УДК 577.23.013

БИОХИМИЧЕСКАЯ И СТРУКТУРНАЯ ХАРАКТЕРИСТИКА F_oF₁-АТФ-СИНТАЗЫ Streptomyces fradiae ATCC 19609*

© 2015 М.Г. Алексеева¹, Т.А. Мирончева¹, Д.А. Мавлетова¹, С.М. Елизаров², Н.В. Захаревич¹, В.Н. Даниленко^{1**}

 ¹ Институт общей генетики им. Н.И. Вавилова РАН, 119991 Москва, ул. Губкина, 3; факс: +7(499)132-8962, электронная почта: valerid@rutenia.ru
 ² Институт биохимии им. А.Н. Баха РАН, 119071 Москва, Ленинский просп., 33, корп. 2; факс: +7(495)954-2732

Поступила в редакцию 22.07.14 После доработки 27.10.14

Исследовано фосфорилирование белков в препаратах суббактериальных инвертированных мембранных везикул Streptomyces fradiae ATCC 19609, содержащих мембраносвязанные F_0F_1 -AT Φ -синтазы. Методом двумерного электрофореза с последующим масс-спектрометрическим анализом впервые установлено, что в составе синтазного комплекса осуществляется фосфорилирование β- и b-субъединиц; идентифицировано 20 белков с установленными функциями. Осуществлено клонирование генов F₀F₁-АТФ-синтазы в *Escherichia coli* и получены рекомбинантные белки всех восьми субъединиц: α , β , γ , δ , ε , a, b и с. С использованием суммарного препарата серин-треониновых протеинкиназ (СТПК) впервые показано фосфорилирование рекомбинантных γ-, β-, α- и ε-субъединиц. В обоих типах экспериментов наблюдалось фосфорилирование β-субъединицы F₀F₁-ATΦ-синтазы. Отличия в фосфорилировании белков во фракции мембранных везикул и рекомбинантных белков могут быть связаны с присутствием разных СТПК в используемых препаратах, а также зависеть от этапов сборки и функционирования F₀F₁-ATФ-синтазы. Установлена структура оперона, содержащая все субъединицы и регуляторный белок І. Исследовано филогенетическое сходство субъединиц F₀F₁-АТФ-синтазы Streptomyces fradiae АТСС 19609 с субъединицами различных групп сапрофитных и патогенных бактерий (в т.ч. Mycobacterium tuberculosis). Полученные результаты могут указывать на значительную роль серин-треониновых протеинкиназ в функционировании F_oF₁-ATФ-синтазы. В практическом плане данные могут быть использованы для конструирования оригинальной тест-системы и создания новых биомишень-направленных лекарств против патогенных бактерий.

КЛЮЧЕВЫЕ СЛОВА: F₀F₁-АТФ-синтаза, АТФаза, серин-треониновые протеинкиназы, инвертированные мембранные везикулы, *Streptomycetes*.

Актуальной задачей современной биологии и медицины является поиск новых средств для лечения различных заболеваний человека. Многие исследования, направленные на создание инновационных лекарственных препаратов, основываются на данных о молекулярных мишенях лекарств нового поколения. Одной из популярных в настоящее время биомишеней является F₀F₁-ATФ-синтаза – универсальная молекулярная машина, осуществляющая синтез (и в определенных условиях гидролиз) АТФ в митохондриях эукариот, хлоропластах растений и бактериях. F_0F_1 -АТФ-синтаза представляет собой многосубъединичный фермент, состоящий из растворимой F_1 -части, катализирующей синтез АТФ из АДФ и неорганического фосфата за счет ротационного движения центрального стержня молекулы, и связанной с ней F_0 -части, погруженной в мембрану молекулы [1, 2]. F_1 -часть F_0F_1 -АТФ-синтазы бактерий включает пять субъединиц: α , β , γ , δ и ϵ . F_0 -часть синтазы содержит три субъединицы: a, b и с. Этот комплекс присутствует в митохондриях эукариот и клеточной стенке бактерий [3–5].

F_oF₁-АТФ-синтаза вовлечена в поддержание клеточного pH, а также регуляцию эндоцитоза, пролиферации и апоптоза [6, 7]. В последние го-

Принятые сокращения: СТПК – серин-треониновые протеинкиназы, ФМСФ – фенилметилсульфонилфторид, ТХУ – трихлоруксусная кислота, ДТТ – дитиотреитол, KN-62 – ингибитор Ca²⁺-зависимых протеинкиназ, Бис-I – бисиндолилмалеимид-I, п.н. – пары нуклеотидов, а.о. – аминокислотные основания.

^{*} Приложение к статье опубликовано на сайте «Biochemistry» (Moscow), Vol. 80, issue 3, 2015.

^{**} Адресат для корреспонденции.

359

ды разрабатываются лекарственные препараты, способные воздействовать на функционирование F_0F_1 -АТФ-синтазы различных организмов, в первую очередь человека и патогенных бактерий [8, 9]. Ингибирование активности F_0F_1 -АТФ-синтазы может осуществляться не только путем взаимодействия с ее собственными субъединицами, но и с сопряженными биомишенями в суббактериальных инвертированных мембранных везикулах. Был разработан новый препарат, ориентированный на F_oF₁-АТФ-синтазу Micobacterium tuberculosis: отобрано соединение бедакуилин, которое ингибирует F₀F₁-ATФсинтазу микобактерий и показывает высокую и избирательную активность *in vitro* и *in vivo* [10, 11]. F₀F₁-АТФ-синтазы актинобактерий при большом структурном сходстве отличает от фермента других бактерий зависимость активности от ионов Са²⁺ [12, 13] и чувствительность к антибиотику олигомицину А [14-17]. Основной биомишенью действия является с-субъединица F_0F_1 -АТФ-синтазы и ее гомолог у эукариотических клеток [18]. Антибиотики семейства олигомицинов и другие ингибиторы F₀F₁-ATФ-синтазы человека и бактерий рассматриваются как потенциальные лекарственные препараты [19], однако их продвижение в качестве фармацевтических препаратов ограничивается высокой токсичностью. Впервые российскими учеными получены более 20 полусинтетических производных олигомицина А, обладающих более низкой токсичностью [20, 21].

В литературе имеются единичные указания на фосфорилирование б- и с-субъединиц в митохондриях эукариот [22, 23], β-субъединицы в митохондриях скелетной мышцы человека [24] и хлоропластах [25], β-субъединицы у *M. tuber*culosis [26]. Полагают, что фосфорилирование компонентов комплекса может влиять на проницаемость мембран митохондрий (субъединица с), структуру комплекса F₀F₁-АТФ-синтазы (субъединица β) и может иметь PDGF-зависимый характер (субъединица δ). Ранее нами был установлен феномен повышения устойчивости клеток бактерий и F₀F₁-АТФ-синтазы в составе мембранных везикул к олигомицину А в результате появления в клетках нечувствительной к олигомицину А формы F₀F₁-комплекса и определена чувствительность к ингибиторам (олигомицину A и др.) F₀F₁-ATФ-синтазы трех штаммов стрептомицетов *in vivo* и *in vitro*. Впервые было показано, что во фракции мембранных везикул актинобактерии Streptomyces fradiae ATCC 19609 содержатся по крайней мере две активные серин-треониновые протеинкиназы (СТПК), способные фосфорилировать мембранные белки, и их активность регулируется ионами Ca²⁺

[17]. Построена структура F_oF₁-АТФ-синтазного оперона и осуществлено филогенетическое сравнение субъединиц кодируемых им белков с аналогичными белками различных групп сапрофитных и патогенных бактерий.

Основной целью работы является изучение фосфорилирования белков F_0F_1 -АТФ-синтазного комплекса *S. fradiae* АТСС 19609 с использованием двух подходов: 1) в составе мембранных везикул, включающих мембраносвязанные СТПК, и 2) путем фосфорилирования рекомбинантных белков всех восьми субъединиц, полученных в *Escherichia coli*, суммарным препаратом СТПК *S. fradiae* АТСС 19609.

МЕТОДЫ ИССЛЕДОВАНИЯ

Бактериальные штаммы, векторы, среды и условия культивирования. В работе использован штамм *S. fradiae* ATCC 19609 (геном штамма секвенирован в лаборатории генетики микроорганизмов ИОГен РАН, последовательность генома депонирована в GenBank под номером JNAD0000000) и штаммы *E. coli* DH5α (F⁻, Φ80 $\Delta lacZ\Delta M15$ $\Delta (lacZYA-argF)$ U169) фирмы «Promega» (США) [27] и BL21(DE3) (F⁻ dcm ompT $hsdS(r_B^-m_B^-)$ gal λ (DE3)), плазмида pET32a фирмы «Novagen» (США) [28]. Для выращивания штамма S. fradiae ATCC 19609 использовали жидкую среду YEME с 25% сахарозы (m/V) [29] при 28° в течение 24 ч (позднелогарифмический рост), мицелий собирали в течение 30 мин центрифугированием при 3000 g. Для выращивания клеток *E. coli* использовали среду Лурия (L-бульон). Твердые среды содержали 2,0% агара (m/V) [30]. Для обеспечения селективного роста плазмидосодержащих клеток добавляли ампициллин (100 мкг/мл).

