ИССЛЕДОВАНИЯ ДИНАМИКИ УДАЛЕНИЯ РАСТВОРЕННОГО МЕТАНА В БАРБОТАЖНЫХ ДЕГАЗАТОРАХ

Проведены исследования по десорбции метана на модели барботажного дегазатора. Получены экспериментальные зависимости для проектирования дегазаторов барботажного типа. Установлены оптимальные режимы работы барботажных десорберов.

Введение

еобходимость удаления метана из подземных вод в процессе их очистки на станциях обезжелезивания определяется не столько технологическими требованиями, сколько требованиями по взрыво- и пожаробезопасности [1]. Исследования по десорбции метана, проведенные на различных конструкциях дегазаторов, показали, что наибольший эффект газоудаления наблюдается в аппаратах барботажного типа [2]. Теоретические исследования десорбции метана в барботажных дегазаторах позволили выявить причины их высокой эффективности, а также установить, что в общем виде процесс десорбции в дегазаторах барботажного типа описывается выражением [3]:

 $Nu = A \operatorname{Re}^{m} \operatorname{Pr}^{n}$, (1)

где Nu – диффузионный критерий Нуссельта; Pr – диффузионный критерий Прандтля; Re – критерий Рейнольдса.

Раскрыв критерии и переписав выражение относительно К_V, получена зависимость изменения объемного коэффициента массопередачи К_V:

$$K_{\rm v} = A \frac{D_{\rm m}}{d_{\rm n}^2} \left(\frac{U_{\rm m} d_{\rm n}}{v_{\rm m}} \right)^m \left(\frac{v_{\rm m}}{D_{\rm m}} \right)^n \quad (2)$$

где d_n – диаметр пузырьков, м; D_{π} – коэффициент диффузии удаляемого газа в воде, м²/с; v_{π} – кинематический коэффициент

Д.В.Глазков*, кандидат технических наук, доцент, доцент кафедры «Гидравлика, водоснабжение, водные ресурсы и экология», ФГБОУ ВПО Сибирский государственный университет путей сообщения вязкости воды, м²/с; Uж – средняя скорость движения воды в дегазаторе, м/с.

Материалы и методы исследования

ля изучения процесса десорбции метана в лабораторных условиях на модели дегазатора был проведен ряд экспериментов. Диаметр модели, для исключения влияния пристеночного эффекта, принят равным 0,145 м, минимальная толщина продуваемого слоя – 0,6 м, полная высота модели – 2,5 м. Воздухораспределительное устройство выполнено из перфорированных труб. Диаметр отверстий, для предотвращения кольматации окисляющимися железофосфатными комплексами, на основании опыта эксплуатации станций водоподготовки городов Сургута, Лангепаса и др. составил 2 мм. Для исключения попадания воздуха в отводящий трубопровод воздухораспределительная система установлена на высоте 0,6 м от дна аппарата, а ниже запроектирована отстойная зона для выделения пузырьков воздуха из обработанной воды. Подача исходной воды осуществлялась в верхнюю часть модели и с помощью перфорированного дырчатого листа распределялась по площади дегазатора. Отвод дегазированной воды производился с помощью трубопровода, врезанного на высоте 0,3 м от дна аппарата. Схема лабораторной установки приведена на рис. 1. Диапазон изменения скоростей движения воды U_ж, воздуха U_г и удельного расхода воздуха в дегазаторе q_{vn} приняты в соответствии с режимами работы промышленных аппаратов равными: U_ж = 0,1...2,0 cm/c, U_r = 1,0...10 cm/c, q_{vii} = 1,0...15,0 м³ воздуха на 1 м³ воды.

* Адрес для корреспонденции: gdv@myttk.ru

Результаты и их обсуждение

Сследования проводились в несколько этапов. На первом этапе изучались массообменные процессы, а именно: устанавливалась зависимость коэффициента десорбции от скорости и удельного расхода воздуха, определялось влияние удельного расхода воздуха на снижение остаточных концентраций метана, а также изучалась зависимость коэффициента массопередачи от скорости движения воды в аппарате. Основные результаты испытаний приведены на *рис. 2–5*. Анализ полученных результатов позволил сделать следующие выводы:

1) подача воздуха в количествах свыше 15 м³ на 1 м³ обрабатываемой воды практически не оказывает влияния на величину коэффициента десорбции и не отвечает экономическим показателям;

2) значение коэффициента десорбции возрастает прямо пропорционально скорости движения обрабатываемой воды;

3) влияние приведенной скорости воздуха на величину коэффициента массопередачи практически исчезает при скоростях более 5 см/с;

4) количество метана в отдуваемом воздухе при любых режимах работы не достигает взрывоопасной концентрации 5 об.%.

На втором этапе исследовались основные параметры барботажного слоя: размеры и скорость пузырей, газосодержание, продольное перемешивание.

