УДК 579.87:579.222.2:579.252.5:622'17

ДЕСТРУКЦИЯ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ ШТАММОМ Rhodococcus wratislaviensis КТ112-7, ВЫДЕЛЕННЫМ ИЗ ОТХОДОВ СОЛЕДОБЫВАЮЩЕГО ПРЕДПРИЯТИЯ

© 2013 г. Д. О. Егорова, Е. С. Корсакова, В. А. Демаков, Е. Г. Плотникова

Институт экологии и генетики микроорганизмов УрО РАН, Пермь, 614081 e-mail: peg@iegm.ru
Поступила в редакцию 28.06.2012 г.

Исследована деструкция ароматических углеводородов штаммом *Rhodococcus wratislaviensis* KT112-7, выделенным из техногенно-минеральных образований предприятия БКРУ1 ОАО "Уралкалий" (г. Березники, Пермский край). Показано, что *R. wratislaviensis* KT112-7 осуществляет утилизацию высоких концентраций о-фталевой кислоты (о-ФК) (8 г/л), бензойной кислоты (БК) (3.4 г/л) и растет на о-ФК, БК, бифениле при содержании NaCl в среде культивирования до 75, 90 и 100 г/л соответственно. На основании анализа метаболического профиля и нуклеотидных последовательностей генов *bphA1*, *benA* и *phtB* установлено, что штамм KT112-7 осуществляет разложение о-ФК через стадии образования 3,4-дигидроксифталевой и 3,4-дигидроксибензойной кислот, разложение бифенила — через БК и далее, при низких концентрациях NaCl (до 50 г/л) через образование 4-гидроксибензойной кислоты с последующим ее окислением, а при высоких концентрациях NaCl (от 60 г/л) — путем прямого окисления бензойной кислоты до катехола. Полученные данные указывают на перспективность использования штамма-деструктора *Rhodococcus wratislaviensis* KT112-7 при разработке новых биотехнологий, направленных на утилизацию (трансформацию) ароматических соединений, в том числе в условиях повышенной минерализации.

DOI: 10.7868/S0555109913030070

В результате промышленной деятельности человека увеличивается поступление в окружающую среду моно(поли)ароматических углеводородов и их производных, которые устойчивы к внешним воздействиям, обладают токсичностью и канцерогенными свойствами [1], что представляет существенную опасность для здоровья человека и биосферы в целом. Большое количество таких соединений обнаруживается в отходах горнодобывающих производств, в том числе в глинисто-солевых шламах, избыточных (маточных) рассолах, образующихся в результате промышленной разработки Верхнекамского месторождения калийно-магниевых солей (Пермский край) [2]. Высокий уровень загрязнения в процессе добычи калийных солей обусловлен использованием в технологическом цикле обогащения калийных руд целой гаммы реагентов: оксиэтилированных жирных кислот, нефтепродуктов, диоксановых спиртов и других соединений. При подобной комплексной нагрузке (поллютанты и высокий уровень минерализации) возникают условия для формирования уникальных микробиоценозов. Микробные сообщества и индивидуальные микроорганизмы, способные выживать в условиях осмотического стресса и разлагать широкий спектр ароматических соединений, вызывают повышенный интерес у исследователей [3].

Анализ литературы показывает, что способность к трансформации и утилизации моно(поли)ароматических соединений в условиях повышенной солености среды встречается среди бактерий различных таксономических групп [3, 4]. Рассматривается вопрос об использовании бактерий-деструкторов в биоремедиации загрязненных (засоленных) почв. Наиболее перспективными претендентами для таких многофакторных биоэкотехнологий являются актинобактерии рода Rhodococcus. Кроме того, что родококки проявляют деградирующую активность к самому широкому спектру ароматических соединений, они обладают способностью адаптироваться к экстремальным условиям существования [4-7]. В то же время встречаются лишь единичные сообщения о разложении и использовании ароматических соединений в качестве субстратов штаммами рода Rhodococcus в условиях повышенной минерализации [4-6]. В связи с вышеизложенным, изучение родококков, выделенных из экотопов с экстремальными экологическими нагрузками (в том числе, химическая загрязненность, высокая минерализация, климатические факторы), представляет особый интерес.

Цель работы — изучение особенностей разложения моно(поли)ароматических соединений штаммом *Rhodococcus wratislaviensis* KT112-7, вы-

деленным из шламохранилища соледобывающего предприятия.

МЕТОДИКА

Объект исследования. Штамм КТ112-7 был выделен методом накопительного культивирования из техногенно-минеральных образований (ТМО) предприятия БКРУ1 ОАО "Уралкалий" (г. Березники, Пермский край). Образец ТМО был отобран с глубины 10 см шламохранилища. Накопительная культура была получена путем инкубирования 1 г образца в 100 мл минеральной среды Раймонда (МСР) [8], содержащей о-фталевую кислоту (\mathbf{o} - $\mathbf{\Phi}\mathbf{K}$) (1 г/л) и NaCl (3 г/л), в условиях, описанных ранее [4]. Из накопительной культуры путем высева на агаризованную МСР, содержащую о- Φ К (1 г/л) и NaCl (3 г/л), были выделены 8 штаммов бактерий-деструкторов. Чистоту культур контролировали по однородности колоний при высеве на агаризованную богатую среду Раймонда (БСР), в качестве которой использовали МСР с добавлением 5 г/л триптона и 2.5 г/л дрожжевого экстракта. ПЦР-анализ изолятов при использовании праймеров, комплементарных консервативным повторяющимся внегенным полиндромным последовательностям бактериальной ДНК [9], показал, что все они имеют одинаковый набор ПЦР-продуктов (данные не показаны). Для дальнейших исследований был отобран один из штаммов, обозначенный КТ112-7.

Определение таксономического положения изолированного штамма. Морфологические и физиологические свойства штамма КТ112-7 изучали по общепринятым методикам [10]. Амплификацию нуклеотидных последовательностей гена 16S рРНК проводили, как описано ранее, с использованием бактериальных праймеров 27F и 1492R [11]. Нуклеотидные последовательности гена 16S pPHK определяли с применением набора реактивов Від Dye Terminator Cycle Sequencing Kit на автоматическом секвенаторе Genetic Analyser 3500XL ("Applied Biosystems", США). Полученные нуклеотидные последовательности были проанализированы с использованием программы CLUSTAL X 1.83 [12]. Поиск гомологичных последовательностей производили по базам данных GenBank (http://www.ncbi.nlm.nih.gov) и EzTaxon (http://www.eztaxon.org).