Манипуляции с ДНК. Тотальную ДНК штамма S. fradiae ATCC 19609 выделяли методом, изложенным в руководствах Кизер с соавт. [29]. Выделение плазмидной ДНК, приготовление компетентной культуры E. coli, трансформацию и анализ рекомбинантных плазмид проводили с использованием стандартных методов [30]. ПЦР с тотальной ДНК штамма S. fradiae ATCC 19609 проводили с использованием набора РСК-100 («Dialat Ltd.», Россия) на приборе РТС-0150 («MJ Research, Inc.», США). Для амплификации фрагментов ДНК всех субъединиц было сконструировано 10 олигонуклеотидов, гомологичных фланкирующим областям а-, с-, b-, δ-, α-, γ -, β - и ϵ -субъединиц F_0F_1 -АТФ-синтаз, находящихся в базе данных NCBI (http://www.ncbi.nlm. nih.gov/) штаммов S. coelicolor, S. lividans и S. avermitilis с использованием программы NCBI/PrimerBLAST (www.ncbi.nlm.nih.gov/tools/primer-blast/). Олигонуклеотиды для клонирования были сконструированы на основании секвенирования нуклеотидных последовательностей амплифицированных субъединиц (табл. 1). Амплифицированные субъединицы клонировали в экспрессионный вектор pET32a по сайтам эндонуклеаз рестрикции *EcoR*I и *Hind*III. Скрининг полученных рекомбинантных клонов проводили с помощью ПЦР с использованием стандартных праймеров S · Tag и T7term.

Изучение экспрессии генов F₀F₁-АТФ-синтазы в *E. coli*. Экспрессию генов субъединиц F₀F₁-АТФ-синтазы штамма *S. fradiae* АТСС 19609

Олигонуклеотид	Структура олигонуклеотида (5'-3')*	Рестриктаза
ATPAN	CCATGCGCCACGCTGAAGG	_
ATPAC	TGCTCAGTGGTGCTCGGC	_
ATPCN	CGGTGGCCAACCCCCAC	_
ATPCC	AGGCCGATGACGAGCTCGGGGA	_
ATPBN	GGCGGCCGGCCTGATCCGC	_
ATPBC	GGCCAGCTCGTCGGCGAGC	_
ATPIN	ATGCCGTCCAATGACGTCCG	_
ATPIC	CTCCTTCAGCGTGGCGCATG	_
Del(+)	CGGCAGCGCGAGGAGATCAT	_
Del(-)	GACCTCCTCGCGCGAGGCCG	_
Alp(+)	TAGCCTGGAGTCGGGACTC	_
Alp(-)	GTGACGGATCGGATGCGACG	_
Gam(+)	GCACCACCGGCAAGATGGAC	_
Gam(-)	GGAGATGGTGCGGACCAGGC	_
Beta(+)	AATCAGCGAGATCGTCGGTGGC	_
Beta(-)	GACGTGCAGCTCAGCAGCCA	_
Eps(+)	GGCGTTCTTCATGTGCGGTGGC	-
Eps(-)	CCGCACACAGTCAGAGCGAG	-
ATPFAN	ATCCGAATTCGTGAGTGCTGACCCGACAACG	EcoRI
ATPFAC	CCGCAAGCTTGTGGTGCTCTGCGAGAGCG	HindIII
ATPFCN	ATCCGAATTCATGTCCCAGACCCTTGCTGC	EcoRI
ATPFCC	CCGCAAGCTTACGAACGGCATGACGAGGCC	HindIII
ATPFBN	ATCCGAATTCGTGAACGTTCTGGTTCACCT	EcoRI
ATPFBC	CCGCAAGCTTGTCGGCCGGCCTCGGCCTTC	HindIII
DelN	ATCCGAATTCATGAACGGAGCGAGCCGCG	EcoRI
DelC	CCGCAAGCTTGCCGGCCATCCGCCGGGA	HindIII
AlpN	ATCCGAATTCATGGCGGAGCTCACGATCCG	EcoRI
AlpC	CCGCAAGCTTCTTGCCGGCGGCCGGAACGT	HindIII
GamN	ATCCGAATTCATGGGTGCCCAGATCCGGGT	EcoRI
GamC	CCGCAAGCTTCCTGTCACTCCCCGCGGTCG	HindIII
BetaN	ATCCGAATTCATGACCACCACTGTTGAGCCG	EcoRI
BetaC	CCGCAAGCTTCAGAATAACGGGCGTGGATCC	HindIII
EpsN	ATCCGAATTCTTGGCTGCTGAGCTGCACGT	EcoRI
EpsC	CCGCAAGCTTGCGCTTGCTCGCGGCCGCG	HindIII
		1

Таблица 1. Олигонуклеотиды, используемые в работе

* Жирным шрифтом выделены сайты узнавания рестриктаз EcoRI (GAATTC) и HindIII (AAGCTT).

проводили в клетках E. coli BL21(DE3). Для изучения экспрессии белка и наработки биомассы клетки E. coli, содержавшие сконструированные плазмиды, выращивали на качалке в жидкой среде (L-бульон) с ампициллином при 34° до оптической плотности 0,6 (~2 ч), затем индуцировали экспрессию добавлением ИПТГ до финальной концентрации 1,0 мМ. Далее проводили культивирование при 28° в течение 4 ч, после чего отбирали биомассу, которую суспендировали в буфере следующего состава: 62,5 мМ Tris-HCl, (pH 6,8), 5%-ный глицерин (*m*/*V*), 2%-ный меркаптоэтанол (m/V), 0,1%-ный Ds-Na, бромфеноловый синий. Затем клетки разрушали кипячением в течение 10 мин. Растворимую фракцию белков анализировали с помощью Ds-Na-ПААГ-электрофореза. В качестве контроля анализировали растворимую фракцию белков штамма E. coli BL21(DE3), содержавшего плазмиду рЕТ32а без вставки. Рекомбинантные белки из экстрактов выделяли в нативных условиях хроматографией на His-связывающих Ni-NTA колонках («Qiagen», Германия) согласно протоколу QIAexpress.

Получение препаратов мембранных везикул для протеомного анализа. Мицелий S. fradiae АТСС 19609 трижды отмывали в 0,1 М Tris-HCl, рН 7,5. Клетки суспендировали в 10 объемах буфера, содержавшего 50 мМ Tris-HCl (pH 7,5), 10 мМ MgCl₂, 10%-ный глицерин (*m/V*), 1 мМ фенилметансульфонил фторид ($\Phi MC\Phi$), 0,5 мМ дитиотреитол (ДТТ), коктейль ингибиторов протеаз («Promega», США), с добавлением лизоцима до конечной концентрации 1 мг/мл. Полученную суспензию инкубировали при 37° при постоянном перемешивании в течение 30 мин. Протопласты разрушали озвучиванием в ультразвуковом дезинтеграторе Vibra Cell™ Ultrasonic Processor («Sonics», США) при частоте 20 кГц трижды по 30 с с интервалом между обработками 15 с при 4°. Клеточные обломки осаждали центрифугированием в течение 20 мин при 4° и 10 000 g. Для выделения везикул белки супернатанта центрифугировали в течение 10 ч при 4° и 100 000 g, суспендировали в том же буфере (без лизоцима) и центрифугировали в течение 16 ч при 4° и 150 000 g. Полученные осадки растворяли в шести объемах буфера (без лизоцима). Концентрацию белка определяли на флуориметре Qubit 2.0 («Invitrogen», США). Мембранные везикулы замораживали в жидком азоте и хранили при -70°.