1 — баллон с метаном; 2 — подача водопроводной воды; 3 — бак для приготовления исследуемой воды; 4 — трубопровод подачи газированной воды; 5 — дегазатор; 6 — отвод дегазированной воды; 7 — подача воздуха; 8 — ротаметр; 9 — компрессор; 10 отвод избыточного газа; 11 — пробоотборник.

Puc. 2. Зависимость снижения остаточных концентраций от удельного расхода воздуха.

Рис. **3**. Зависимость коэффициента десорбции от удельного расхода воздуха.

Рис. 4. Зависимость коэффициента десорбции от приведенной скорости продуваемого воздуха.

Puc. 5. Зависимость коэффициента десорбции от приведенной скорости воды.

В результате опытов было определено, что при скоростях продуваемого воздуха U_г до 5,5 см/с в аппарате устанавливается пузырьковый режим, при котором диаметры пузырей малы, их коалесценция по высоте практически отсутствует, а движение равномерно. При скоростях от 5,5 см/с до 7,15 см/с устанавливается режим турбулентных вихрей. В этом случае скорость коалесценции газовых пузырей существенно возрастает, в потоке одновременно присутствуют как мелкие, так и крупные пузыри, всплывающие с различными скоростями. Средние диаметры пузырей в поставленных опытах изменялись примерно от 6 до 8 мм, при этом уменьшение размеров происходило с увеличением скорости продуваемого воздуха.

И в первом и во втором случаях весь газожидкостный слой разбивался на три зоны. Первая зона располагалась непосредственно над газораспределительным устройством, в ней происходило распределение пузырей по сечению дегазатора. Вторая зона, зона барботажа, занимала большую часть объема аппарата и располагалась над первой. В этой зоне воздух распределялся в воде в виде пузырьков, поведение которых определялось гидродинамикой потока и физико-химическими свойствами жидкости. В третьей зоне, в верхней части барботажного слоя, происходила коалесценция газовых пузырей. Как показали эксперименты, границы зон зависели от приведенной скорости воздуха. При увеличении последней граница третьей зоны смещается вниз, а первой – вверх. Средняя скорость подъема пузырей в барботажном режиме составила примерно 0,25 м/с, в режиме турбулентных вихрей – 0,5 м/с.

Изучение газосодержания барботажного слоя ф выявило, что оно зависит от приведенной скорости воздуха и высоты продуваемого слоя H_o. При этом величина газосодержания возрастает с увеличением скорости подаваемого воздуха или с уменьшением высоты слоя. Обзор литературных источников [4-7 и др.] и проведенные эксперименты позволили установить, что наиболее точно значения ф для различных режимов аппроксимирует уравнение Хикита [4], которое и принято для дальнейших расчётов.

Исследования продольного перемешивания жидкой и газообразной фазы показали, что коэффициент продольного перемешивания D_L , характеризующий гидродинамическую структуру движущегося потока, не зависит от высоты газожидкостного слоя и увеличивается с возрастанием скорости воздуха, что объясняется увеличением степени циркуляции воды в аппарате. Вместе с этим, во всех работах по изучению продольного перемешивания отмечается увеличение D_L с увеличением диаметра аппарата за счет усиления поперечной неравномерности [5, 8, 9 и др.].

Заключительным этапом лабораторных исследований стало получение зависимости изменения коэффициента десорбции K_{v} , позволяющей аналитическим путем находить значение K_{v} для заданных условий работы десорбера. Для этой цели было использовано критериальное уравнение массообмена (1) с преобразованиями, сделанными на основании обработки данных исследований на модели барботажного дегазатора. С учетом проведенных экспериментов оно приняло вид

Nu= А Re^m Pr^{0,5} ,(3) или в развернутом виде

$$\frac{K_{\rm v}d_{\rm n\,cp}^2}{D_{\rm w}} = A \left(\frac{U_{\rm w}d_{\rm n\,cp}}{(1-\varphi)\nu_{\rm w}}\right)^m \left(\frac{\nu_{\rm w}}{D_{\rm w}}\right)^{0.5}.$$
 (4)

Показатель степени у критерия Прандтля для наблюдаемого режима барботажа, на основании работ [5, 6, 8] и ряда других ученых, принят равным 0,5. Преобразуя данное выражение к виду Nu / Pr^{0,5} = A Re^m и логарифмируя его, получена линейная зависимость. Используя метод наименыших квадратов, были вычислены коэффициенты регрессии

$$y = 0.66x + 0.29.(5)$$

При уровне значимости α=0,05, как показала проверка, это уравнение адекватно описывает экспериментальные данные. Проводя

обратные преобразования, было получено критериальное уравнение десорбции метана в барботажных дегазаторах

$$Nu = 1.94 \text{ Re}^{0.66} \text{ Pr}^{0.5}$$
. (6)

Выразив отсюда K_V, получаем экспериментальную зависимость изменения коэффициента десорбции от влияющих факторов

$$K_{\rm v} = \frac{AD_{\rm w}}{d_{\rm n \ cp}^2} \left(\frac{U_{\rm w} d_{\rm n \ cp}}{(1-\varphi)v_{\rm w}} \right)^{0.66} \left(\frac{v_{\rm w}}{D_{\rm w}} \right)^{0.5} . (7)$$

Таким образом, определив по заданным условиям работы дегазатора количество компонента G, передаваемого при десорбции из одной фазы в другую и среднюю движущую силу десорбции ΔC_{cp} [3], и рассчитав по выражению (7) K_V , можно установить требуемый объем рабочей части аппарата V, или, зная площадь поперечного сечения, непосредственно рабочую высоту H.