Рост на ароматических углеводородах. Способность штамма КТ112-7 разлагать ароматические углеводороды оценивали путем культивирования на агаризованой МСР при 28°С с добавлением в качестве источника углерода и энергии моно(поли)ароматических углеводородов ("Fluka", США). Фенантрен, нафталин, бифенил, бензол, толуол и фенол помещали на крышку перевернутой чашки Петри; о-ФК, бензойную кислоту (БК), 2-гидроксибензойную кислоту (ГБК), 4-ГБК, 2,5-ГБК и 3,4-ГБК вносили в среду до конечной концентра-

ции 1 г/л. Способность штамма расти на вышеперечисленных субстратах оценивали по образованию колоний диаметром более 2 мм. Для исключения ложноположительного результата осуществляли высев штамма на агаризованную МСР без внесения органического субстрата.

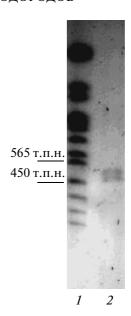
Рост штамма на ароматических углеводородах оценивали также при культивировании в жидкой МСР, не содержащей NaCl, при условиях, описанных ниже. о-ФК, БК, бензол, бифенил, нафталин вносили до конечной концентрации 1 г/л. Оптическую плотность (ОП) культуральной жидкости определяли на спектрофотометре UV-Visible Bio-Spec-mini ("Shimadzu", Япония) при 600 нм в кювете толшиной 10 мм.

Рост штамма при изменении осмолярности среды или концентрации субстрата. Ростовые характеристики штамма изучали в периодической культуре при выращивании в колбах Эрленмейера объемом 250 мл в 100 мл жидкой среды при 28°С и аэрации на круговой качалке со скоростью 180 об/мин: 1) в БСР без NaCl и при содержании соли до 120 г/л; 2) в МСР, не содержащей NaCl, с внесением в качестве субстрата о-ФК до конечной концентрации от 1.0 до 8.0 г/л, и БК— от 0.4 до 5.0 г/л; 3) в МСР с БК (0.5 г/л), о-ФК (1 г/л) или бифенилом (1 г/л), и NaCl в концентрации от 10 до 120 г/л (интервал между концентрациями NaCl — 10 г).

Утилизация о-ФК и БК. Концентрацию о-ФК и БК в среде при периодическом культивировании штамма КТ112-7 определяли методом ВЭЖХ в культуральной жидкости, освобожденной от клеток (центрифуга miniSpin, "Eppendorf", Германия, 9660 g, 3 мин), как описано [13].

Деструкция бифенила, БК и о-ФК. Деструкцию проводили с отмытыми клетками. Бактериальную культуру выращивали в жидкой МСР с соответствующим субстратом (1 г/л) при 28°C до $O\Pi_{600} = 1.0$. Отмытые дважды в MCP клетки (1 мл, $O\Pi_{600} = 2.0$) переносили во флаконы с тефлоновыми крышками. Бифенил добавляли до конечной концентрации 100 мг/л, БК и о- Φ K — до 500 мг/л, хлорид натрия – до концентрации от 10 до 60 г/л (интервал концентраций — $10\,$ г). Флаконы встряхивали на круговой качалке (180 об/мин) при 28°C. Анализ количества бифенила проводили методом ГХ-МС в гексановых экстрактах [13]; анализ БК, о-ФК и продуктов деструкции – методами ВЭЖХ и спектрофотометрии, как описано [13, 14]. Концентрацию веществ рассчитывали согласно калибровочных графиков.

Статистическая обработка результатов. Все эксперименты были выполнены в трехкратной повторности. Полученные данные обрабатывали с использованием стандартных пакетов компьютерных программ Microsoft Excel.


Анализ функциональных генов. Амплификацию функциональных генов с использованием тотальной ДНК штамма КТ112-7 [5] и праймеров, представленных в табл. 1 осуществляли на приборе МуСусler ("Bio-Rad Laboratories", США) при условиях, приведенных в публикациях (табл. 1) [5, 15–24]. Анализ продуктов амплификации и документирование полученных результатов осуществляли, как описано ранее [5]. Секвенирование ампликонов и анализ нуклеотидных последовательностей осуществлялся, как описано выше.

Метаболические пути бифенила, БК и о-ФК. Пути разложения бифенила, БК и о-ФК штаммом КТ112-7 анализировали, основываясь на базах данных Brenda (http://www.brenda-enzymes.info), KEGG (http://www.genome.jp), ExplorEnz (http://www.enzyme-database.org), GenBank (http://www.ncbi.nlm.nih.gov), с учетом экспериментальных результатов по метаболическому профилю и исследованию функциональных генов.

Плазмидная ДНК. Наличие плазмидной ДНК выявляли методом пульс-электрофореза с использованием прибора CHEF DR II ("Bio-Rad Laboratories", США). Штамм выращивали в 10 мл БСР без внесения NaCl, или в 10 мл MCP, содержащей 10 мг/мл NaCl и один из углеводородов (о-ФК, БК, бифенил (1 г/л)), до О $\Pi_{600} = 1.0$. Клетки осаждали центрифугированием (9660 g, 3 мин) и отмывали дважды в ТЭ-буфере (10 мМ трис/НСІ, рН 7.6; 1 мМ ЭДТА, рН 8.0). Агарозные блоки готовили согласно рекомендациям производителя ("Віо-Rad Laboratories", США). Блоки обрабатывали лизоцимом (1 мг/мл) при 37°C в течение 5-16 ч, протеиназой K (1 мг/мл) – при 50°C в течение 12—18 ч, нуклеазой S1 (5 ед. на агарозный блок) при 37°C, 3.5 ч. Электрофорез образцов осуществляли в 1%-ном агарозном геле (Pulsed Field Certified Agarose, "Bio-Rad Laboratories", CIIIA) B 0.5 **ТБЭ-буфере** (108 г трис, 55 г борная кислота, 40 мл 0.5 М ЭДТА, до 1 л H₂O) при 14°C, 6 В/см, время пульсации от 60 с до 120 с, в течение 24 ч. Гель окрашивали бромистым этидием (0.5 мг/л, 10 мин) и фотографировали в ультрафиолете с использованием системы гель-документации ("Bio-Rad Laboratories", США). Размер внехромосомальной ДНК оценивали в сравнении с электрофоретической подвижностью маркера молекулярных масс "DNA Size Markers - Yeast Chromosomal" ("Bio-Rad Laboratories", США).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Характеристика штамма КТ112-7. Штамм выделен из техногенно-минеральных образований калийного производства (г. Березники, Пермский край) путем накопительного культивирования на о-ФК (см. Методику). При инкубировании в течение 3 сут на агаризованной БСР штамм КТ112-7

Рис. 1. Электрофореграмма плазмидных ДНК штамма R. wratislaviensis KT112-7, выращенного на БСР: I — маркер молекулярных масс "DNA Size Markers — Yeast Chromosomal" ("Bio-Rad Laboratories", США), 2 — плазмидные ДНК штамма KT112-7.