Фосфорилирование белков мембранных везикул. Проводили в течение 10 мин при 25° в буфере, содержавшем 25 мМ Tris-HCl (pH 7,4), 5 мМ MgCl₂, 5 мМ MnCl₂, 1 мМ ДТТ, 1 мМ ЭДТА, 0,1 мМ ФМСФ. Реакцию начинали добавлением АТФ до конечной концентрации 100 мкМ, содержавшей 10–20 мкКи [γ -³²P]-АТФ (5000 Ки/мМ (186 ПБк/М), ИБХ им. М.М. Шемякина и Ю.А. Овчинникова РАН), в присутствии 100 мкг белка везикул. Белки осаждали пятью объемами холодного ацетона, выдерживали 2 ч при –20°, осадки собирали центрифугированием в течение 20 мин при 4° и 20 000 g. Подсушенные осадки растворяли в буфере, содержавшем 8,5 М мочевину, 2%-ный Тритон Х-100 (*m/V*), 2,2% амфолиты (*m/V*), 5%-ный β-меркаптоэтанол (*m/V*), удаляли нерастворенные агрегаты центрифугированием, супернатант использовали для дальнейшего разделения методом двумерного электрофореза.

Двумерный гель-электрофорез (SDS-PAGE). Проводили по методике О'Фаррелла [31] с небольшими модификациями. Подготовку образцов для масс-спектрометрии осуществляли по методике, рекомендованной фирмой «Promega», США (In Gel Digest Protocol), масс-спектры получены методом, рекомендованным фирмой «Bruker Daltonics» (США), на аналитическом масс-спектрометре Bruker Daltonics (UltrafleXtreme Maldi Tof/Tof Ms) («Bruker Daltonics GmbH», Германия) в отделе протеомных исследований НИИ биомедицинской химии им. В.Н. Ореховича РАМН. Идентификацию белков осуществляли при помощи программы Mascot (www. matrixscience.com). Поиск производили в базе ланных NCBI.

Получение мембранных везикул для фосфорилирования субъединиц F₀F₁-АТФ-синтазы. Штамм S. fradiae ATCC 19609 выращивали в основной жидкой питательной среде, приготовленной, как описано ранее [32, 33], до поздней экспоненциальной фазы роста, собирали мицелий центрифугированием, суспендировали в буфере, содержавшем 50 мМ Tris-HCl (pH 7,5), 10 мМ $MgCl_2$, 10%-ный глицерин (*m*/*V*), 1 мМ Φ MC Φ , 0,5 мМ ДТТ, 1 мг/мл лизоцима и 1 мкг/мл ДНКазы, и получали протопласты, инкубируя 30 мин при 37°. Протопласты разрушали озвучиванием в отечественном ультразвуковом дезинтеграторе УЗДН-1, У-42 в течение 3 мин при частоте 30 кГц, после чего удаляли клеточный дебрис центрифугированием в течение 20 мин при 4° и 10 000 g. Мембранные везикулы осаждали центрифугированием в течение 120 мин при 4° и 180 000 g, промывали указанным выше буфером и хранили в жидком азоте.

Фосфорилирование субъединиц F_0F_1 -АТФсинтазы. Фосфорилирование субъединиц проводили в течение 10 мин при 28° в буфере, содержавшем 50 мМ Tris-HCl, 100 мМ NaCl, 5 мМ MgCl₂, 5 мМ β -меркаптоэтанол, 0,1 мМ ФМСФ, 0,01%-ный Tween-20, 10%-ный глицерин (m/V) (pH 7,8) и 0,5 мМ [γ-³²P]-АТФ (5000 имп/мин на пмоль; «Фосфор», Россия), в присутствии 100 мкг/мл белка.

Суммарный препарат СТПК *S. fradiae* АТСС 19609 выделяли из экстрактов бактерии хроматографией на цибакрон-сефарозе [34].

Анализ АТФазной активности в мембранных везикулах Streptomyces fradiae ATCC 19609 проводили по высвобождению ${}^{32}P_i$ после отделения его от связанной с активированным углем марки «Norit A» [γ - ${}^{32}P$]-АТФ по методике, описанной ранее [17]. Во всех случаях приводили усредненные значения трех независимых измерений со среднеквадратичными отклонениями.

Биоинформатические методы анализа. Поиск нуклеотидных и аминокислотных последовательностей субъединиц F₀F₁-АТФ-синтаз бактерий проводился по нуклеотидным и аминокислотным базам данных, доступным на сайте NCBI (http://www.ncbi.nlm.nih.gov/). Анализ последовательностей выполнялся при помощи программы BLAST (http://blast.ncbi.nlm.nih.gov/ Blast.cgi). Выравнивания субъединиц проводились с помощью программ ClustalW [34] и TCOFFEE (http://igs-server.cnrs-mrs.fr/Tcoffee/ tcoffee cgi/index.cgi) [35]. Для визуализации выравнивания использовали программу GeneDoc (http://www.nrbsc.org/gfx/genedoc/) [36]. Процент идентичности аминокислотных последовательностей вычислялся при помощи программы Blastp [37]. Филогенетические деревья построены с помощью пакета программ MEGA v. 5.1 [38] с использованием алгоритма ближайших соседей (neighbor-joining) [39]. Для оценки достоверности топологии полученного филогенетического дерева применяли bootstrap-анализ (1000 реплик) [40]. Для картирования потенциальных сайтов фосфорилирования использовали программы NetPhos 2.0 (http://www.cbs.dtu. dk/services/NetPhos/) и NetPhosK (http://www.cbs. dtu.dk/services/NetPhosK/).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Анализ АТФазной активности S. fradiae АТСС19609 в мембранных везикулах. Везикулы, содержавшие F_0F_1 -АТФ-синтазу, были изолированы из S. fradiae АТСС 19609, затем была определена АТФазная активность по отщеплению γ -фосфорильного остатка от [γ -³²P]-АТФ в присутствии ингибиторов СТПК и без них. Везикулы прединкубировали с АТФ и ингибиторами АТФазы и СТПК, после чего определяли их АТФазную активность в присутствии олигомицина A или без него. Показано, что в присутствии 10 мМ CaCl₂ активность F_0F_1 -АТФ-синтазы составляла 157 ± 19 ед активности/мг белка, а в присутствии 10 мМ $MgCl_2 - 104 \pm 7$ ед активности/мг белка мембранных везикул (1 ед активности равна 1 нМ фосфата, высвобождаемого за 1 мин в присутствии 1 мг белка в стандартных условиях). Различия в эффективности двухвалентных катионов могут объясняться отличиями в атомной структуре их комплекса с нуклеотидным субстратом, влияющими на конформационные изменения в каталитическом центре фермента, и обнаружены ранее у АТФаз разных видов Streptomyces [12, 13]. Было проанализировано действие возрастающих концентраций селективного ингибитора АТФаз F-типа олигомицина А на АТФазную активность и показано, что значения IC_{50} олигомицина A в отношении Са²⁺-зависимой АТФазной активности в препаратах мембранных везикул составляют 165 ± 23 нМ, а Mg^{2+} -зависимой — 110 ± 11 нМ. В отдельных опытах мы показали, что действующий на F_o-часть ингибитор дициклогексилкарбодиимид в концентрации 0,05 мМ снижает АТФазную активность исследуемого штамма до уровня 7–10% от исходного. Далее везикулы S. fradiae прединкубировали с ингибиторами СТПК и определяли их АТФазную активность в присутствии олигомицина А и без него. Из представленных в табл. 2 результатов видно, что ингибитор Ca²⁺-зависимых протеинкиназ KN-62 в концентрации 5,0 мкМ понижает активность на 25%, а АТФ-конкурентный ингибитор киназ бисиндолилмалеимид-І (Бис-І) в концентрации 1,0 мкМ – на 23%. При этом определяемая АТФазная активность почти целиком может быть отнесена на счет F_0F_1 -АТФсинтазы, т.к. ее специфические ингибиторы дициклогексилкарбодиимид и олигомицин А подавляют АТФазную активность мембранных везикул на 83 и 56% соответственно. Добавленные по отдельности KN-62 и Бис-І повышают чувствительность F₀F₁-АТФ-синтазы к олигомицину А на 4-6%, а вместе увеличивают ее чувствительность к олигомицину А почти вдвое (табл. 2). Эти данные говорят в пользу того, что эндогенные мембраносвязанные СТПК вовлечены в активацию F₀F₁-АТФ-синтазы и ее защиту от антибиотика и подтверждают предварительные результаты аналогичного анализа фосфорилирования и возможной регуляции активности F_0F_1 -АТФ-синтазы в везикулах S. fradiae, опубликованные нами ранее [17].

