ЭКСТРАКЦИЯ ИОНОВ

ЦИРКОНИЯ ИЗ СМЕШАННЫХ РАСТВОРОВ АЛИЗАРИНОМ

и его аминометилированными ПРОИЗВОДНЫМИ

Изучена экстракция микроколичеств циркония 1,2-диоксиантрахиноном и его аминометилированными производными: 3-N,N-диэтиламинометилализарином и 3-N,N-пиперидиламинометилализарином из ацетатнобуферных и смешанных растворов, содержащих перхлорат-, нитрат-, хлорид-, сульфат- и трихлорацетат-ионы в бутанол и его смесь с хлороформом (9:1).

Показана зависимость экстракции ионов циркония от рН водной фазы, количества соли высаливателя. Спектрофотометрическими и кондуктометрическими методами исследован состав извлекаемых комплексов.

Введение

ирконий, относящийся к жестким кислотам по классификации Пирсона, эффективно экстрагируется кислородсодержащими экстрагентами (трибутилфосфат, фосфиноксид, теноилтрифторацетон, купферон и т.д.). Несмотря на то, что производные антрахинона зарекомендовали себя в качестве реагентов для фотометрического определения циркония, они мало изучались для его экстракционного выделения.

В работе приведены сведения о распределении комплексов циркония с 1,2-дигидроксиантрахинонами (ДА) из сложных по составу растворов в органический растворитель.

Материалы и методы исследования

работе использовали органические соединения и растворители квалификации «хч» и «чда». Азотная, серная, хлороводородная и трихлоруксусная кислоты квалификации «чда», едкий натр — марки

М.И. Дегтев*,

доктор химических наук, профессор, заведующий кафедрой аналитической химии, ГОУ ВПО Пермский государственный национальный исследовательский университет

Н.В. Дудукалов,

аспирант кафедры аналитической химии химического факультета, ГОУ ВПО Пермский государственный национальный исследовательский университет «ч», 0,1 моль/л раствор соли циркония готовили растворением навески Zr(NO₃)₂•2H₂O марки «чда» или ZrOCl₂ «чда» при нагревании в 6 моль/л HNO₃ и 2 моль/л HCl, соответственно. Титр раствора устанавливали комплексонометрически, для этого применяли обратное титрование избытка ЭДТА раствором нитрата висмута с ксиленоловым оранжевым [1]. Растворы меньшей концентрации готовили последовательным разбавлением исходного. Моногидрат перхлората натрия, хлорид натрия брали марки «ч», нитрат натрия, тиоцианат натрия – марки «чда», сульфат натрия безводный - марки «хч», трихлорацетат натрия получали нейтрализацией раствора трихлоруксусной кислоты до рН 4 едким натром. Ацетатно-буферные растворы готовили по методу [2]. В качестве реагентов использовали 3-N,N-диэтиламинометил-1,2-дигидроксиантрахинон (ДЭАА), 3-пиперидиламинометил-1,2-дигидроксиантрахинон (ПА) и ДА. Синтез первых двух

^{*} Адрес для корреспонденции: anchem@psu.ru

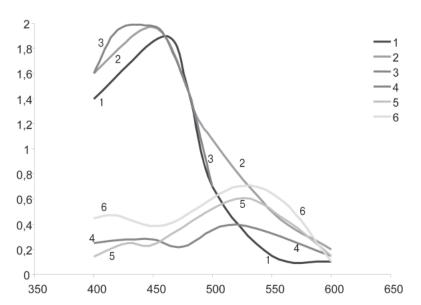
осуществляли по методу [3], их растворы готовили по точной навеске перекристаллизованного продукта. Структурные формулы реагентов приведены ниже.

Значения рН растворов контролировали на универсальном иономере ЭВ-74. Электронные спектры поглощения снимали на спектрофотометре СФ-2000 или СФ-16 в условиях: концентрация реагентов 1,0 • 10 - 3 и 8 • 10 - 4 моль/л, толщина поглощающего слоя L=1 см, $\lambda_{max}=520$ нм (бутанол).

ПΑ

Экстракцию микроколичеств циркония проводили при равных объёмах фаз ($V_B = V_O = 10$ мл), время контактирования и расслаивания, соответственно, 10 и 5 мин. Степень извлечения элемента контролировали фотометрически. Для этого окрашенный экстракт переносили в кювету (L = 3 см) и замеряли оптическую плотность на UNICO-1 или КФК-2МП со светофильтром N = 6 ($\lambda_{max} = 540$ нм). Полноту экстракции циркония определяли фотометрически по остаточному содержанию его в рафинате с применением арсеназо III [4].

