КАТАЛИТИЧЕСКАЯ ДЕСТРУКЦИЯ СЕРОСОДЕРЖАЩИХ СОЕДИНЕНИЙ в условиях ГИДРОДИНАМИЧЕСКОЙ КАВИТАЦИИ

Представлены результаты исследования процесса деструкции тиоцианатов пероксидом водорода в кавитационном реакторе струйного типа.

Введение

последние годы возрастает интерес к комбинированным окислительным физико-химическим процессам, протекающим в условиях кавитации [1]. Применение акустических, гидродинамических и теплофизических эффектов кавитации является перспективным для усовершенствования и интенсификации технологических процессов в различных отраслях производства и в медицине, а также для обработки промышленных сточных и оборотных вод [2]. Имеется достаточно много данных по использованию кавитации для инициирования, либо активации радикально-цепных реакций окисления биорезистентных поллютантов органической природы [3]. Однако практически отсутствуют работы по изучению роли кавитации в процессах окисления нелетучих неорганических серосодержащих соединений - тиоцианатов.

Традиционно тиоцианаты присутствуют в сточных и оборотных водах гальванических цехов, газогенераторных станций, коксохимических производств, предприятий цветной и черной металлургии, а также предприятий по добыче и переработке рудного золота. Например, в процессах выщелачивания золота тиоцианаты (SCN⁻) образуются при взаимодействии цианидов (CN⁻) с сульфидами, присутствующими в технологических растворах при переработке упорных руд, что приводит к повышению удельного расхода цианида на единицу продукции и негативному влиянию на процессы сорбционного выщелачивания золота [4]. Все процессы при переработке золотосодержащих концен-

Б. А. Цыбикова*,

кандидат технических наук, научный сотрудник лаборатории инженерной экологии, Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН)

С. Л. Будаев,

аспирант лаборатории инженерной экологии, Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН)

тратов являются водоемкими, при этом образуется большое количество высокотоксичных сточных и оборотных вод. Следует отметить, что тиоцианаты кроме токсичности для аквасистем отличает устойчивость к разложению большинством методов, используемых для эффективного обезвреживания цианидов.

Имеются немногочисленные данные по обезвреживанию цианидсодержащих растворов с использованием акустической кавитации [5,6]. Авторами установлено, что в результате действия кавитации генерируется пероксид водорода и создаются условия для эффективного окисления цианидов.

Целью данной работы являлось исследование процесса каталитической деструкции тиоцианатов пероксидом водорода в условиях низконапорной гидродинамической кавитации.

* Адрес для корреспонденции: belegmats@binm.bscnet.ru

Материалы и методы исследования

кислительную деструкцию тиоцианатов в водных растворах осуществляли с использованием системы Раффа (H₂O₂+Fe³⁺) в условиях низконапорной гидродинамической кавитации (НГДК) в проточном реакторе струйного типа. Объектами исследования являлись модельные растворы тиоцианатов с концентрацией SCN⁻-ионов 0,86–17,2 ммоль/л. В качестве катализатора использовали соль железа (III) FeCl₃·6H₂O. Для корректировки реакции среды использовали 0,1 н HCl. Окисление проводили при значениях pH<3,0. Концентрацию тиоцианат-ионов в растворе контролировали спектрофотометрическим методом на приборе КФК-3-01 [7]. Концентрацию ионов железа определяли фотометрическим методом с сульфосалициловой кислотой [8]. Концентрацию пероксида водорода определяли титриметрическим методом с перманганатом калия [9]. Для контроля значений рН и температуры среды использовали иономер рН 150 МИ [10].

Исследования проводили на экспериментальной установке [11] с термостатированием (20 ± 2 °C), состоящей из усреднителя, генератора кавитации и вертикального многоступенчатого насоса Grundfos CRNE1-15 со встроенным частотным преобразователем (*puc. 1*). Эксперименты проводили в циркуляционном режиме (объем обрабатываемого раствора 12 л) при давлении гидродинамического потока 1,0–5,0 атм.

В качестве генератора гидродинамической кавитации струйного типа использовали форсунки двух типов – коническую и тороидальную (*puc. 2*). Во втором случае генератор гидродинамических колебаний представляет собой корпус с входным и выходным коническими соплами и кавитационной камерой с расположенным в ней элементом вторичной кавитации; последний выполнен в виде кольца, размещенного радиально к ее оси в проточке (т.е. работа устройства создается за счет дополнительного снижения давления при обтекании препятствия).

Результаты проведенных ранее расчетов [12] свидетельствуют о преимуществах использования форсунок с диаметром входного сопла 4 мм, т.к. критическое давление, т.е. давление протекающей через форсунку жидкости, при котором возникает собственно кавитация, минимально, а производительность устройства максимальна. Эксперименты в данной работе проводились с использованием форсунок с диаметром входного сопла 4 мм. Сравнительные

кандидат технических наук, доцент, заведующая лабораторией инженерной экологии, Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН)

А. А. Батоева,

эксперименты в статическом режиме проводились в стеклянном реакторе объемом 200 мл с барботированием воздуха.