образует округлые, матовые, светло-розовые колонии размером 1—3 мм. Клетки штамма грамположительные, неподвижные, не образуют спор, каталазоположительные, с трехстадийным морфогенетическим циклом развития. Штамм растет при температуре 10—45°С с оптимумом роста 28°С. Анализ нуклеотидной последовательности гена 16S рРНК штамма КТ112-7, размером 1400 п.н., показал 100% сходство с аналогичным геном типового штамма *Rhodococcus wratislaviensis* NCIMB 13082^T (GenBank Z37138). На основании морфо-физиологических и молекулярно-генетических признаков на настоящем этапе работы штамм идентифицирован как *Rhodococcus wratislaviensis*.

В клетках штамма КТ112-7, выращенных на БСР, методом пульс-электрофореза обнаружено две мега-плазмиды размером около 470 т.п.н. и 500 т.п.н. (рис. 1), сопоставимые по размеру с мега-плазмидами рRHL2 (443 т.п.н.) и рRHL3 (332 т.п.н.) активного деструктора ароматических соединений *R. jostii* RHA1 [25]. Стоит отметить, что плазмидный профиль штамма КТ112-7 не изменялся при культивировании как в полноценной среде, так и на ароматических субстратах: бифенил, БК, о-ФК (данные не показаны).

Так как штамм KT112-7 был выделен из отходов соледобывающего производства, нами исследованы возможности штамма расти в условиях повышенной минерализации среды. При культивировании в БСР штамм был способен расти как без NaCl, так и при концентрации соли до 105 г/л.

Таблица 1. Олигонуклеотиды, использованные при ПЦР-анализе функциональных генов штамма *R. wratislaviensis* KT112-7

Ген (праймеры)	Фермент	Нуклеотидная последовательность праймеров	Размер амплифицируемо- го фрагмента, п.н.	Литература	Амплификация с ДНК штамма КТ112-7
todC	Толуол диоксигеназа	F.5'-CGGGTGGGCTTACGACACCGCCGGCAATCT-3'	999	[15]	+
;	(КФ 1.14.12.11)	R: 5'-TCGAGCCGCGCTCCACGCTACCCAGACGTT-3'	!	,	
xylM,	Ксилол монооксигеназа	F5'-TGAGGCTGAAACTTTACGTAGA-3'	475	[16]	I
(Tol)	(KФ 1.14.15)	R 5'-CTCACCTGGAGTTGCGTAC-3'		ļ	
<i>C230</i> ,	Катехол 2,3-диоксигеназа	F.5'-CGACCTGATCTCCATGACCGA-3'	238	[17]	Ι
(cat238)	(КФ 1.13.11.2)	R: 5'-TCAGGTCAGCACGGTCA-3'			
clcA	Хлоркатехол 1,2-диоксигеназа	F. 5'-ACGAGTCATGGATAAACGA-3'	720	[18]	+
	(КФ 1.13.11.1)	R: 5'-TTGCGTTGCTCGGCCTGCTCA-3'			
benA	Бензоат диоксигеназа	F. 5'-GCCCACGAGAGCCAGATTCCC-3'	521	[18]	+
	(α- субъединица) (КФ 1.14.12.10)	R: 5'-GGTGGCGGCGTAGTTCCAGTG-3'			
bphAI,	Бифенил диоксигеназа	F.5'-AAGGCCGGCGACTTCATGAC-3'	452	[16]	+
(bphA)	(α- субъединица) (КФ 1.14.12.18)	R: 5'-TGCTCCGCTGCGAACTTCC-3'			
bphB	2,3-дигидрокси 2,3-дигидроби-	F. 5'-ATGTGGCATCGAAGCACGC-3'	253	[19]	+
	фенил дегидрогеназа (КФ 1.3.1.56)	R: 5'-CGCGAGGCTAGCAAGGCA-3'			
bphC	бифенил 2,3-диол	F. 5'-CGCTTTCATAACCAAG-3'	700	[20]	+
	1,2-диоксигеназа (КФ 1.13.11.39)	R: 5'-TCAGCGCTGGCCGCG-3'			
		(модифицированные)			
bphD	ГОФДК-гидролаза	F. 3'-CCGCACTCACCGAAAGTTCTAC-5'	857	[21]	+
	(KΦ 3.7.1.8)	R: 5'-TTACGCGTGCCGCAGGAAGTCAATC-3'			
bphK	Глугатион S-трансфераза	F. 5'-ATGAAACTTTACTACAGCCCTGGT-3'	612	[21]	1
	(KΦ 2.5.1.18)	R: 5'-TCACTCCTTGATCAAGCCTTCG-3'			
bpHH/bphJ	2-гидроксипента-2,4-диеноат	F.5'-GCCGTGAAGCGGTACAGTCAG-3'	1669	[21]	I
	гидрагаза/ацетальдегид дегидро- геназа (КФ 4 2 1 - /КФ 1 2 1 10)	R: 5'-ACGGCCTGGAGTGTCAACTG-3'			
fcbA	4ХБК-КоА-лигаза	F. 5'-AACTGATCCGCCGAGACAACATTC-3'	599	[22]	I
	(КФ 6.2.1.33)	R: 5'-AGGCATTTTTCGAGACGCTTCA-3'			
fcbB	4ХБК-КоА-дегалогеназа	F.5'-GGTCCAGCGAGCGAAATCCAGTC-3'	599	[22]	I
	(КФ 3.8.1.6)	R: 5'-CCCCGCACACCGCATCAAG-3'			
pcaH	Протокатехат 3,4-диоксигеназа	F.5'-GCSCCSCTSGAGCCSAACTTC-3'	336	[23]	I
(Pro3.4)	(β-субъединица) (КФ 1.13.11.3)	R: 5'-GCCGCGSAGSACGATRTCGAA-3'			
phtAa,	Фталат 3,4-диоксигеназа	F.5'-GTACGCACTGGCATGATTC-3'	1258	[24]	I
(phtA)	(α- субъединица) (КФ 1.14.12)	R: 5'-GCCGTTGATTGTTCTCGTTGTAGC-3'			
phtB	Фталат 3,4-дегидрогеназа	F. 5'-GGAGCAGGTTCGGGTATCGG-3'	445	[24]	+
	(КФ 1.3.1)	R: 5'-ACTTCGACGCCACATACAG-3'			
narAa	Нафталин 1,2-диоксигеназа	F.5'-RAAGGGTTTGCAYGACG-3'	1930	[5]	I
(GNI)	(α- субъединица) (КФ 1.14.12.12)	R: 5'-GTCGTTGTGGATGATGCTC-3			

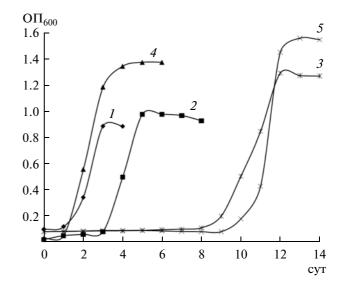
Установлена прямая корреляционная зависимость между повышением концентрации соли в среде и увеличением продолжительности лаг-фазы роста (до 245 ч при 105 г/л NaCl). Величина максимальной оптической плотности культуры при этом уменьшалась незначительно (с 2.08 отн. ед. до 1.87 отн. ед.). Скорость экспоненциального роста культуры (μ) составляла 0.06—0.04 ч⁻¹, время удвоения (t_d) 11.5—16.2 ч. Полученная закономерность вероятно обусловлена адаптационными процессами, протекающими в клетках штамма. Известно, что увеличение концентрации NaCl выше 3% приводило к изменениям в строении клеточной стенки штамма *Rhodococcus erythropolis* DCL14 и снижению его ростовых параметров [6].