Результаты и их обсуждение


ля нахождения оптимальных значений комплексообразования были сняты спектры поглощения реагентов ДА, ДЭАА и ПА в широком интервале рН в видимой области спектра. Затем при оптимальной длине волны $\lambda = 540$ нм, а также при 490 и 590 нм установлена зависимость величины оптической плотности растворов комплекса от величины рН (рис. 1).

В интервале pH 2,0-4,0 на кривых светопоглощения имеет место максимум при $\lambda = 420-460$ нм и раствор ДЭАА окрашен в жёлтый цвет. Повышение pH ведёт к батохромному смещению максимума светопоглощения и

при рН 5,0-8,5 доминирует следующая ионизированная форма ДЭАА с максимумом светопоглощения при $\lambda=510\text{-}520$ нм, имеющая красно-малиновую окраску. В случае реагента ПА оба максимума сдвинуты в более кислую область рН 1,85-3,50 с максимумом светопоглощения при $\lambda=400\text{-}460$ нм и при рН 5,20-8,75 с $\lambda=490\text{-}500$ нм. Щелочные растворы (0,1 моль/л NаОН) всех реагентов окрашены в сине-фиолетовый цвет с двумя максимумами при $\lambda=560$ и 610 нм.

При изучении экстракции циркония в зависимости от кислотности водной фазы установлено, что из растворов неорганических кислот HCl, H_2SO_4 , HNO $_3$ элемент не экстрагируется ни одним из трёх реагентов. И, напротив, из ацетатно-буферных растворов наблюдалось извлечение циркония в бутанол в интервале рН 2-6 в виде комплекса, окрашенного в красный цвет (рис. 1).

ДА извлекает цирконий(IV) из слабокислых растворов, при этом максимум светопоглощения бутанольных экстрактов комплекса находится при рН 5 и длине волны $\lambda = 520$ нм. Другие реагенты ДЭАА и ПА экстрагируют Zr^{4+} из более кислых сред. Например, при извлечении элемента бутанольным раствором ДЭАА оптимальная окраска экстрактов смещается в область рН 3,5, а в случае ПА – рН 2,7. Следует отметить, что экстракция циркония ДА из растворов рН > 4 сопровождалась образованием плёнки красного цвета на границе раздела фаз. Во всех случаях отмечалось увеличение рНравн. по

Puc. 1. Спектры светопоглощения бутанольных растворов 1,2 – дигидроксиантрахинона, его производных и их комплексов с цирконием.

- 1 ДА в экстракте; 4 комплекс ДА–Zr в экстракте;
- 2 ДЭАА в экстракте; 5 комплекс ДЭАА–Zr в экстракте;
- 3 ПА в экстракте; 6 комплекс ПА–Zr в экстракте.

отношению к рНисх. на одну и ту же величину 0,5-0,6 единиц рН.

Смещение максимума экстракции комплексов циркония с ДЭАА и ПА в более кислую область, по-видимому, связано с увеличением основности реагентов за счёт введения в молекулу ДА N,N-диалкиламинометильного и пиперидиламинометильного радикалов. При прочих равных условиях большая интенсивность экстрактов и степень извлечения достигаются при использовании ДА, что позволило расположить экстрагенты по их эффективности экстрагировать цирконий в ряд: ДА >> ПА > ДЭАА (табл. 1).

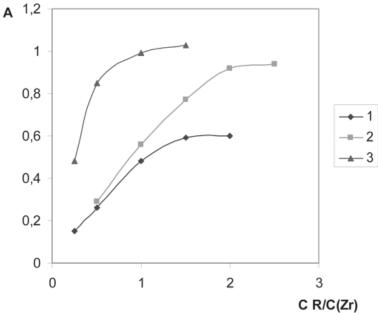
При сопоставлении электронных спектров поглощения бутанольных экстрактов реагентов и их комплексов с цирконием оказалось, что максимум поглощения комплексов сдвинут на 60 нм в длинноволновую область и находится при $\lambda=520$ нм. Спектры поглощения комплексов имеют одинаковый характер при извлечении элемента из ацетатнобуферных растворов и из смешанных растворов в присутствии $NaClO_4$ или CCl_3COONa (maбл. 1.).

Изменение в широких пределах соотношения компонентов, времени и температуры не влечёт за собой смещение максимумов светопоглощения комплексов, что указывает на образование соединений постоянного состава.

Ключевые слова:

ион циркония, комплекс, буферный раствор, перхлорат-, трихлорацетат-ионы, экстракция, бутанол, состав, структура комплексов, 1,2-диоксиантрахиноны

Приведенные данные косвенно свидетельствуют о том, что в комплексообразовании с цирконием участвуют одинаковые солеобразующие и координационные группы. Поэтому есть основание предположить, что атом азота в реагентах ДЭАА и ПА не принимает участия в образовании донорно-акцепторной связи с ионом циркония.