Получение рекомбинантных белков субъединиц F_oF₁-АТФ-синтазы *S. fradiae* АТСС 19609. Изоляцию генов субъединиц F_oF₁-АТФ-синтазы осуществляли с геномной ДНК методом ПЦР. Для амплификации фрагмента ДНК а-субъединицы использованы олигонуклеотиды АТРАN и АТРАС, с-субъединицы – АТРСN и АТРСС, b-субъеди-

Ингибитор	Концентрация ингибитора, µМ	АТФазная активность, ед/мг белка*	АТФазная активность, % от контроля
Без ингибитора	_	163 ± 21	100
Олигомицин А	0,25	72 ± 12	44
KN-62	5,0	102 ± 15	75
Бис-І	1,0	125 ± 10	77
Олигомицин А+ KN-62	0,25 + 5,0	63 ± 9	38
Олигомицин А + Бис-І	0,25 + 1,0	66 ± 8	40
Олигомицин А + KN-62 + Бис-I	0,25 + 5,0 + 1,0	26 ± 7	16

Таблица 2. Влияние олигомицина А и ингибиторов СТПК на активность АТФазы S. fradiae ATCC 19609

* Приведены усредненные результаты трех независимых измерений ± S.D.

ницы – ATPBN и ATPBC, δ-субъединицы – Del(+) и Del(-), α -субъединицы – Alp(+) и Alp(-), γ-субъединицы – Gam(+) и Gam(-), β-субъединицы – Beta(+) и Beta(-), ε-субъединицы – Eps(+) и Eps(-) (табл. 1). При секвенировании всех амплифицированных фрагментов ДНК определены стартовые кодоны трансляции и терминирующие кодоны. Для клонирования всех субъединиц были синтезированы олигонуклеотиды, гомологичные соответственно N-и С-концевым областям генов субъединиц и содержащие в своем составе сайты рестрикции *EcoRI* и *Hind*III (табл. 1). Амплифицированные фрагменты ДНК были секвенированы и клонированы в экспрессионном векторе рЕТ32а, линкер которого содержит His-Tag и S-tag для выделения и очистки белков и последовательность Trx · Tag (109 a.o.) в *N*-концевой области. Для изучения экспрессии белков проводили индукцию ИПТГ в течение 1, 2 и 4 ч. Установлено, что максимальный уровень экспрессии генов всех субъединиц достигается при 4 ч индукции. При клонировании δ-, α-, γ-, β-, ε-, а-, с- и b-субъединиц в клетках E. coli, содержавших плазмиды pET32aAtpH, pET32aAtpA, pET32aAtpG, pET32aAtpD. pET32aAtpC, pET32aAtpB, рЕТ32аАtpE и рЕТ32аАtpF, наблюдались дополнительные фракции белков с соответствующими молекулярными массами 51, 80, 56, 75, 36, 53, 30 и 43 кДа (рис. 1). Эти величины соответствуют расчетным молекулярным массам белков соответствующих субъединиц в сумме с молекулярной массой белка всего линкера плазмиды рЕТ32а, содержащей тиоредоксин. Полученные рекомбинантные белки всех субъединиц были очищены на His-связывающих Ni-NTA

БИОХИМИЯ том 80 вып. 3 2015

колонках и наработаны в препаративных количествах для последующего изучения их фосфорилирования.

Рис. 1. *а* – Структура оперона F_0F_1 -АТФ-синтазы штамма *S. fradiae* АТСС 19609: І-белок, F_0 -часть (субъединицы а, с и b) и F_1 -часть (субъединицы δ , α , γ , β , ε); δ – электрофореграмма растворимой фракции белков штамма *E. coli* BL21(DE3). Клоны *E. coli*, содержащие плазмиды: *1* – pET32a (контроль); *2* – pET32aAtpH (субъединица δ); *3* – pET32aAtpA (субъединица α); *4* – pET32aAtpG (субъединица γ); *5* – pET32aAtpD (субъединица β); *6* – pET32aAtpC (субъединица ε); *7* – pET32aAtpB (субъединица α); *8* – pET32aAtpE (субъединица с); *9* – pET32aAtpF (субъединица b); М – белковый маркер SM0441 («Fermentas», Литва)

Фосфорилирование рекомбинантных субъединиц F₀F₁-АТФ-синтазы S. fradiae ATCC 19609 суммарным препаратом СТПК. Анализ фосфорилирования рекомбинантных субъединиц F₀F₁-АТФ-синтазы проводили в присутствии суммарного препарата протеинкиназ S. fradiae АТСС 19609, полученного аффинной хроматографией на цибакрон-сефарозе. Для того чтобы исключить искажение результатов за счет эндогенного фосфорилирования в препарате киназ, последние были прединкубированы с немеченой АТФ непосредственно перед добавлением в рабочую смесь для анализа. Затем АТФ была удалена гель-фильтрацией. Смесь для анализа включала уже меченую АТФ и выделенные на Ніѕ-связывающей смоле субъединицы F₀F₁-АТФсинтазы. Включение радиоактивного фосфата в них определяли авторадиографией. Из представленных на рис. 2 результатов видно, что наблюдается включение меченого фосфата в белки с молекулярными массами 75 и 56 кДа, представляющие собой слитые с тиоредоксином β-и γ-субъединицы F₀F₁-АТФ-синтазы соответственно. Удельное мечение γ-субъединицы примерно на порядок выше, чем β-субъединицы. Наблюдается небольшое включение метки в белки с молекулярными массами 80 и 36 кДа, представляющие собой α- и ε-субъединицы. Включение меченого фосфата в другие субъединицы F₀- и F_1 -части F_0F_1 -АТФ-синтазы (a, b, c и δ) не обнаружено. Отсутствие включения также указывает на то, что в полученных рекомбинантных гибридных белках, слитых с тиоредоксином α -, β -, γ- и ε-субъединиц, модифицируются именно субъединицы F₀F₁-АТФ-синтазы, а не тиоредок-

Рис. 2. *а* – Электрофореграмма гелей после электрофореза рекомбинантных субъединиц α (*1*), γ (*2*), δ (*3*); δ – авторадиограф фосфорилированных субъединиц α (*4*), γ (*5*), δ (*6*), ϵ (*7*) и β (*8*) F_0F_1 -АТФ-синтазы *S. fradiae* АТСС 19609

Рис. 3. 2D SDS-PAGE белков мембранных везикул *S. fradiae* ATCC 19609. *а* – Электрофореграмма геля, окрашенного Кумасси G250. *1–20* – белки, идентифицированные с помощью масс-спектрометрического анализа, приведенные в табл. 3; δ – авторадиограмма. Масс-спектрометрическая идентификация отмеченных полипептидов: *1* – F₁-часть F₀F₁-АТФ-синтазы, субъединица β ; *2* – F₀-часть F₀F₁-АТФ-синтазы, субъединица b

син. Приведенные доказательства являются первым свидетельством того, что α-, β-, γ- и ε-субъединицы комплекса актиномицетов могут фосфорилироваться эндогенными СТПК.

Идентификация фосфорилированных белков во фракции мембранных везикул *S. fradiae* ATCC 19609. Везикулы, изолированные из культуры *S. fradiae* ATCC 19609, инкубировали в присутствии [γ -³²P]-ATФ. Фосфорилированные белки, разделенные методом 2D электрофореза, представлены на рис. 3. Масс-спектрометрический анализ позволил выявить два белка, идентичных, соответственно, β -субъединице F₁-части и b-субъединице F₀-части F₀F₁-АТФ-синтазы. Другие 18 идентифицированных белков можно разделить на семь функциональных групп (табл. 3).

В функциональной группе «преобразование энергии и метаболизм жирных кислот» помимо β - и b-субъединиц представлены белки, которые могут быть связаны с функционированием F_oF_1 -АТФ-синтазы. Отсутствие γ -субъединицы в препаратах может объясняться ее селективной потерей в ходе приготовления препаратов к электрофорезу.

Определение структуры оперона F_0F_1 -АТФ-синтазы штамма *S. fradiae* АТСС 19609. При секвенировании амплифицированных фрагментов ДНК всех субъединиц было установлено, что оперон F_0F_1 -АТФ-синтазы штамма *S. fradiae* АТСС 19609 имеет стандартную структуру: F_0 часть – субъединицы а, с и b и F_1 -часть – субъединицы δ , α , γ , β и ε (табл. 4). Проведенный сравнительный анализ показал, что нуклеотидные последовательности всех субъединиц F_0F_1 -АТФ-синтазы штамма *S. fradiae* АТСС 19609 имеют высокий уровень гомологии с генами соответствующих субъединиц штаммов *S. coelicolor*, *S. lividans* и *S. avermitilis*. Нуклеотидные последовательности генов всех субъединиц F_0F_1 -АТФсинтазы штамма *S. fradiae* АТСС 19609 зарегист-

Таблица 3. Основные белки с установленными функциями, идентифицированные во фракции мембранных везикул *Streptomyces fradiae* ATCC 19609, представленные на рис. 3