Биодеградационный потенциал штамма КТ112-7. Показано, что штамм КТ112-7 обладает широкой субстратной специфичностью и способен расти на ароматических углеводородах и продуктах их разложения, используя их в качестве единственного источника углерода и энергии (табл. 2).

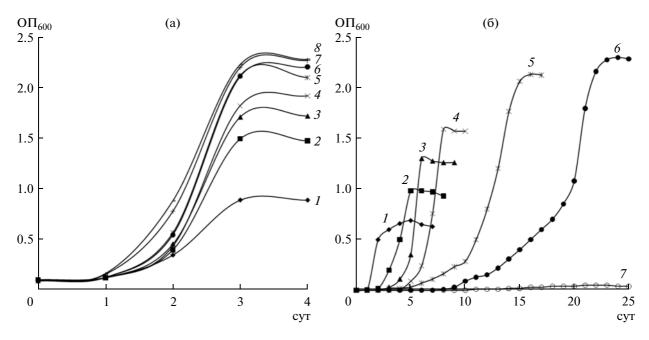
При выращивании штамма в жидкой среде наиболее эффективный рост был отмечен при культивировании на о-ФК, БК и бифениле (рис. 2). Рост штамма при использовании в качестве субстрата о-ФК и бифенила наблюдался практически без подготовительной фазы роста, в то время как при выращивании культуры на нафталине или бензоле рост культуры начинался только через 168 и 237 ч соответственно. Удельная скорость роста при культивировании на бифениле ($\mu = 0.040 \pm 0.003$ ч $^{-1}$), о-ФК и БК ($\mu = 0.050 \pm 0.004$ ч $^{-1}$) незначительно отличалась от таковой при культивировании штамма на бензоле и нафталине ($\mu = 0.030 \pm 0.007$ ч $^{-1}$).

Изучена способность штамма расти при содержании высоких концентраций о-ФК и БК в среде (рис. 3). С увеличением количества субстрата в среде происходило накопление биомассы штамма, оптическая плотность при выращивании на 8 г/л о-ФК или на 3.4 г/л БК достигала О $\Pi_{600} = 2.2$. Однако характер роста культуры на данных субстратах отличался. Увеличение концентрации о-ФК приводило к повышению удельной скорости роста (от 0.050 ± 0.002 до 0.070 ± 0.003 ч⁻¹), снижению времени удвоения культуры (от 13.8 ± 0.1 до $9.6 \pm$ ± 0.1 ч) и практически не влияло на продолжительность подготовительной фазы роста. В отличие от ряда штаммов рода Pseudomonas штамм КТ112-7 рос при высоких концентрациях о-ФК (до 8 г/л) [26, 27]. При этом удельная скорость роста на сопоставимых концентрациях субстрата у исследуемого штамма была в два раза ниже, что может быть обусловлено метаболическими и физиологическими особенностями псевдомонад и родококков.

Повышение концентрации БК приводило к увеличению подготовительной фазы роста, а динамика изменения ростовых параметров носила


Таблица 2. Рост штамма *R. wratislaviensis* KT112-7 на MCP на ароматических углеводородах

Субстрат	Рост*	Субстрат	Рост
Бензол	++++	4-ГБК	+++
Толуол	++	2,5-ГБК	+++
Фенол	++	3,4-ГБК	++
о-ФК	++++	Бифенил	++++
БК	++++	Нафталин	++++
2-ГБК	_	Фенантрен	_


^{*} Диаметр колоний: "+" — до 1 мм, "++" — "+++" — 1-2 мм, "++++" — больше 2 мм, "—" — рост отсутствует.

обратный характер. Максимальная удельная скорость роста наблюдалась при минимальной концентрации субстрата и составляла $0.24 \pm 0.02 \,\mathrm{y}^{-1}$, при концентрации БК в диапазоне 0.8-1.7 г/л удельная скорость роста составляла $0.05 \pm 0.01 \text{ y}^{-1}$, при 2.5-3.4 г/л БК -0.01 ± 0.002 ч⁻¹. При содержании в среде БК в концентрации 4.2-5.0 г/л рост культуры не был зафиксирован, но отмечалось потемнение среды, что свидетельствовало о частичной трансформации бензоата, предположительно, до производных катехола. Полученные результаты для штамма КТ112-7 были сопоставимы с данными для штамма Halomonas campisalis ATCC 700597 и не уступали штаммам родов *Pseudomonas* и Alcaligenes, культивируемых при соответствующих концентрациях бензоата [28].

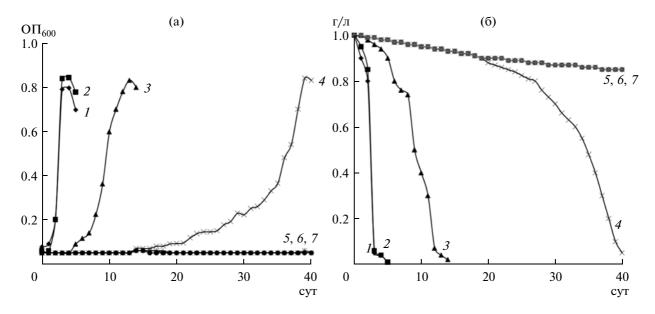

Таким образом, нами обнаружено, что кинетика ростовых параметров штамма *R. wratislaviensis* KT112-7 при культивировании при различных

Рис. 2. Рост штамма *R. wratislaviensis* КТ112-7 в МСР на ароматических углеводородах: $1 - \text{o-}\Phi\text{K}$, 2 - БK, 3 - бензол, 4 - бифенил, 5 - нафталин.

Рис. 3. Рост штамма *R. wratislaviensis* KT112-7 в МСР на о-ФК (а) и БК (б) (г/л): (а) I-1, 2-2, 3-3, 4-4, 5-5, 6-6, 7-7, 8-8; (б) I-0.4, 2-0.8, 3-1.3, 4-1.7, 5-2.5, 6-3.4, 7-4.2.