Результаты и их обсуждение

ри изучении влияния кавитации на процесс окисления тиоцианатов необходимо, прежде всего, учитывать влияние конструкционных особенностей реактора низконапорной гидродинамической кавитации. В данном случае геометрия форсунки при гидродинамической кавитации существенно влияет на окисление тиоцианатов. Сравнительные эксперименты по окислительной деструкции тиоцианат-ионов при найденных ранее в статическом реакторе с перемешиванием оптимальных мольных соотношениях, равных [H₂O₂]:[SCN⁻]:[Fe³⁺] = 3:1:0,2 [13] и значениях кислотности среды

Рис. 1. Схема экспериментальной установки:

1 – усреднитель; 2 – насос CRNE 1-15; 3 – манометр; 4 – подающая линия; 5 – подача окислителя; 6 – генератор; 7 – реакционная зона аппарата; 8 – холодильник; 9 – термостат ТЖ TC-12; 10 -циркуляционный контур.

Рис. 2. Схема генераторов кавитации: а) коническая, б) тороидальная. 1 – входное сопло, 2 – кавитационная камера, 3 – выходное сопло, 4 – ниша в виде проточки, 5 – кольцо, 6 – отверстия для подачи воздуха (газа) или жидкости.

Рис. 3. Каталитическая деструкция тиоцианат-ионов в реакторе НГДК в зависимости от типа форсунки. Р=2,5 атм, d=4 мм.

Рис. 4. Каталитическая деструкция тиоцианат-ионов в различных условиях: 1 – в статическом режиме в стеклянном реакторе с перемешиванием, 2 – в кавитационном режиме в реакторе НГДК. $C_0(SCN^-)=17,2$ ммоль/л, $[H_2O_2]:[SCN^-]:[Fe^{3+}] = 3:1:0,2, P=2,5$ атм.

↓ *Рис. 5*. Эффективность окисления тиоцианатов в кавитаторе в зависимости от давления (Р).

 $\rm C_{0}(SCN^{-})=17,2$ ммоль/л, а – $\rm [H_{2}O_{2}]:[SCN^{-}]:[Fe^{3+}]=3:1:0,2;$ б – $\rm [H_{2}O_{2}]:[SCN^{-}]:[Fe^{3+}]=3:1:0,05;$ б: 1 – через 5 мин, 2 – 10 мин, 3 – 20 мин, 4 – 30 мин, 5 – 40 мин, 6 – 60 мин.

2,8, в реакторе НГДК с использованием разных типов форсунок показали, что в случае с тороидальной форсункой наблюдается не только увеличение начальной скорости окисления тиоцианатов в 1,5 раза, но и практически полная деструкция тиоцианатов (рис. 3). Это объясняется тем, что при применении тороидальной форсунки количество жидкости, попадающей в кавитационную камеру из-за смещения оси входного сопла, приводит к косоструйности внутри камеры, что увеличивает длину контакта транзитной струи с водоворотными областями, увеличивая силу трения, закручивающую жидкость в полости генератора, и, как следствие, приводит к снижению числа кавитации [12]. Дальнейшие эксперименты проводили с использованием тороидальной форсунки. Экспериментально установлено, что кавитационное воздействие позволяет существенно интенсифицировать процесс окисления тиоцианат-ионов при осуществлении комбинированного метода (система Раффа + кавитация) (рис. 4), значение начальной скорости реакции окисления тиоцианат-ионов составляет 2,34 ммоль/л.мин, а в сравнительном

Гидродинамическую кавитацию принято характеризовать безразмерным параметром – числом кавитации σ, обратно пропорционально связанным со скоростью течения жидкости, которая, в свою очередь, напрямую зависит от давления. Увеличение рабочего давления приводит к снижению числа σ, а значит к развитию кавитации (*табл.* 1) и интенсификации процесса окисления (*рис.* 5). Известно, что в водных растворах кавитация сопровождается образованием, ростом и схлопыванием кавитационных пузырей. Под воздействием эффектов кавитации в жидкости образуются локальные области с высо-

эксперименте в статическом режиме - 1,44

ммоль/л.мин.