Функциональные группы	№*	Функция	Ген	Локализация, номер контига**	Мол. масса, кДа	p <i>I</i>
1. Преобразование 1 энергии и метаболизм 2 жирных кислот 3	1	β-субъединица F _o F ₁ -АТФ- синтазы	atpD	0001207730209184	52,38	4,91
	2 3	b-суоъединица F _o F ₁ -A1Φ- синтазы ABC-транспортер ATΦ-	atpF SCO4240	0001203744204301 00681658217502	20,23 31,78	5,16
	4	связывающий белок кротонил СоА редуктаза	SCO6473	000833644992	49,27	6,88
2. Метаболизм и транспорт углеводов	5 6 7 8	изоцитратдегидрогеназа глицерофосфодиестераза глюкоза-6-фосфатизоме- раза фосфоенолпируват фосфо- трансфераза	SCO 7000 SCO 1565 pgi SCO 1391	00234425546474 0015122785123618 00106823169883 00455371655386	79,31 30,64 60,06 57,36	5,04 7,21 5,97 4,89
3. Репарация	9	НАД-зависимая ДНК- лигаза	ligA	0001334323336530	80,83	5,16
 Трансляция, рибо- сомальные структуры и биогенез 	10 11 12	фактор элонгации Tu 50S рибосомальный белок L29 белок, аденилирующий аминокислоты	SCO1321 SCO4710 SCO2198	00263242333616 contig0026 4612946518 00046204468697	43,87 13,44 232,26	5,15 4,61 5,56
 5. Транспорт и мета- болизм аминокис- лот, биосинтез анти- биотиков 	13 14	1-пирролин-5-карбоксилат дегидрогеназа сенсорный белок трансдук- ции eryC1	SCO5520 SACTE_2966	010220593690 008042315403	58,49 41,33	5,72 6,20
 6. Посттрансляцион- ные модификации и фолдинг 	15 16	SAM-зависимая метил- трансфераза ацетилтрансфераза GCN5-	SCO0995 SCO0995	0001197491198315 00392362824401	30,25 28,01	5,10 5,69
17 18	17 18	семейства оксидоредуктаза SCO4595 шаперон GroEL	SCO4595 groEL	0010445415731 000998884100506	44,52 56,80	6,41 4,90
 Транспорт и мета- болизм неорганичес- ких ионов 	19 20	АВС-транспортер металлов АТФазы Fe-S кластер сборки белка SufB	SCO2505 SCO1925	0009130411132894 00104843549856	87,07 54,45	6,74 5,00

* Номера белков, обозначенных на рис. 3, а.

** Локализация нуклеотидных последовательностей в базе NCBI для S. fradiae ATCC 19609.

АЛЕКСЕЕВА и др.

Субъединицы F _o F ₁ -АТФ-синтазы <i>S. fradiae</i>	Длина гена, п.н.	Длина белка, а.о.	Мол. масса, кДа	p <i>I</i>
F _o a AtpB	819	272	30,24	8,95
F _o c AtpE	225	74	7,41	4,78
F _o b AtpF	558	185	20,23	5,16
$F_{o} \delta AtpH$	816	271	28,94	5,54
$F_1 \alpha AtpA$	1590	529	57,21	5,01
$F_1 \gamma AtpG$	921	306	32,70	6,07
$F_1 \beta AtpD$	1437	478	52,38	4,91
F ₁ ε AtpC	378	125	13,07	5,03

Таблица 4. Структура оперона F_oF₁-АТФ-синтазы штамма S. fradiae ATCC 19609

рированы в GenBank (КС169996, КС169997, КС169998, КС169999, КС170000, КС170001, КС170002, КС170003). Оперон F_0F_1 -АТФ-синтазы штамма *S. fradiae* АТСС1 9609 представлен на рис. 1, *а*. В настоящее время в лаборатории генетики микроорганизмов ИОГен РАН проведено полногеномное секвенирование штамма *S. fradiae* АТСС19609, аминокислотные последовательности депонированы в GenBank (JNAD0000000). Были аннотированы гены F_0F_1 -АТФ-синтазы, нуклеотидные последовательности всех субъединиц совпали с ранее секвенированными.

Сравнительный анализ субъединиц F₀F₁-АТФсинтаз из штаммов S. fradiae ATCC 19609, S. lividans TK24 и S. avermitilis MA-4680. В данном эксперименте для исследований выбраны наиболее генетически изученные штаммы S. lividans ТК24 и S. avermitilis MA-4680. Выравнивание аминокислотных последовательностей восьми субъединиц F₀F₁-АТФ-синтазы из штамма S. fradiae ATCC 19609 с субъединицами из штамма S. lividans TK24 (чувствительного к олигомицину А) и штамма S. avermitilis MA-4680 – продуцента олигомицина А (устойчивого к олигомицину А) показало, что субъединицы a, c, b, α, β из штамма АТСС 19609 имеют большее сходство с аналогичными субъединицами из штамма ТК24, а субъединицы δ и γ из штамма АТСС 19609 – с субъединицами из штамма МА-4680. Последовательность субъединицы є сходна во всех трех штаммах. Данные сравнительного анализа оперона F_0F_1 -АТФ-синтазы *S. fradiae* АТСС 19609 с оперонами F_0F_1 -АТФ-синтаз S. lividans TK24 и S. avermitilis MA-4680 приведены в табл. 5.

Сравнительный анализ нуклеотидных последовательностей, находящихся до и после генов F₀F₁-ATФ-синтазы на хромосоме, показал

наличие І-белка, идентичность (сходство) с соответствующими аминокислотными последовательностями штаммов S. lividans и S. avermitilis МА-4680 составили 64 (77) и 64 (80)% соответственно, по нуклеотидным последовательностям гомология не превышает 35-38%. Окружение генов F_oF₁-АТФ-синтазы штамма S. fradiae АТСС 19609 полностью совпадает с окружениями, характерными для большинства штаммов рода Streptomyces (за исключением штаммов S. avermitilis): со стороны 5'-конца хромосомы непосредственно перед опероном расположены гены тирозин-фосфатазы, сериновой гидроксиметилтрансферазы и трансферазы; за опероном расположены гены секретируемого белка и хитиназы С. У штаммов S. avermitilis перед опероном расположены гены синтеза олигомицина А – ингибитора F_0F_1 -АТФ-синтазы.

Филогенетический анализ субъединиц F_0F_1 -АТФ-синтазного оперона из штаммов рода *Streptomyces*. Для установления филогенетического родства субъединиц F_1 -части F_0F_1 -АТФ-синтазного оперона проведены выравнивание аминокислотных последовательностей α -, β -, δ - и γ -субъединиц для различных представителей рода *Streptomyces* и оценка идентичности последовательностей по отношению друг к другу. На основании выравнивания аминокислотных последовательностей четырех субъединиц (α , β , δ и γ) F_1 -части F_0F_1 -АТФ-синтазного оперона построено четыре филогенетических дерева для бактерий рода *Streptomyces* (рис. 4).

Как видно из рис. 4, на трех деревьях, построенных для субъединиц β , δ и γ , ближайшими соседями вида *S. fradiae* являются виды *S. violaceusniger*, *S. bingchenggensis*, *S. cattleya*, в отличие от дерева, построенного для субъединицы α .

Субъединицы F _o F ₁ -ATФ-синтазы <i>S. fradiae</i>	Гомология с F _o F ₁ -АТФ-синтазой <i>S. fradiae</i> АТСС 19609, %			
	S. lividans TK24		S. avermitilis MA-4680	
	идентичность	сходство	идентичность	сходство
F _o a AtpB	78,8	91,2	76,1	88,3
F _o c AtpE	92,1	96,0	85,1	90,0
F _o b AtpF	84,0	89,0	80,0	85,0
F _o δ AtpH	68,8	88,6	75,5	93,8
$F_1 \alpha AtpA$	98,7	99,8	94,3	98,1
$F_1 \gamma AtpG$	76,1	89,0	80,0	85,0
$F_1 \beta AtpD$	89,3	96,0	86,0	93,0
F ₁ ε AtpC	83,0	92,0	84,0	92,0

Таблица 5. Сравнительный анализ оперона F_0F_1 -АТФ-синтазы *S. fradiae* АТСС 19609 с оперонами F_0F_1 -АТФ-синтаз *S. lividans* TK24 и *S. avermitilis* MA-4680

На дереве для α -субъединицы ближайшими соседями для вида *S. fradiae* являются виды *S. coelicolor, S. avermitilis* и *S. scabiei*. Это может говорить о том, что субъединицы F_1 -части F_0F_1 -АТФсинтазного оперона эволюционировали раздельно.