Рис. 4. Рост штамма *R. wratislaviensis* KT112-7 в МСР на о-ФК (а) и убыль субстрата (б) при различных концентрациях NaCl (%): I-0, 2-3, 3-7, 4-9, 5-10, 6-11, 7-12.

концентрациях о- ΦK и δK носит разнонаправленный характер.

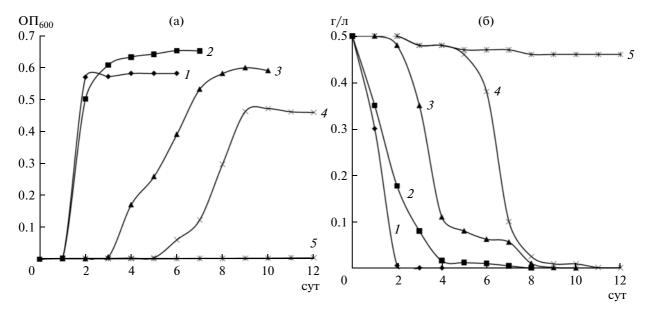
Деструкция ароматических углеводородов при разной солености среды. В минеральной среде Раймонда с о-ФК в качестве единственного источника углерода и энергии исследуемый штамм способен к росту при содержании до 90 г/л NaCl (рис. 4). Повышение концентрации соли в среде приводило к значительному увеличению подготовительной фазы роста (24—480 ч), снижению

удельной скорости роста (от 0.050 ± 0.004 до 0.006 ± 0.001 ч⁻¹), но практически не сказывалось на максимальной плотности культуры. Отмечена корреляционная зависимость между ростом культуры и убылью о- Φ K (r = -0.92).

Анализ культуральной среды в экспериментах с отмытыми клетками показал присутствие трех метаболитов разложения o- ΦK (табл. 3). С повышением содержания NaCl в среде отмечалось уве-

NaCl, % Время, ч	Время и	Деструкция, %	Метаболиты				
	деструкция, //	3,4-ГФК*, ОП ₃₀₉ , ед.	3,4-ГБК, мг/л	катехол, мг/л			
0	2	78.3 ± 0.1	0.372	н.д.**	н.д.		
	24	99.9 ± 0.1	0.374	н.д.	н.д.		
3	2	80.1 ± 0.2	0.336	н.д.	26.5 ± 0.2		
	24	93.2 ± 0.2	0.371	15.2 ± 0.2	59.1 ± 0.1		
5	2	79.6 ± 0.4	0.315	н.д.	41.9 ± 0.1		
	24	90.5 ± 0.3	0.377	88.8 ± 0.2	30.4 ± 0.1		
6	2	75.8 ± 0.4	0.421	92.0 ± 0.3	268.5 ± 0.4		
	24	86.6 ± 0.3	0.376	66.9 ± 0.1	167.6 ± 0.3		

Таблица 3. Разложение о-ФК штаммом R. wratislaviensis KT112-7 при разной концентрации NaCl


личение концентрации интермедиатов и снижение уровня деструкции субстрата.

При культивировании штамма КТ112-7 в МСР с БК в качестве субстрата рост штамма наблюдался при содержании в среде до 75 г/л NaCl (рис. 5). Подготовительная фаза роста была сопоставима с таковой при культивировании на о-ФК при аналогичных концентрациях соли в среде. Повышение концентрации NaCl приводило к снижению максимальной оптической плотности культуры (О $\Pi_{600} = 0.65 - 0.45$) и уменьшению удельной скорости роста (от 0.23 ± 0.01 до 0.040 ± 0.005 ч $^{-1}$). Рост штамма КТ112-7 сопровождался убылью субстрата (r = -0.93).

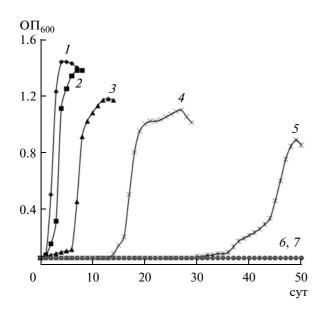
Основные метаболиты деструкции БК штаммом KT112-7 установлены в опытах с отмытыми

клетками (табл. 4). При высоком содержании соли (60 г/л) был обнаружен только катехол и снижался уровень деструкции БК. При концентрации NaCl до 50 г/л зафиксировано образование катехола, 4-ГБК и 3,4-ГБК в качестве промежуточных соединений.

В условиях, когда источником углерода и энергии являлся бифенил, штамм R. wratislaviensis KT112-7 был способен расти в присутствии NaCl в концентрации до $100~\rm r/n$ (рис. 6). Продолжительность подготовительной фазы роста находилась в прямой зависимости от количества NaCl в среде. Максимальная оптическая плотность культуры с увеличением концентрации соли снижалась ($O\Pi_{600} = 1.4 - 0.9$). Удельная скорость роста была сопоставима с аналогичным показателем при культивировании на o- Φ K и соответствую-

Рис. 5. Рост штамма *R. wratislaviensis* KT112-7 в МСР на БК (а) и убыль субстрата (б) при различных концентрациях NaCl (%): 1-0, 2-3, 3-6, 4-7.5, 5-9.

^{*} 3,4-ГФК - 3, 4-дигидроксифталевая кислота, ** н.д. - не детектировалось.


Таблица 4.	Разложение БК	штаммом R .	wratislaviensis	KT112-7	при разной	и концентрации NaCl
------------	---------------	---------------	-----------------	---------	------------	---------------------

NaCl, %	Время, ч	Деструкция, %	Метаболиты, мг/л				
raci, //	Бремя, ч		4-ГБК	3,4-ГБК	катехол		
0	2	81.3 ± 0.3	27.7 ± 0.3	н.д.*	н.д.		
	24	99.9 ± 0.1	5.4 ± 0.2	8.84 ± 0.4	2.3 ± 0.1		
3	2	65.4 ± 0.2	14.2 ± 0.1	н.д.	52.7 ± 0.2		
	24	92.3 ± 0.2	6.9 ± 0.1	3.2 ± 0.2	27.5 ± 0.1		
5	2	66.4 ± 0.4	27.1 ± 0.3	9.4 ± 0.2	71.4 ± 0.1		
	24	87.3 ± 0.2	37.4 ± 0.2	15.5 ± 0.5	86.8 ± 0.2		
6	2	62.0 ± 0.3	н.д.	н.д.	110.8 ± 0.4		
	24	85.4 ± 0.4	н.д.	н.д.	136.1 ± 0.3		

^{*} н.д. – не детектировалось.

щем содержании NaCl в среде (от 0.040 ± 0.003 до 0.009 ± 0.001 ч $^{-1}$).