Таблица 1 Рассчитанные значения чисел кавитации

Р, атм.	Q, л/мин	υ, м/сек	σ
0,9	10,71	14,21	0,982
1,1	11,20	14,85	0,899
1,5	12,55	16,64	0,716
2,5	15,43	20,46	0,474
2,9	16,30	21,62	0,424
3,2	16,97	22,57	0,391
5,0	20,04	26,52	0,281

кими значениями температур и давлений, в которых и образуются высокореакционные частицы, в том числе гидроксильные OH[•] радикалы, которые далее рекомбинируют с образованием пероксида водорода [14, 15]:

$$H_{2}O \rightarrow OH^{\bullet} + H^{\bullet}$$

$$H^{\bullet} + O_{2} \rightarrow HO_{2}^{\bullet}$$

$$HO_{2}^{\bullet} + HO_{2}^{\bullet} \rightarrow H_{2}O_{2} + O_{2}$$

$$OH^{\bullet} + OH^{\bullet} \rightarrow H_{2}O_{2}$$

Действительно, нами зафиксировано прямое окисление тиоцианатов в кавитирующем потоке. Однако процесс протекает достаточно медленно, степень деструкции исходного вещества достигает лишь 6,7 % после 60 мин обработки (рис. 6). В сравнительном эксперименте с кавитацией в присутствии ионов Fe^{3+} деструкция SCN⁻ составила ≈ 10 %. Эти данные свидетельствуют о том, что интенсифицирующие факторы и эффекты влияния гидродинамического кавитационного поля на водные растворы нельзя объяснять лишь кавитационным перемешиванием воды и воздуха, т.е. интенсификацией массообменных процессов, и подтверждают наличие химических превращений при кавитационной активации, что вполне согласуется с литературными данными [16].

Кроме того, нами установлено, что на эффективность деструкции SCN⁻ в большей мере влияет концентрация пероксида водорода, добавленного в тиоцианатсодержащий раствор (*рис.* 7). Так, при кавитационной обработке при давлении 2,5 атм и при исходном соотношении $[H_2O_2]$:[SCNÏ]=4,5:1 уже через 20 мин наблюдается практически полная деструкция.

Однако при меньших концентрациях тиоцианат-ионов (0,86 ммоль/л) наблюдаются другие зависимости (*табл. 2*). Сравнение полученных данных в статическом реакторе и в реакторе НГДК при давлении 2,5 атм и различных исходных концентрациях ионов железа показало, что в условиях развитой

Рис. 6. Окисление тиоцианат-ионов $C_0(SCN^-)=17,2$ ммоль/л в кавитационном поле (P=2,5 атм) при различных условиях: 1 – без добавления реактивов, 2 – в присутствии ионов Fe³⁺ ([SCN⁻]:[Fe³⁺] =1:0,2), 3 – [H₂O₂]:[SCN⁻]:[Fe³⁺] =3:1:0,2).

Рис. 7. Окисление тиоцианат-ионов в кавитационном поле в зависимости от концентрации пероксида водорода. $C_0(SCN^-)=17,2 \text{ ммоль/л, } [SCN^-]:[Fe^{3+}]=1:0,2, P=2,5 \text{ атм.}$

Таблица 2

Начальная скорость реакции окисления и степень деструкции тиоцианат-ионов в различных условиях

Начальные условия	В статическом режиме в стек- лянном реакторе		В кавитационном режиме в реакторе НГДК		
[SCN ⁻]:[Fe ³⁺]	1:0,2	1:0,4	1:0,2	1:0,4	1:0,4
Р, атм	Д.О	Д.О	2,5	2,5	5,0
Wo, ммоль/л·мин	0,032	0,056	0,046	0,064	0,072
Эффективность деструкции, %	45,0	81,4	48,8	85,0	99,7

Примечание: C₀(SCN⁻)=0,86 ммоль/л, [H₂O₂]:[SCN⁻]=3:1, время обработки 80 мин. д.о. – давление отсутствует.

кавитации также наблюдается ускорение в 1,14-1,44 раза, однако разница в значениях эффективностей деструкции даже через 80 мин составляет лишь 3-4 %. При этом установлено, что эффективность процесса деструкции в данном концентрационном диапазоне в значительной степени зависит от исходного мольного соотношения [SCN⁻]: [Fe³⁺] – увеличение концентрации ионов железа в два раза приводит к ускорению процесса и возрастанию эффективности деструкции SCN⁻ в ≈1,8 раза. Повышение же рабочего давления до 5,0 атм при мольном соотношении [SCN⁻]:[Fe³⁺]=1:0,4 значительно интенсифицирует процесс, наблюдается почти полная деструкции тиоцианатов (99,7 %).