В оптимальных условиях экстракции исследовано влияние ряда анионов на распределение циркония в бутанол в присутствии ДЭАА и ПА. Введение сульфат-ионов подавляет извлечение циркония, а нитрат-, хлорид- и тиоцианат-ионы, наоборот, повышают оптическую плотность экстрактов. Полнота экстракции при этом возрастает от 72 до 97 %.

Перхлорат- и трихлорацетат-ионы ещё в большей степени способствуют экстракции циркония обоими реагентами (maбл.~1). Оптическая плотность при этом практически удваивается при концентрации $NaClO_4=1,0$ моль/л и становится значительно выше в присутствии 0,1 моль/л CCl_3COONa .

Поскольку экстрагируемость циркония ДА из ацетатно-буферных растворов практически полная, то введение перхлората или трихлорацетата натрия не влияет на интенсивность окраски бутанольного экстракта. Комплексы циркония с указанными реагентами, при прочих равных условиях, не экстраги-

Таблица 1 Зависимость экстракции циркония из смешанных растворов от рН водной фазы (CR = $1\cdot10^{-3}$ моль/л, Zr -245 мкг, V_o = 10 мл, λ = 540 нм, L = 3 см)

Смешанный	Реагент,	Область	Оптимальное значение	Оптическая	Степень
раствор	R	извлечения	pH _{опт} экстракции	плотность, А _{тах}	извлечения
Ацетатно-	ДА	2,6-6	5,0	1,24	99,9
буферный	ПА	2-3,5	2,7	0,83	84,0
Раствор (АБ)	ДЭАА	2-4,5	3,5	0,48	82,8
АБ +	ДА	2-6	4,7	1,26	99,9
0,1 моль/л	ПА	2-4	3,0	1,43	99,9
CCl ₃ COONa	ДЭАА	2-5	4,3	1,35	99,9
АБ +	ДА	2-6	4,7	1,26	99,9
1,0 моль/л	ПА	2-4	3,0	1,28	98,8
NaClO ₄	ДЭАА	2-4	3,3	0,84	96,4
АБ +	ДЭАА	2-5	3,2	0,52	72,5
1 моль/л NaCl	ПА	2-4	3,0	1,01	96,0
АБ +	ДЭАА	2-5	3,2	0,88	96,8
1 моль/л NaSCN	ПА	2-4	3,0	1,03	96,8
АБ +	ДЭАА	2-5	3,2	0,66	89,2
1 моль/л NaNO ₃	ПА	2-4	3,0	1,10	97,4
$AB + 0.9 \text{ моль/л} \ Na_2SO_4$	ДЭАА	2-5	3,2	0,13	32,8
	ПА	2-4	3,0	0,01	1,4

Рис. 2. Установление соотношения реагент (R): ион циркония (IV) в извлекаемых комплексах по методу насыщения: 1 - ДА ацетатно-буферный раствор (AБ), CZr=1,6 • 10^{-4} моль/л 2 - ДЭАА, AБ + 1 моль/л NaClO₄, CZr=1,6 • 10^{-4} моль/л 3 - ПА, AБ + 0,1 моль/л CCl₃COONa, CZr= 3,2 • 10^{-5} моль/л

руются в хлороформ. Однако интенсивность окраски незначительно увеличивается при использовании смеси бутанол:хлороформ в отношении 9:1. При этом сохраняется практически постоянный объём органической фазы, а время расслаивания уменьшается до 1 мин. Дальнейшее увеличение процентного содержания хлороформа в смеси растворителей уменьшает экстракцию циркония и при отношении $C_4H_9OH:CHCl_3=7:3$ комплекс выделяется в осадок на границе раздела фаз.

Следует отметить, что интенсивность окраски бутанольных экстрактов комплексов циркония — ДЭАА или ПА зависит от времени «старения» исходного раствора элемента. Например, оптическая плотность экстрактов максимальна (рН 2,7 или рН 3,5 в присутствии 0,5 моль/л $NaClO_4$ и $CR=1 \cdot 10^{-3}$ моль/л) при использовании свежеприготовленного раствора циркония, однако она значительно уменьшается, если исходный раствор Zr(IV) выдержан в течение суток и более. Вместе с этим степень извлечения элемента сохраняется (96 %), что предполагает наличие циркония в гидролизованной форме.

Состав комплекса циркония с ДА (ДЭАА, ПА) в бутанольном экстракте определяли методом насыщения, сдвига равновесия, изомолярных серий. На *рис. 2* представлены результаты опытов по определению соотношения Zr:R (где R – ДА, ДЭАА или ПА). Из рисунка видно, что соотношение в экстрагируемых комплексах (Zr:R) близко 1:1.