В опытах с отмытыми клетками установлено, что эффективность деструкции бифенила не изменялась при содержании NaCl до 40 г/л и составляла 100% (различия лежат в пределах интервала достоверности). Дальнейшее увеличение концентрации хлорида натрия в среде приводило к снижению уровня деструкции до 60—67% (табл. 5). Анализ метаболитов, обнаруженных методом ВЭЖХ, показал, что начальные этапы трансфор-

Рис. 6. Рост штамма *R. wratislaviensis* КТ112-7 в МСР на бифениле при различных концентрациях NaCl (%): I-0, 2-3, 3-7, 4-9, 5-10, 6-11, 7-12.

мации субстрата (разложение бифенила до БК) не зависят от солености среды. При дальнейшей трансформации образовавшегося метаболита (БК) до соединений основного обмена, как и в случае культивирования на БК, зафиксированы различия в спектре метаболитов при повышении концентрации соли в среде (табл. 5).

Полученные данные об отрицательном влиянии повышения концентрации соли в среде на эффективность деструкции ароматических соединений у R. wratislaviensis KT112-7 согласуются и с результатами, обнаруженными при культивировании других бактерий в условиях различной минерализации среды [4, 6, 28–30]. Так, увеличение концентрации NaCl от 50 до 100 г/л приводило к снижению скорости деструкции БК штаммом Halomonas campisalis ATCC700597 в 1.7 раза [28]. При культивировании штамма Pseudomonas fluorescens B-1 в диапазоне концентраций NaCl от 0 до 35‰, максимальная скорость деструкции н-бутил бензил фталата отмечена при 15‰ NaCl [29]. Значительное снижение эффективности деструкции бифенила штаммом Dyella ginsengisoli LA-4 отмечено при превышении 30 г/л NaCl в среде [30]. Таким образом, штамм КТ112-7 активно разлагает о-ФК и бифенил при более высоком содержании NaCl в среде, чем описанные бактерии.

Функциональные гены деструкции ароматических соединений. Путем выявления ключевых генов, контролирующих разложение ароматических углеводородов, был исследован генетический потенциал штамма-деструктора *R. wratislaviensis* КТ112-7. В табл. 1 приведены результаты амплификации при использовании праймеров, сконструированных для обнаружения генов деструкции ряда моно(поли)ароматических соединений.

 1.6 ± 0.3

NaCl, %	% Время, ч Деструкция, %		Метаболиты, мг/л						
NaCi, 70	время, ч	деструкция, //	ГОФДК, ОП $_{434}$, ед.	БК	4-ГБК	3,4-ГБК	Катехол		
0	2	11.4 ± 0.01	0.034	1.15 ± 0.02	н.д.*	н.д.	н.д.		
	24	100	н.д.	0.97 ± 0.03	3.76 ± 0.04	9.98 ± 0.04	4.6 ± 0.1		
1	2	97.9 ± 0.01	0.134	1.26 ± 0.02	1.0 ± 0.2	н.д.	0.4 ± 0.1		
	24	99.4 ± 0.05	0.121	1.16 ± 0.02	21.3 ± 0.1	1.26 ± 0.04	16.0 ± 0.2		
2	2	79.9 ± 0.02	0.133	9.2 ± 0.1	8.6 ± 0.3	н.д.	н.д.		
	24	98.1 ± 0.09	0.149	11.6 ± 0.1	4.1 ± 0.3	н.д.	1.75 ± 0.05		
3	2	93.0 ± 0.1	0.241	27.8 ± 0.1	11.7 ± 0.1	н.д.	3.9 ± 0.2		
	24	99.8 ± 0.02	0.045	30.6 ± 0.2	1.53 ± 0.1	4.36 ± 0.02	4.35 ± 0.1		
4	2	98.1 ± 0.05	0.230	21.3 ± 0.2	6.24 ± 0.2	н.д.	н.д.		
	24	100	0.175	12.7 ± 0.1	19.8 ± 0.1	н.д.	3.67 ± 0.03		
5	2	25.6 ± 0.04	0.139	16.2 ± 0.1	н.д.	н.д.	1.4 ± 0.1		
	24	66.9 ± 0.05	0.161	3.6 ± 0.4	6.7 ± 0.2	1.7 ± 0.1	1.2 ± 0.1		
6	2	40.5 ± 0.04	0.145	6.9 ± 0.4	н.д.	н.д.	1.8 ± 0.4		

 6.1 ± 0.3

0.256

Таблица 5. Разложение бифенила штаммом R. wratislaviensis KT112-7 при разной концентрации NaCl

24

Показано, что при использовании праймеров к генам *clcA*, *benA*, *bphA1*, *bphB*, *bphC*, *bphD*, *phtB* с тотальной ДНК штамма КТ112-7 получены ампликоны, соответствующие по размеру фрагментам генов референтных нуклеотидных последовательностей. Результаты позволяют предположить наличие у штамма КТ112-7 генов, кодирующих хлоркатехол 1,2-диоксигеназу (КФ 1.13.11.1), бензоат 1,2-диоксигеназу (КФ 1.14.12.18), бифенил 2,3-диоксигеназу (КФ 1.3.1.56), бифенил-2,3-диол-дегидрогеназу (КФ 1.3.1.56), гидроксиоксо-фенилгексадиеноат-гидролазу (КФ 3.7.1.8), фталат-3,4-дегидрогеназу (КФ 1.3.1.-).

 58.4 ± 0.08

Нами были получены и проанализированы нуклеотидные последовательности амплифицированных фрагментов генов bphA1, benA и phtB штамма КТ112-7. Наибольшее сходство фрагмента гена bphA1 (99%) наблюдалось с геном bphA1 штамма-деструктора бифенила (полихлорированных бифенилов) Rhodococcus sp. P1 (GenBank FJ752167). Сходство гена *bphA1* штамма KT112-7 с аналогичными последовательностями известного деструктора полихлорированных бифенилов R. jostii RHA1 (GenBank CP000432.1) составляло 95%. Анализ нуклеотидной последовательности фрагмента гена benA штамма KT112-7 показал, что наибольший уровень сходства (98%) наблюдался с аналогичными участками гена бензоат 1,2-диоксигеназы деструкторов ароматических соединений R. jostii RHA1 (GenBank AB055706.1) и Rhodococcus sp. DK17 (GenBank EU833983.1). Наибольший уровень сходства (97%) фрагмента гена phtB штамма KT112-7 отмечен с геном нафталин-дигидродиол-дегидрогеназы штамма Rhodococcus opacus B4 (GenBank AP011117.1).

н.д.

н.л.