Сравнительный анализ субъединиц F₀F₁-АТФсинтазного оперона из штаммов рода Streptomyces. При выравнивании аминокислотных последовательностей субъединицы α и β показали высокую степень консервативности. Идентичность этих субъединиц составляет 88-99%. Субъединицы δ и γ оказались менее консервативными, идентичность составляет 75-92%. Консервативные области в этих субъединицах покрывают почти всю их аминокислотную последовательность (рис. 1-4 в Приложении, выделение черным цветом). Однако последовательность у-субъединицы (рис. 4 в Приложении) полностью секвенированного генома вида S. bingchenggensis короче своих гомологов из других видов стрептомицетов на 56 а.о. В связи с чем эта субъединица утратила часть аминокислот в *N*-концевой части своей последовательности – неизвестно. Обнаружены вставки различной протяженности в γ-субъединице у растений и бактерий *M. tuber*culosis. Эти изменения рассматриваются как адаптация субъединицы к выполнению функции синтеза АТФ у различных организмов [9].

Сравнительный анализ субъединиц F_0F_1 -АТФсинтазного оперона у актинобактерий. Методами биоинформатического анализа проведено сравнение восьми субъединиц F_0F_1 -АТФ-синтаз, принадлежащих различным актинобактериям. Результаты проведенного анализа показали, что структура оперона F_0F_1 -АТФ-синтаз всех актинобактерий сходна. Выравнивание аминокислотных последовательностей субъединиц α , β , δ и γ из разных видов, относящихся к типу *Actinobacteria* (рис. 5–8 Приложения), показало, что субъединицы α и β консервативны на протяжении почти всей своей длины (идентичность >70%). Наиболее вариабельные участки наблюдаются у субъединиц α и β лишь в *C*-концевой части последовательности, а у субъединицы β являются вариабельными еще и первые 40 а.о.

Субъединицы δ и γ менее консервативны (идентичность субъединицы γ лежит в интервале 78–33%, а субъединицы δ – в интервале 71–30%). В субъединице γ наблюдается область протяженных делеций примерно в середине аминокислотной последовательности. В субъединице δ область делеций расположена в *N*-концевой части последовательности, а идентичные участки представлены единичными консервативными аминокислотными остатками, расположенными в основном в центре и на конце последовательности.

Интересно отметить, что в аминокислотных последовательностях α -, β - и γ -субъединиц, принадлежащих штаммам пробиотических анаэробных актинобактерий рода *Bifidobacterium*, присутствуют дополнительные аминокислотные участки — инверсии: в субъединице α — 222—226 а.о., в субъединице β — 53—56 и 119—121 а.о., в субъединице γ — с 205—211 а.о. Изучение

функциональной значимости этих отличий для функционирования F_oF₁-АТФ-синтазы в составе микробиоты человека в анаэробных условиях является предметом дальнейшего исследования.

Филогенетический анализ F_0F_1 -АТФ-синтаз актинобактерий. На основании выравнивания аминокислотных последовательностей четырех субъединиц α , β , δ и γ F_1 -части F_0F_1 -АТФ-синтазного оперона из различных видов актинобактерий нами было построено четыре филогенетических дерева (рис. 5). Все четыре дерева отражают эволюционное расхождение видов. Для самых близких к роду *Streptomyces* родов бактерий указан процент идентичности для каждой субъединицы (рис. 5). Из полученных данных видно, что наиболее консервативными в процессе эволюции являются субъединицы α и β (что уже было показано выше), т.к. проценты идентичности этих субъединиц выше, чем субъединиц δ и γ .

Сравнительный анализ субъединиц F₀F₁-АТФсинтазного комплекса из S. fradiae ATCC 19609 с АТФазами из патогенных микроорганизмов. Штамм S. fradiae ATCC 19609 рассматривается как удобная тест-система для исследования ингибиторов F₀F₁-АТФ-синтазы бактерий, включая производные олигомицинов [17, 20, 21]. Поэтому представляло интерес посмотреть сходство белков этого оперона с соответствующими белками некоторых патогенных бактерий. Мы провели выравнивание аминокислотных последовательностей восьми субъединиц F₀F₁-АТФ-синтаз из S. fradiae с субъединицами F_0F_1 -АТФаз из M. tuberculosis (тип (отдел) Actinobacteria) и C. difficile (тип (отдел) Firmicutes). Эти выравнивания показали следующее: 1) субъединицы α и β остаются

Рис. 4. Филогенетические деревья представителей рода *Streptomyces*, основанные на сравнении четырех субъединица F₁-части F₀F₁-АТФ-синтазного оперона. *a* – α-Субъединица; *б* – β-субъединица; *в* – δ-субъединица; *ε* – γ-субъединица. Деревья построены с помощью пакета программ MEGA 5 по выравниванию аминокислотных последовательностей с использованием алгоритма neighbor-joining (NJ), используя модель p-distance. Цифрами показана устойчивость ветвей, рассчитанная для NJ-анализа методом бутстреп (1000 реплик). Ветви, воспроизводимые менее чем в 60% бутстреп-реплик, не отмечены

Рис. 5. Филогенетические деревья, основанные на сравнении аминокислотных последовательностей четырех субъединиц F₁-части F₀F₁-АТΦ-синтазного оперона актинобактерий: *a* – α-субъединица; *б* – β-субъединица; *в* – δ-субъединица; *г* – γ-субъединица

достаточно консервативными, и выравнивание с ними идет по всей длине при идентичности 52-70%; 2) субъединицы б и ү менее консервативны, имеют низкую гомологию (25-48%) и выравниваются не по всей длине; 3) у субъединицы є из S. fradiae (полная длина субъединицы є в среднем 121 а.о.) выравнивается участок всего в 46 а.о. с аналогичным участком из *M. tuberculo*sis и C. difficile, и идентичность этих выравниваний составляет 43 и 35% соответственно; 4) субъединицы a, b и c из S. fradiae либо очень плохо выравниваются с гомологами из M. tuberculosis и *C. difficile* (идентичность $\sim 26\%$) и не по всей длине, либо сходные участки вообще отсутствуют, так, например, при прочих равных параметрах программа Blastp не выровняла вовсе аминокислотную последовательность субъединицы b из S. fradiae с аминокислотной последовательностью этой же субъединицы из C. difficile.

Известно, что связывание олигомицина А происходит только с определенными аминокислотами в с-субъединице. В табл. 6 представлены результаты сравнения олигомицин-связывающих доменов с-субъединицы F_0F_1 -АТФ-синтазы в олигомицин-чувствительных и устойчивых организмах, из которой видно, что по данным аминокислотам *S. fradiae* ATCC19609 имеет наибольшее сходство с *Homo sapiens sapiens*.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Впервые показано, что рекомбинантные белки γ -, β - α - и ε -субъединиц F_1 -части АТФазного комплекса бактерии *S. fradiae* АТСС 19609 фосфорилируются комплексом СТПК в составе клеточного экстракта. Методом двумерного электрофореза с последующим масс-спектрометрическим анализом (MALDI-TOF) впервые установлено, что во фракции мембранных везикул осуществляется фосфорилирование β-и b-субъединиц F_oF₁-АТФ-синтазного комплекса. В обоих типах экспериментов наблюдается фосфорилирование β-субъединицы. Фосфорилирование β-субъединицы обнаружено в митохондриях эукариот [22-24], хлоропластах растений [25] и у *M. tuberculosis* [26]. Способность к фосфорилированию в одном типе экспериментов уи α-субъединиц, а в другом – b-субъединицы может отражать важность фосфорилирования уи α-субъединиц для процесса сборки F₀F₁-ATΦсинтазного комплекса, а также функционирования комплекса на стадии синтеза или гидролиза АТФ. Существенными могут быть и отличия условий фосфорилирования в различных экспериментах in vitro и in vivo.

Протеинкиназы серин-треонинового типа присутствуют и охарактеризованы у многих бактерий, их функции многообразны, в т.ч. жизнеспособность и вирулентность у патогенных бактерий [41, 42]. В секвенированном геноме *S. fradiae* ATCC 19609 (JNAD0000000) обнаружено 30 СТПК, часть из которых является мембраносвязанными и может принимать участие в фосфорилировании F_0F_1 -АТФ-синтазного комплекса и сопряженных с ним белков, задействованных в энергетическом обеспечении клетки и регуляции функционирования комплекса. В последние годы F_0F_1 -АТФ-синтаза и сопряженный с ней комплекс белков бактерий и митохондрий

Таблица 6. Сравнение олигомицин-связывающих доменов с-субъединицы F₀F₁-АТФ-синтазы в олигомицин-чувствительных и устойчивых организмах (табл. взята из статьи Ко с соавт. [22], с модификациями)

Микроорганизм	Олигомицин-связывающий домен в с-субъединице F ₀ F ₁ -АТФ-синтазы			
	первое а.о.	аминокислотный сиквенс***	последнее а.о.	
S. fradiae*	54	ILGFAFCEALALIGL	68	
S. lividans*	54	ILGFAFCEALALIGL	68	
S. avermitilis**	58	ILGFVLCEALALIGL	72	
M. tuberculosis**	54	FITVGLVEAAYFINL	68	
C. difficile**	54	LLGVAIAESSAIYGL	68	
H. sapiens*	51	ILGFALSEAMGLFCL	65	

* Организмы, чувствительные к олигомицину А.