В условиях рН и при длительном стоянии растворов циркония последний находится в гидролизованной форме [4]. Кроме того, известно [5], что в водных растворах состояние ионов циркония осложняется вследствие реакции полимеризации его гидроксокомплексов с образованием полимерных форм. Звенья таких форм связаны через окси-группу или кислород.

Данные по состоянию ионов циркония в кислых растворах [6] свидетельствуют о том, что в 0,2 моль/л $HClO_4$ цирконий находится в форме $Zr(OH)_2^{2+}$, в условиях HCl(pH 0-1) в форме Zr^{4+} , $Zr(OH)^{3+}$, $Zr(OH)_2^{2+}$, $Zr(OH)^3$, $Zr(OH)^4$ – мономеры; при pH 1,5-4,0 (буферные растворы) – $Zr(OH)_x^{4-x}$ (полимер).

В нашем случае спектры поглощения комплексов циркония с реагентами имеют одинаковый характер при извлечении из ацетатнобуферных растворов и из смешанных растворов с $NaClO_4$ и CCl_3COONa . Максимумы светопоглощения не смещаются в широких пределах соотношения компонентов, температуры и времени. Увеличение оптической плотности экстрактов комплексов Zr с ДЭАА и IIA в присутствии $NaClO_4$ и особенно CCl_3COONa можно объяснить, с одной стороны, подавлением активности воды, а с другой — их вхождением во внутреннюю координационную сферу комплекса.

Заключение

связи с изложенным можно предположить в общем виде следующую структуру комплекса для растворов циркония выдержки более 4-х сут с 1,2-диоксиантрахиноном:

Сведения по электропроводности экстракта комплекса циркония с указанными реагентами и значениями холостого опыта при их разбавлении бутанолом свидетельствуют о том, что электропроводность экстрактов комплекса и холостого опыта практически одинакова. Так, для ДА (рН 5,0) электропро-

водность экстракта с цирконием составляет 0,20 ом⁻¹ • см⁻¹ • 104, а холостого опыта – 0,18. При разбавлении бутанолом экстракта и холостого опыта вдвое – 0,097 и 0,088, при разбавлении в четыре раза 0,044 и 0,043, соответственно. То есть в бутанол экстрагируется нейтральное внутрикомплексное соединение. Аналогичные данные были получены и для реагентов ДЭАА и ПА. Предложенная структура экстрагируемого соединения удовлетворительно объясняет, почему комплексы Zr(IV) с ализарином и его аминометилированными производными извлекаются бутанолом, но отсутствует их экстракция в хлороформ.

Литература

- 1. Шварценбах Г. Комплексонометрическое титрование / Шварценбах Г., Флашка Г. М.: Химия. 1970.
- 2. Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия. 1979. 480 с.
- 3. Бабушкин В.А. Органические реагенты в аналитической химии / В.А. Бабушкин, Г.А. Бармина, И.А. Сарана и др. Пермь: Перм. ун-т. 1991. С. 118-128.
- 4. Бусев А.И. Практическое руководство по аналитической химии редких элементов /

А.И. Бусев, В.Г. Типцова, В.М. Иванов. М.: Химия. 1966. С. 160-161.

- 5. Бабко А.К. Фотометрический анализ. Общие сведения и аппаратура / А.К. Бабко, А.Т. Пилипенко. М.: Химия. 1968. 388 с.
- 6. Дедков Ю.М. Органические реагенты для определения неорганических ионов. Ассортимент реактивов на цирконий и гафний / Ю.М. Дедков, А.Н. Ермакова, Н.В. Корсакова и др. М.: ИРЕА. 1975. 730 с.

M.I. Degtev, N.V. Dudukalov

EXTRACTION OF ZIRCONIUM IONS FROM MIXED SOLUTIONS BY ALIZARIN AND ITS AMINOMETHYLATED DERIVATIVES

The extraction of trace amounts of zirconium1,2-dioksiantrahinon and its aminomethylated derivatives such as 3-N, N-dietilaminometil alizarin and 3-N, N-piperidyl aminomethyl alizarin from acetate-buffer and mixed solutions containing perchlorate, nitrate, chloride, sulfate, and

trichloroacetate ions into butanol and its mixture with chloroform (9:1) has been studied. The dependence between zirconium ion extraction and pH of the aqueous phase, the amount of salting-out agent was shown. Spectrophotometric and conductometric methods were used to

study the composition of extracted complexes.

Key words: zirconium ion,complex, buffer solution, perchlorate-trichloroacetate ions, extraction, butanol, composition, complex structure, 1,2-dioksiantrahinon