Метаболические пути деструкции бифенила, о-ФК и БК у штамма R. wratislaviensis KT112-7. Анализ соединений, образующихся при культивировании штамма R. wratislaviensis KT112-7 на о-ФК, БК и бифениле (табл. 3–5), а также анализ функциональных генов (табл. 1) позволил представить вероятную схему метаболических путей деструкции данных соединений у исследуемого штамма (рис. 7). Разложение бифенила осуществляется по классическому пути, через стадию образования 2-гидроксо-6-оксо-фенилгекса-2,4 диеновой кислоты (ГОФДК) до расщепления молекулы бифенила на пентадиеновую и бензойную кислоты. Такой путь описан для большинства известных деструкторов бифенила, в том числе наиболее изученных Burkholderia xenovorans LB400 и R. jostii RHA1 [31].

Известно, что разложение о-ФК аэробными бактериями может осуществляться через стадию образования 3,4-дигидрокси- или 4,5-дигидроксифталевой кислоты, каждая из которых далее трансформируется до 3,4-дигидроксибензойной кислоты [27]. На основании анализа метаболитов нами показано, что штамм KT112-7 осуществляет

^{*} н.д. – не детектировалось.

Соединения основного обмена клетки

Рис. 7. Схема метаболических путей разложения бифенила, БК и о-ФК штаммом *R. wratislaviensis* KT112-7. Выделены соединения и гены, детектированные в настоящем исследовании.

разложение о-ФК через 3,4-дигидроксифталевую кислоту. Данное предположение подтверждает и тот факт, что в результате специфичной амплификации получен фрагмент гена *phtB*, кодирующий фталат-3,4-*цис*-дигидродиол дегидрогеназу (табл. 1). В работе [27] представлен путь трансформации о-ФК, в котором 3,4-дигидроксибензойная кислота, один из основных метаболитов, окисляется протокатехат 3,4-диоксигеназой (КФ 1.13.11.3) до 3-карбокси-*цис*, *цис*-муконовой кислоты. Однако отсутствие специфичной амплификации с праймерами к гену *рсаН* позволяет предположить, что у

штамма КТ112-7 разложение образующейся 3,4-ГБК идет по пути, отличному от описанного для штаммов *Pseudomonas* sp. PPD, *P. aeruginosa* PP4 и *Acinetobacter lwoffii* ISP4 [27].

Интересный результат получен при анализе метаболического пути разложения БК (как самостоятельного субстрата, так и метаболита бифенила) штаммом КТ112-7 (табл. 4, 5, рис. 7). ВЭЖХ-анализ показал присутствие в среде 4-гидроксибензойной, 3,4-дигидроксибензойной кислот и катехола. При этом при высоких концентрациях соли (60 г/л), для которых отмечено снижение

эффективности деструкции бифенила, среди возможных метаболитов бензойной кислоты фиксировался только катехол. Мы предполагаем, что в штамме *R. wratislaviensis* КТ112-7 присутствуют два метаболических пути разложения бензоата и при высоком уровне осмотической нагрузки на клетки штамма активируется только классический путь трансформации БК [3, 7]. Известно, что окисление БК до катехола осуществляется бензоат 1,2-диоксигеназой (ген *benA*). С ДНК исследуемого штамма амплифицирован фрагмент гена *benA*, характеризующийся высоким уровнем гомологии с геном бензоат 1,2-диоксигеназы — известных деструкторов *R. jostii* RHA1 и *Rhodococcus* sp. DK17.

Анализ литературы и баз данных показал, что среди бактерий метаболический путь, при котором БК под действием бензоат 4-монооксигеназы (КФ 1.14.13.12) окисляется до 4-ГБК, встречается крайне редко и описан для ряда штаммов рода *Pseudomonas* [32] и для штамма *Burkholderia* sp. 383 (GenBank CP 000152). Стоит отметить, что у штамма *Burkholderia* sp. 383 трансформация БК осуществляется последовательно путем образования 4-ГБК, 3,4-ГБК и катехола (http://www.genome.jp). В результате проведенного исследования нами впервые для штаммов рода *Rhodococcus* описан путь разложения БК через стадию образования 4-ГБК.

Окисление 4-ГБК до 3,4-ГБК описано для широкого круга бактерий [3, 7]. Присутствие среди метаболитов 3,4-ГБК и катехола (табл. 3–5), а также тот факт, что у штамма КТ112-7 отсутствовала специфичная амплификация с праймерами к гену протокатехат 3,4-диоксигеназы (табл. 1), позволяет предположить, что трансформация 3,4-ГБК происходит путем декарбоксилирования (http://www.brenda-enzymes.info).

Известно, что разложение катехола осуществляется бактериями по пути орто- или мета-расщепления [7]. Анализ функциональных генов показал, что в клетках штамма КТ112-7 может присутствовать фермент пути мета-расщепления катехола — хлоркатехол 1,2-диоксигеназа (табл. 1). Стоит отметить, что у штаммов *Pseudomonas* sp. XP-M2 и *P. putida* КТ2440, активно разлагающих БК, так же выявлено наличие хлоркатехол 1,2-диоксигеназы, но не катехол 2,3-диоксигеназы [33, 34].

Таким образом, штамм *R. wratislaviensis* KT112-7 обладает уникальным сочетанием путей разложения ароматических соединений и способен осуществлять эффективную деструкцию о-ФК, БК и бифенила в условиях высокой солености среды. Полученные результаты позволяют рекомендовать данный штамм для использования в биотехнологиях утилизации (трансформации) ароматических соединений в условиях повышенной минерализации.

Авторы выражают благодарность Гусеву В.А. и Шишкину М.А. (ИЭГМ УрО РАН) за помощь в исследовании образцов деструкции бифенила методом газохроматографического масс-спектрометрического анализа.

Исследования поддержаны Программой Президиума РАН "Молекулярная и клеточная биология" (проект № 01201256872), грантом РФФИ-Урал № 11-04-96028-р_урал_а, междисциплинарным проектом УрО РАН № 01201252808.