** Организмы, устойчивые к олигомицину А.

*** Аминокислоты, участвующие в связывании с олигомицином А, выделены жирным шрифтом.

человека становятся все более пристальным объектом внимания как биомишень для создания лекарств [9, 43, 44], а также ключевым объектом исследований, поскольку нормальное функционирование данного комплекса практически важно для здоровья и продолжительности жизни человека [45-47]. Универсальная природа F_0F_1 -АТФ-синтазы у всех живых организмов, включая бактерий и человека, ее роль биологического наномотора требуют детальных исследований функционирования этого комплекса у всех организмов. Углубленное понимание механизмов функционирования F₀F₁-АТФ-синтазы бактерий, роль в этом СТПК, отличия в ее структуре и работе от F₀F₁-АТФ-синтазы человека могут помочь созданию новых лекарственных препаратов. Ранее нами было показано, что штамм S. fradiae ATCC 19609 является сверхчувствительным к олигомицину А и его полусинтетическим производным, а также более чувствительным к целому ряду химических соединений других химических классов [17, 20]. Важно отметить тот факт, что чувствительность к олигомицину A у S. fradiae ATCC 19609 и S. lividans ТК24 повышается при ингибировании СТПК [17, 48]. Это открывает новые возможности для создания противоактинобактериальных лекарств с синергическим действием на основе ингибиторов F_0F_1 -АТФ-синтазы и СТПК. F_0F_1 -АТФ-синтаза *S. fradiae* АТСС 19609 в силу сходства с-субъединицы (система транспорта протонов) с с-субъединицей F_0F_1 -АТФ-синтазы человека, а также высокой чувствительности данного штамма к олигомицину А и его производным может быть удобной моделью для изучения F_0F_1 -АТФ-синтазы человека.

Полученные результаты позволяют научно обосновать и расширить перспективы создания высокочувствительной тест-системы на основе штамма *S. fradiae* ATCC 19609 для отбора ингибиторов АТФ-синтаз человека и бактерий с использованием разработанных нами подходов [49, 50].

Работа выполнена при финансовой поддержке ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технического комплекса России на 2007–2013 гг.» (государственный контракт № 02.512.12.2056 от 20 мая 2009 г.).

СПИСОК ЛИТЕРАТУРЫ

- Capaldi, R.A., and Aggeler, R. (2002) Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor, *Trends Biochem. Sci.*, 27, 154–160.
- Senior, A.E. (2007) ATP synthase: motoring to the finish line, *Cell*, **130**, 220–201.
- Watanabe, R., and Noji, H. (2013) Chemomechanical coupling mechanism of F(1)-ATPase: catalysis and torque generation, *FEBS Lett.*, 587, 1030–1035.
- Okuno, D., Iino, R., and Noji, H. (2011) Rotation and structure of F_oF₁-ATP synthase, J. Biochem., 149, 655–664.
- 5. Walker, J.E. (2013) The ATP synthase: the understood, the uncertain and the unknown, *Biochem. Soc. Trans.*, **41**, 1–16.
- Chi, S.L., and Pizzo, S.V. (2006) Cell surface F₁F_o ATP synthase: a new paradigm, *Ann. Med.*, 38, 429–438.
- Skulachev, V.P. (1999) Bacterial energetics at high pH: what happens to the H⁺ cycle when the extracellular H⁺ concentration decreases, *Novartis Found Symp.*, 221, 200–213.
- Ahmad, Z., Okafor, F., Azim, S., and Laughlin, T.F. (2013) ATP synthase: a molecular therapeutic drug target for antimicrobial and antitumor peptides, *Curr. Med. Chem.*, 20, 1956–1973.
- 9. Lu, P., Lill, H., and Bald, D. (2014) ATP synthase in mycobacteria: special features and implications for a function as drug target, *Biochim. Biophys. Acta*, **1837**, 1208–1218.
- Gras, J. (2013) Bedaquiline for the treatment of pulmonary, multidrug-resistant tuberculosis in adults, *Drugs Today* (*Barcelona*), 49, 353–361.
- 11. Biukovic, G., Basak, S., Manimekalai, M.S., Rishikesan, S., Roessle, M., Dick, T., Rao, S.P., Hunke, C., and

БИОХИМИЯ том 80 вып. 3 2015

Gruber, G. (2013) Variations of subunit {varepsilon} of the *Mycobacterium tuberculosis* F_1F_0 ATP synthase and a novel model for mechanism of action of the tuberculosis drug TMC207, *Antimicrob. Agents Chemother.*, **57**, 168–176.

- Hensel, M., Deckers-Hebestreit, G., and Altendorf, K. (1991) Purification and characterization of the F₁ portion of the ATP synthase (F₁F₀) of *Streptomyces lividans, Eur. J. Biochem.*, 202, 1313–1319.
- 13. Hensel, M., Ahmus, H., and Deckers-Hebestreit, G. (1991) The ATP synthase of *Streptomyces lividans*: characterization and purification of the F_1F_0 complex, *Biochim. Biophys. Acta*, **1274**, 101–108.
- 14. Pagliarani, A., Nesci, S., and Ventrella, V. (2013) Modifiers of the oligomycin sensitivity of the mitochondrial F_1F_0 -ATPase, *Mitochondrion*, **13**, 312–319.
- Shchepina, L.A., Pletjushkina, O.Y., Avetisyan, A.V., Bakeeva, L.E., Fetisova, E.K., Izyumov, D.S., Saprunova, V.B., Vyssokikh, M.Y., Chernyak, B.V., and Skulachev, V.P. (2002) Oligomycin, inhibitor of the F₀ part of H⁺-ATPsynthase, suppresses the TNF-induced apoptosis, *Oncogene*, 21, 8149–8157.
- Symersky, J., Osowski, D., Walters, D.E., and Mueller, D.M. (2012) Oligomycin frames a common drug-binding site in the ATP synthase, *Proc. Natl. Acad. Sci. USA*, 109, 13961–13965.
- Алексеева М.Г., Елизаров С.М., Беккер О.Б., Любимова И.К., Даниленко В.Н. (2009) F₀F₁-ATP-синтаза стрептомицетов: модулирование активности и чувствительности к олигомицину серин-треониновыми протеинкиназами, *Биол. мембраны*, 26, 41–49.
- Symersky, J., Pagadala, V., Osowski, D., Krah, A., Meier, T., Faraldo-Gomez, J.D., and Mueller, D.M. (2012) Structure of the c(10) ring of the yeast mitochondrial ATP

synthase in the open conformation, *Nature Struct. Mol. Biol.*, **19**, 485–491, S1.