Однако при проектировании промышленных аппаратов большого диаметра ($D_c \ge 0,2$ м) величина коэффициента десорбции, рассчитанного по уравнению (7), может давать завышенные значения. Это связано с тем, что при увеличении диаметра аппарата растет поперечная неравномерность, неизбежно приводящая к повышению коэффициентов продольного перемешивания. Усиление перемешивания, в свою очередь, приводит к снижению продольного градиента концентрации и, как следствие, к уменьшению средней движущей силы, изменение которой оказывает непосредственное влияние на зна-

Ключевые слова:

растворенные газы, десорбция метана, барботажный дегазатор чение коэффициентов массопередачи. Поэтому для аппаратов, диаметр которых превышает 0,145...0,2 м, пригодность уравнения (7) необходимо проверять.

Заключение

одача воздуха в количествах более 15 м³ на 1 м³ обрабатываемой воды практически не оказывает влияния на величину коэффициента десорбции и газоудаления.

Значение коэффициента десорбции возрастает прямо пропорционально скорости движения обрабатываемой воды.

Влияние приведенной скорости воздуха на величину KV практически исчезает при Ur>5 см/с, уменьшение скорости ниже этой величины вызывает резкое снижение значения KV.

Зависимость изменения коэффициента десорбции метана в дегазаторах барботажного типа диаметром 0,145...0,2 м при Re = 8,5... 100 определяется уравнением (7).

Оптимальный режим работы дегазатора, соответствующий наибольшей эффективности процесса десорбции и минимальным экономическим затратам, осуществляется при следующих параметрах:

• удельный расход воздуха от 1 до 15 м³ воздуха на 1 м³ воды;

• приведенная скорость движения воздуха 4...5 см/с;

 \blacklozenge скорость движения воды должна удовлетворять перечисленным условиям, т.е. $U_{\rm w}{=}~q_{\rm yg}/U_{\rm r}{.}$

Количество метана в отдуваемом воздухе не достигает взрывоопасной концентрации 5 об.%, при любых режимах работы, что удовлетворяет требованиям технологии и требованиям по взрывобезопасности.

Литература

1. Артеменок Н.Д. Очистка подземных вод нефтегазоносных регионов Западной Сибири для целей хозяйственно-питьевого водоснабжения. Дис. д-ра. техн. наук. С.-Петербург, 1992. 318 с.

2. Глазков Д.В. Оценка методов удаления растворенных газовых примесей из подземных вод Западно-Сибирского мегабассейна // Вопросы гидравлики, водоснабжения, водоотведения: Сб. науч. тр. Новосибирск, 2001. С. 28-33.

3. Глазков Д.В. Теоретические исследования десорбции метана из подземных вод Западно-Сибирского мегабассейна в дегазаторах барботажного типа // Водоочистка. Водоподготовка. Водоснабжение. 2010. № 3. С. 52 – 55. 4. Hikita H. Gas hold-up in bubble columns / H. Hikita, S. Asai, K. Tanigawa, K. Segawa, M. Kitao // The Chemical Engineering Journal. 1980. V. 20. P. 59 67.

5. Рамм В.М. Абсорбция газов. М.:Химия, 1966. 768 с.

6. Кастальский А.А. Проектирование устройств для удаления из воды растворенных газов в процессе водоподготовки. М.: Госстройиздат, 1957. 148 с.

7. Кутателадзе С.С. Гидродинамика газожидкостных систем / С.С. Кутателадзе, М.А. Стырикович. М.: Энергия, 1976. 296 с.

8. Кафаров В.В. Основы массопередачи. М.: Высшая школа, 1979. 439 с.

9. Жукова Т.Б. Исследование и моделирование барботажных реакторов колонного типа / Т.Б. Жукова, В.В. Кафаров. М.: ВИНИТИ, 1991. 100 с.

D.V. Glazkov

DYNAMICS OF DISSOLVED METHANE REMOVAL IN BUBBLE DEGASSER

Methane desorption has been studied with bubble degasser being a model. The experimental correlations were obtained and used for bubble degasser design. The optimum operating conditions for bubbling stripper were fixed.

Key words: dissolved gas, methanedesorption, bubble degassing