Заключение

первые рассмотрена возможность D использования низконапорной гидроди-D намической кавитации для окисления нелетучих неорганических соединений - тиоцианатов. Установлено, что при осуществлении комбинированного метода окисления (система Раффа + кавитация), кавитационное воздействие позволяет значительно интенсифицировать процесс каталитического окисления тиоцианатов. Нами зафиксировано прямое окисление тиоцианатов в кавитирующем потоке, что можно считать косвенным доказательством образования гидроксильных радикалов и пероксида водорода. Полученные результаты свидетельствуют о том, что интенсифицирующие факторы и эффекты влияния гидродинамического кавитационного поля на водные растворы нельзя объяснять лишь

Ключевые слова:

тиоцианаты, сточные воды, окисление, гидродинамическая кавитация кавитационным перемешиванием воды и воздуха, т.е. интенсификацией массообменных процессов, и подтверждают наличие химических превращений при кавитационной активации. Кроме того, установлено, что на эффективность деструкции SCN⁻ в кавитационном поле в большей мере влияет концентрация пероксида водорода, добавленного в тиоцианатсодержащий раствор и при меньших концентрациях (до 50 мг/л) эффективность процесса деструкции в значительной степени зависит от исходной концентрации ионов Fe³⁺.

Кроме того, установлено, что эффективность кавитационного воздействия и, как следствие, степень окислительной деструкции во многом определяется конструкционными особенностями генераторов и установок.

Литература

1. Arrojo S. A theoretical study of hydrodynamic cavitation /Arrojo S., Benito Y. // Ultrasonic Sonochemistry. 2008. V. 15. P. 203– 211.

2. Gogate P. R. Cavitation: an auxiliary technique in wastewater treatment schemes // Adv. Environ. Res. 2002. V. 6. P. 335-358.

3. Chakinala A.G. Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process / Chakinala A.G., Gogate P. R., Burgess A.E., Bremer D.H. // Ultrasonic Sonochemistry. 2008. V. 15. № 1. P. 49-54.

4. Совмен В.К. Переработка золотоносных руд с применением бактериального окисления в условиях Крайнего Севера / В.К. Совмен, В.Н. Гуськов, А.В. Белый. Новосибирск: Наука, 2007. 144 с.

5. Iordache I. Sonochemical Enhancement of Cyanide Ion Degradation from Wastewater in the Presence of Hydrogen Peroxide / Iordache I., Nechita M.T.,.Aelenei N, Rosca I., Apostolescu G., Pertonariu M .// Polish Journal of Environmental Studies. 2003. V. 12. № 6. P. 735-737.

6. Yazici E.A. Generation of hydrogen peroxide and removal of cyanide from solutions using ultrasonic waves / Yazici E.A., Deveci H., Alp J., Uslu T // J. Desalination. 2007. V. 216. P. 209-221.

7. Lahti M. Spectrophotometric Determination of Thiocyanate in Human Saliva / Lahti M., Viipo L., Jari Hovinen // J. Chem. Ed. 1999. V. 76. № 9. P. 1281-1282.

8. ПНД Ф 14.1:2.50-96. Методика выполнения измерений массовых концентраций общего железа в природных и сточных водах фотометрическим методом с сульфосалициловой кислотой. Москва, 1996 (издание 2004 г.).

9. Лурье Ю.Ю. Аналитическая химия промышленных сточных вод. М.: Химия, 1984. 448 с.

10. ПНД Ф 14.1:2:3:4.121-97. Количественный химический анализ вод. Методика выполнения измерений рН в водах потенциометрическим методом. Москва, 1997 (издание 2004 г.).

11. Патент РФ № 94564. Устройство для очистки промышленных сточных вод. Рязан-

цев А.А., Батоева А.А., Хандархаева М.С. Опубл. 27.05.2010. Бюл. № 15.

12. Батоева А.АС. Перспективы применения низконапорной гидродинамической кавитации в процессах очистки сточных вод / А.А. Батоева, Д.Г. Асеев, М.Р. Сизых, М.С. Хандархаева // Вода. Химия и экология. 2011. № 9. С. 27-31.

13. Просяников Е.Д.. Извлечение цианистого водорода из отработанных растворов цианирования сульфидных флотоконцентратов / Е.Д. Просяников, Б.А. Цыбикова, А.А. Батоева, А.А Рязанцев // Физико-технические проблемы разработки полезных ископаемых. 2009. № 1. С. 98–105.

14. Suslick K.S. Chemistry induced by hydrodynamic cavitation / Suslick K. S., Mdleleni M. M., Ries J. T. // J. Am. Chem. Soc. 1997. V. 119. P. 9303-9304.

15. Flint B.E. The temperature of cavitation / Flint B. E., Suslick K. S. // Science, New Series. 1991. V. 253. № 5026. P. 1397–1399.

16. Витенько Т.Н. Механизм активирующего действия гидродинамической кавитации на воду / Т.Н. Витенько, Я.М. Гумницкий // Химия и технология воды. 2007. Т. 29. № 25. С. 422–432.

B.A. Tsybikova, S.L. Budaev, A.A. Batoeva

CATALYTIC DEGRADATION OF SULFUR-CONTAINING COMPOUNDS IN HYDRODYNAMIC CAVITATION

The results of investigation of thiocyanate destruction by hydrogen peroxide in cavitation jet reactor are presented.

Key words: thiocyanates, waste water, oxidation, hydrodynamic cavitation