- Hong, S., and Pedersen, P.L. (2008) ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas, *Microbiol. Mol. Biol. Rev.*, 72, 590–641.
- Lysenkova, L.N., Turchin, K.F., Korolev, A.M., Dezhenkova, L.G., Bekker, O.B., Shtil, A.A., Danilenko, V.N., and Preobrazhenskaya, M.N. (2013) Synthesis and cytotoxicity of oligomycin A derivatives modified in the side chain, *Bioorg. Med. Chem.*, 21, 2918–2924.
- Lysenkova, L.N., Turchin, K.F., Korolev, A.M., Danilenko, V.N., Bekker, O.B., Dezhenkova, L.G., Shtil, A.A., and Preobrazhenskaya, M.N. (2014) Study on retroaldol degradation products of antibiotic oligomycin A, *J. Antibiot. (Tokyo)*, 67, 153–158.
- Ko, Y.H., Pan, W., Inoue, C., and Pedersen, P.L. (2002) Signal transduction to mitochondrial ATP synthase: evidence that PDGF-dependent phosphorylation of the delta-subunit occurs in several cell lines, involves tyrosine, and is modulated by lysophosphatidic acid, *Mitochondrion.*, 1, 33–48.
- 23. Azarashvily, T.S., Tyynela, J., Baumann, M., Evtodienko, Y.V., and Saris, N.E. (2000) Ca^{2+} -modulated phosphorylation of a low-molecular-mass polypeptide in rat liver mitochondria: Evidence that it is identical with subunit c of F_0F_1 -ATPase, *Biochem. Biophys. Res. Commun.*, **270**, 741–744.
- Hojlund, K., Wrzesinsk, K., Larsen, P.M., Fey, S.J., Roepstorff, P., Handberg, A., Dela, F., Vinten, J., McCormack, J.G., Reynet, C., and Beck-Nielsen, H. (2003) Proteome analysis reveals phosphorylation of ATP synthase beta-subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes, *J. Biol. Chem.*, 278, 10436–10442.
- Kanekatsu, M., Saito, H., Motohashi, K., and Hisabori, T. (1998) The beta subunit of chloroplast ATP synthase (CF0CF1-ATPase) is phosphorylated by casein kinase II, *Biochem. Mol. Biol. Int.*, 46, 99–105.
- Prisic, S., Dankwa, S., Schwartz, D., Chou, M.F., Locasale, J.W., Kang, C.M., Bemis, G., Church, G.M., Steen, H., and Husson, R.N. (2010) Extensive phosphorylation with overlapping specificity by *Mycobacterium tuberculosis* serine/threonine protein kinases, *Proc. Natl. Acad. Sci. USA*, 107, 7521–7526.
- 27. Inoue, H., Nojima, H., and Okayama, H. (1990) High efficiency transformation of *Escherichia coli* with plasmids, *Gene*, **96**, 23–28.
- Mierendorf, R., Yeager, K., and Novy, R. (1994) Innovations, *Newsletter of Novagen*, 1, 1–3.
- 29. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. (2000) *Practical Strepromyces genetics*, The John Innes Foundation, Norwich, United Kingdom.
- Sambrook, J., Fritsch, E.E., and Maniatis, T. (1989) Molecular cloning: a laboratory manual, Cold Sprind Harbor Laboratory Press.
- 31. O'Farrell, P.H. (1975) High resolution two-dimensional electrophoresis of proteins, *J. Biol. Chem.*, **250**, 4007–4021.
- 32. Elizarov, S.M., and Danilenko, V.N. (2001) Multiple phosphorylation of membrane-associated calcium-dependent protein serine/threonine kinase in *Streptomyces fradiae*, *FEMS Microbiol Lett.*, **202**, 135–138.
- Elizarov, S.M., Mironov, V.A., and Danilenko, V.N. (2000) Calcium-induced alterations in the functioning of protein serine/threonine and tyrosine kinases in *Streptomyces fradiae* cells, *IUBMB Life*, **50**, 139–143.
- 34. Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive mul-

tiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, *Nucleic Acids Res.*, **22**, 4673–4680.

- Notredame, C., Higgins, D.G., and Heringa, J. (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment, *J. Mol. Biol.*, **302**, 205–217.
- Nicholas, K.B., Nicholas, H.B., Jr., and Deerfield, D.W. (1997) II. GeneDoc: analysis and visualization of genetic variation, *EMB News*, 4, 14.
- Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) Basic local alignment search tool, J. Mol. Biol., 215, 403–410.
- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, *Mol. Biol. Evol.*, 28, 2731–2739.
- 39. Saitou, N., and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees, *Mol. Biol. Evol.*, **4**, 406–425.
- 40. Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap, *Evolution*, **39**, 783–791.
- Cousin, C., Derouiche, A., Shi, L., Pagot, Y., Poncet, S., and Mijakovic, I. (2013) Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation, *FEMS Microbiol. Lett.*, 346, 11–19.
- 42. Pereira, S.F., Goss, L., and Dworkin, J. (2011) Eukaryotelike serine/threonine kinases and phosphatases in bacteria, *Microbiol. Mol. Biol. Rev.*, **75**, 192–212.
- 43. Lu, P., Villellas, C., Koul, A., Andries, K., Lill, H., and Bald, D. (2014) The ATP synthase inhibitor bedaquiline interferes with small-molecule efflux in *Mycobacterium smegmatis*, *J. Antibiot*. (*Tokyo*), DOI. 10.1038/ja.2014.74.
- 44. Bald, D., and Koul, A. (2013) Advances and strategies in discovery of new antibacterials for combating metabolically resting bacteria, *Drug Discov. Today*, **18**, 250–255.
- Plotnikov, E.Y., Morosanova, M.A., Pevzner, I.B., Zorova, L.D., Manskikh, V.N., Pulkova, N.V., Galkina, S.I., Skulachev, V.P., and Zorov, D.B. (2013) Protective effect of mitochondria-targeted antioxidants in an acute bacterial infection, *Proc. Natl. Acad. Sci. USA*, **110**, 3100–3108.
- Skulachev, V.P., Anisimov, V.N., Antonenko, Y.N., Bakeeva, L.E., Chernyak, B.V., Erichev, V.P., Filenko, O.F., Kalinina, N.I., Kapelko, V.I., Kolosova, N.G., Kopnin, B.P., Korshunova, G.A., Lichinitser, M.R., Obukhova, L.A., Pasyukova, E.G., Pisarenko, O.I., Roginsky, V.A., Ruuge, E.K., Senin, I.I., Severina, I.I., Skulachev, M.V., Spivak, I.M., Tashlitsky, V.N., Tkachuk, V.A., Vyssokikh, M.Y., Yaguzhinsky, L.S., and Zorov, D.B. (2009) An attempt to prevent senescence: a mitochondrial approach, *Biochim. Biophys. Acta*, **1787**, 437–461.
- 47. Skulachev, V.P. (2002) Programmed death phenomena: from organelle to organism, *Ann. NY Acad. Sci.*, **959**, 214–237.
- Беккер О.Б., Мавлетова Д.А., Любимова И.К., Мирончева Т.А., Штиль А.А., Даниленко В.Н. (2012) Индукция программированного лизиса культуры *Streptomyces lividans* ингибиторами серин-треониновых протеинкиназ эукариотического типа, *Микробиология*, **81**, 177–184.
- Беккер О.Б., Алексеева М.Г., Осолодкин Д.И., Палюлин В.А., Елизаров С.М., Зефиров Н.С., Даниленко В.Н. (2010) Новая тест-система для скрининга ингибиторов серин-треониновых протеинкиназ: *E. coli* АРНVIII/Pk25 конструкт, *Acta Naturae*, 2, 126–139.
- Елизаров С.М., Алексеева М.Г., Новиков Ф.Н., Чилов Г.Г., Маслов Д.А., Штиль А.А., Даниленко В.Н. (2012) Идентификация сайтов фосфорилирования аминогликозидфосфотрансферазы VIII Streptomyces rimosus, Биохимия, 77, 1504–1512.

F₀F₁-ATP-SYNTHASE OF *Streptomyces fradiae* ATCC 19609: STRUCTURAL, BIOCHEMICAL, AND FUNCTIONAL CHARACTERIZATION

M. G. Alekseeva¹, T. A. Mironcheva¹, D. A. Mavletova¹, S. M. Elizarov², N. V. Zakharevich¹, V. N. Danilenko¹

¹ N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, ul. Gubkina 3, Moscow 119991, Russia; fax: +7(499)132-8962, E-mail: valerid@rutenia.ru

² A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky prosp. 33, corp. 2, Moscow 119071, Russia; fax: +7(495)954-2732

> Received July 22, 2014 Revision received October 27, 2014

Aiming at the mechanisms of regulation of bacterial membrane bound F_0F_1 -ATP-synthase, we investigated the patterns of protein phosphorylation in inverted membrane vesicles from *Streptomyces fradiae* ATCC 19609 strain. Using two-dimensional gel electrophoresis and mass spectrometry, we showed for the first time that β - and b-subunits of F_0F_1 -ATP-synthase in the complex undergo phosphorylation, and identified 20 proteins with known functions. All 8 subunits of F_0F_1 -ATP-synthase, that is, α , β , γ , π , e, a, b, and c, were cloned into *Escherichia coli* and expressed as recombinant proteins. Using a crude preparation of serine/threonine protein kinases, we demonstrated the phosphorylation of recombinant γ -, β -, α -, and e-subunits. The β -subunit was phosphorylated both as a recombinant protein and in vesicles. Differential phosphorylation of membrane bound and recombinant proteins can be attributed to different pools of protein kinases in each preparation; also, certain steps of F_0F_1 -ATP-synthase assembly and function might be accompanied by individual patterns of phosphorylation. The structure of the operon containing all subunits and regulatory protein I was identified. Next, we investigated the phylogenetic similarity of *Streptomyces fradiae* ATCC19609 F_0F_1 -ATP-synthase with respective proteins in saprophyte and pathogenic (including *Mycobacterium tuberculosis*) bacteria. Thus, bacterial serine/threonine protein kinases are important for regulation of F_0F_1 -ATP-synthase. From the practical standpoint, our results provide the basis for design of targeted antibacterial drugs.

Key words: F_oF₁-ATP-synthase, Ser/Thr protein kinase, inverted membrane vesicles; Streptomycetes