000. № 41. P. 1211-1218.

19. Shen Y-Sh. The effect of light absorbance on the decomposition of chlorophenols by ultraviolet radiation and U.V./H₂O₂ processes / Y-Sh. Shen, Y. Ku, K-Ch. Lee // Water Res. 1995. № 29. P. 907-914.

20. Benitez F.J. Contribution of free radicals to chlorophenols decomposition by several advanced oxidation processes / F.J. Benitez, J. Beltran-Heredia, J.L. Acero, F.J. Rubio // Chemosphere. 2000. № 41. P. 1271-1277.

21. Benitez F.J. Oxidation of several chlorophenolic derivatives by UV irradiation and hydroxyl radicals / F.J. Benitez, Beltran-Heredia, J.L. Acero, F.J. Rubio // J. Chem. Technol. Biotechnol. 2001. № 76. P. 312-320.

N.I. Vorobieva, G.G. Matafonova, V.B. Batoev

COMBINED OXIDATIVE DEGRADATION OF ORTHO-AND PARA-CHLOROPHENOL IN WATER BY ULTRAVIOLET RADIATION

A comparative study of the effectiveness of direct photolysis and combined oxidative degradation of orthoand para-chlorophenol in aqueous solution by ultraviolet radiation KrCl (222 nm) and XeBr (282 nm) excimer lamps in the presence of hydrogen peroxide has been carried out. In the combination treatment a high degree of pollutant mineralization was achieved and generation of hydroxyl radicals was confirmed.

Key words: chlorophenol, ultraviolet excilamps, hydrogen peroxide