СПИСОК ЛИТЕРАТУРЫ

- 1. http://www.atsdr.cdc.gov/toxprofiles/tp17.html.
- 2. *Бачурин Б.А., Одинцова Г.А.* // Горн. информ.-аналит. бюлл. 2009. № 7. С. 374—380.
- 3. Le Borgne S., Paniagua D., Vazquez-Duhalt R. // J. Mol. Microbiol. Biotechnol. 2008. V. 15. № 2–3. P. 74–92.
- Плотникова Е.Г., Рыбкина Д.О., Ананьина Л.Н., Ястребова О.В., Демаков В.А. // Экология. 2006. № 4. С. 261–268.
- 5. *Anan'ina L.N., Yastrebova O.V., Demakov V.A., Plotnikova E.G.* // Antonie van Leeuwenhoek. 2011. V. 100. № 2. P. 309–316.
- 6. *de Carvalho C.C.C.R.* // Res. Microbiol. 2012. V. 163. № 2. P. 125–136.
- 7. Solyanikova I.P., Travkin V.M., Rybkina D.O., Plotnikova E.G., Golovleva L.A. // J. Environ. Sci. Health. Part B. 2008. V. 43. № 3. P. 241–252.
- 8. *Raymond R.L.* // Develop. Ind. Microbiol. 1961. V. 2. № 1. P. 23–32.
- 9. Versalovic J., Schneider M., de Bruijn F.J., Lupski J.R. // Methods Cell. Mol. Biol. 1994. V. 5. № 1. P. 25–40.
- Методы общей бактериологии / Ред. Ф. Герхардт,
 Р. Мюррей, Р. Костилоу, Ю. Нестер, В. Вуд,
 Н. Крит, Г. Филлипс. М.: Мир, 1983. Т. 1. С. 16–89,
 277–511; 1984. Т. 2. С. 283–373; 1984. Т. 3. С. 8–97.
- Tiirola M.A., Mannisto M.K., Puhakka J.A., Kulomaa M.S. // Appl. Environ. Microbiol. 2002. V. 68. № 1. P. 173–180.
- 12. *Thompson J.D.*, *Higgins D.G.*, *Gibson T.J.* // Nucleic. Acids. Res. 1994. V. 22. № 22. P. 4673–4680.
- Егорова Д.О., Демаков В.А., Плотникова Е.Г. // Прикл. биохимия и микробиология. 2010. Т. 46. № 6. С. 644–650.
- 14. *Eaton R.W.* // J. Bacteriol. 2001. V. 183. № 12. P. 3689—
- 15. *Paniker G., Mojib N., Aislabie J., Bej A.K.* // Antonie van Leeuwenhoek. 2010. V. 97. № 3. P. 275–287.
- 16. *Baldwin B.R., Nakatsu C.H., Nies L.* // Appl. Environ. Microbiol. 2003. V. 69. № 6. P. 3350–3358.
- 17. *Mesarch M.B., Nakatsu C.H., Nies L.* // Appl. Environ. Microbiol. 2000. V. 66. № 2. P. 678–683.
- 18. Baggi G., Bernasconi S., Zangarossi M., Cavalca L., Andereoni V. // Int. Biodeter. Biodegrad. 2008. V. 62. № 1. P. 57–64.
- 19. *Jouanneau Y., Meyer C.* // Appl. Environ. Microbiol. 2006. V. 72. № 7. P. 4726–4734.

- 20. *Xu S., Ju J., Misono H., Ohnishi K.* // Gene. 2006. V. 368. № 1. P. 126–137.
- 21. *Hong Q., Dong X., He L., Jiang X., Li S. //* Int. Biodeter. Biodegrad. 2009. V. 63. № 4. P. 365–370.
- 22. Rodrigues J.L.M., Kachel C.A., Aiello M.R., Qensen J.F., Maltseva O.V., Tsoi T.V., Tiedje J.M. // Appl. Environ. Microbiol. 2006. V. 72. № 4. P. 2476–2482.
- 23. *García M.T., Ventosa A., Mellado E.* // FEMS Microbiol. Ecol. 2005. V. 54. № 1. P. 97–109.
- 24. Stingley R.L., Brezna B., Khan A.A., Cerniglia C.E. // Microbiology. 2004. V. 150. № 11. P. 3749–3761.
- Vedler E. // Megaplasmids and the degradation of aromatic compounds by soil bacteria. Microbial Megaplasmids / Ed. E. Schwartz. Berlin, Heidelberg: Springer-Verlag, 2009. P. 33–53.
- 26. *Murad S., Hasan F., Shah A.A., Hameed A., Ahmed S. //* Pakist. J. Bot. 2007. V. 39. № 5. P. 1833—1841.

- 27. Vamsee-Krishna C., Mohan Y., Phale P.S. // Appl. Microbiol. Biotechnol. 2006. V. 72. № 6. P. 1263–1269.
- 28. *Oie C.S.I.*, *Albaugh C.E.*, *Peyton B.M.* // Water Res. 2007. V. 41. № 6. P. 1235–1242.
- 29. *Xu X.-R.*, *Li H.-B.*, *Gu J.-D.* // Ecotoxicol. Environ. Safety. 2007. V. 68. № 3. P. 379–385.
- 30. *Li A., Qu Y., Zhou J., Gou M.* // J. Environ. Sci. 2009. V. 21. № 2. P. 211–217.
- 31. *Pieper D.H.* // Appl. Microbiol. Biotechnol. 2005. V. 67. № 2. P. 170–191.
- 32. *Reddy C.C.*, *Vaidyanathan C.S.* // Arch. Biochem. Biophys. 1976. V. 177. № 2. P. 488–498.
- 33. *Xie N., Tang H., Feng J., Tao F., Ma C., Xu P.* // Biochem. Eng. J. 2009. V. 46. № 1. P. 79–82.
- 34. van Duuren J.B.J.H., Wijte D., Leprince A., Karge B., Puchałka J., Wery J., dos Santos V.A.P.M., Eggink G., Mars A.E. // J. Bacteriol. 2011. V. 156. № 3. P. 163–172.

Destruction of Aromatic Hydrocarbons by the *Rhodococcus* wratislaviensis KT112-7 Strain Isolated from Waste Products of a Salt-Mining Factory

D. O. Egorova, E. S. Korsakova, V. A. Demakov, and E. G. Plotnikova

Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, ul. Pushkina 1-57, Perm, 614000 Russia Received June 28, 2012

Abstract—The destruction of aromatic hydrocarbons by the *Rhodococcus wratislaviensis* KT112-7 strain isolated from technogenic mineral waste products of the BKRU1 Uralkalii factory has been investigated (city of Berezniki, Perm krai). The *R. wratislaviensis* KT112-7 was shown to utilize increased concentrations of *o*-phthalic (*o*-PA) (8 g/L) and benzoic (BA) (3.4 g/L) acids. The strain grows with *o*-FA, BA, and biphenyl at a NaCl content of up to 50, 90, and 75 g/L in the culture medium, respectively. Based on an analysis of the metabolic profile and nucleotide sequences of the *bphA1*, *benA*, and *phtB* genes, the KT112-7 strain was established to decompose *o*-PA via the formation of 3,4-dihydroxyphthalic and 3,4-dihydroxybenzoic acids. The decomposition of biphenyl is carried out via the formation of BA and then at low concentrations of NaCl (up to 50 g/L) via the formation of 4-hydroxybenzoic acid followed by its oxidation; at high concentrations of NaCl (over 60 g/L), via the direct oxidation of benzoic acid with the production of catechol. These data indicate that the *Rhodococcus wratislaviensis* KT112-7 destructor strain is a promising strain for the development of new biotechnologies directed at the utilization (transformation) of aromatic compounds, including under the conditions of increased mineralization.