УДК 577

=БИОФИЗИКА СЛОЖНЫХ СИСТЕМ =

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ЗАВИСИМОСТИ ПРОИЗВОДИТЕЛЬНОСТИ ЛЕВОГО ЖЕЛУДОЧКА СЕРДЦА ОТ ПРЕД- И ПОСТНАГРУЗКИ

© 2015 г. Ф.А. Сёмин* **, М.В. Зберия* **, Н.А. Кубасова* **, А.К. Цатурян* **

*Институт механики Московского государственного университета им. М.В. Ломоносова, 119192, Москва, Мичуринский просп., 1;

**Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, 620002, Екатеринбург, ул. Мира, 19

E-mail: tsat@imec.msu.ru

Поступила в редакцию 17.08.15 г.

Представлены результаты численного моделирования зависимостей конечно-диастолического, конечно-систолического и ударного объема левого желудочка сердца в рамках ранее предложенной простой кинетической модели миокардиальной ткани и простейшей аппроксимации геометрии желудочка толстостенным цилиндром с меняющейся по толщине его стенки ориентацией мышечных волокон. Течение крови в сосудистом русле моделировали простой линейной моделью с сосредоточенными параметрами. Показано, что даже в рамках такого простого подхода удается воспроизвести наблюдаемые зависимости насосной функции сердца от пред- и постнагрузки, т.е. от конечно-диастолического давления и периферического сопротивления. Согласно проведенным расчетам, изменения параметров, характеризующих растяжимость артерий и инерционность крови, не влияют на ударный объем желудочка.

Ключевые слова: сердце, левый желудочек, математическая модель, преднагрузка, постнагрузка.

Несмотря на успешное развитие математических моделей сердца, начиная с описания процессов генерации и распространения электрических потенциалов в миокарде до построения конечно-элементных моделей [1], задача «сквозного» многомасштабного моделирования насосной функции сердца на основе моделей, описывающих процесс сокращения миокарда на молекулярно-клеточном уровне, далека от разрешения. Механическая функция сердечной мышцы обусловлена взаимодействием сократительных белков - актина и миозина, а управление сокращением и расслаблением сердца обеспечивают регуляторные белки, связанные с тонкой актиновой нитью, - тропонин и тропомиозин, действие которых зависит от вызванного электрическим возбуждением изменения концентрации ионов Ca2+ в клетках. При сквозном многомасштабном моделировании наиболее сложным оказывается совмещение моделей механики сокращения с грамотным описанием современных представлений о механизмах регуляции. Мы предложили относительно простую модель [2,3], в которой активные механические процессы в сердечной мышце описываются системой обыкновенных дифференциальных уравнений для величин, характеризующих микродеформацию актин-миозиновых комплексов и концентрации некоторых веществ внутри клеток. Эта модель хорошо описывает широкий круг экспериментальных данных и по ряду характеристик превосходит ранее предложенные модели [4,5]. Мы также рассмотрели простую цилиндрическую модель левого желудочка сердца, основанную на этой модели миокарда, и смогли удовлетворительно описать некоторые базовые параметры работы левого желудочка (артериальное давление, величины ударного объема и фракции выброса и др.) и даже воспроизвести отдельные последствия изменений свойств сердечной мышцы, характерные для некоторых кардиомиопатий [6]. Одно из отличий результатов расчетов по этой модели от опытных данных состояло в том, что пик развития внутрижелудочкового давления совпадал с моментом окончания фазы изгнания, в то время как в реальности закрытие аортального клапана происходит на фоне снижения давления в желудочке. Мы предположили, что это связано с тем, что в качестве модели артериального русла была использована простейшая модель упругого резервуара [7]. В настоящей работе мы заменили модель Франка на более реалистичную, хотя по-прежнему очень

L_0	L	C ₀	С	C _C	$C_{\rm V}$	$R_{\rm per}$	R ₀	R	R _C
0,01	2,5	0,00056	0,0001	0,00105	0,05	1500	25	10	63

«Базовые» значения параметров модели сосудистого русла

Примечание. Значения в единицах системы СГС, параметры модели миокарда и желудочка такие же, как в работах [2,3,6].

простую модель [8] и провели расчеты зависимостей производительности модели левого желудочка сердца от величин пред- и постнагрузки, т.е. от конечно-диастолического давления в желудочке и от периферического сопротивления сосудистого русла.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

Модель миокардиальной ткани была описана ранее [2,3], а основанная на ней цилиндрическая модель левого желудочка - в работе [6]. Вкратце, тензор напряжения представляется суммой изотропной и анизотропной частей. Первая описывает нелинейно-упругие свойства пассивного (расслабленного) миокарда. Вторая представляет собой скаляр, умноженный на тензорный квадрат вмороженного в среду единичного вектора, направленного вдоль волокон. Скаляр, в свою очередь, состоит из члена, описывающего вклад титина в упругие свойства мышцы, и активного напряжения. Это напряжение определяется системой кинетических уравнений, описывающих количество актинмиозиновых мостиков, их среднее по ансамблю растяжение, а также доли молекул регуляторного белка тропонина, связанного с ионами кальция в зоне перекрытия актиновых и миозиновых нитей в саркомерах и вне ее. Последнее кинетическое уравнение описывает изменение концентрации ионов кальция в миокардиальной клетке с учетом его высвобождения в результате прохождения волны электрического возбуждения и поглощения в саркоплазматический ретикулум.

Левый желудочек сердца моделировали толстостенным несжимаемым цилиндром, в котором направление волокон резко меняется при продвижении от внутренних слоев к внешним на 135°. При этом полагали, что деформации определяются тремя скалярами: осевым и радиальным растяжениями внутренней полости и кручением желудочка, а инерцией миокарда пренебрегали. Граничные условия представляют собой равенство напряжений на стенке и на дне желудочка давлению крови и отсутствию крутящего момента на верхушке желудочка. Полная система уравнений и значения параметров модели приведены в работах [2,3,6]. Эти

БИОФИЗИКА том 60 вып. 6 2015

параметры составляли «базовый» набор, который оставался неизменным при всех расчетах, приведенных в данной работе.

Чтобы приблизить вид расчетных пульсовых кривых к наблюдаемым, мы использовали немного более сложную модель артериального русла, взяв за основу модель, предложенную в работе [8]. В этой модели давления в левом желудочке $P_{\rm LV}$ и магистральных артериях $P_{\rm A}$ и расход крови через аортальный клапан Q_0 связаны между собой уравнениями:

$$\begin{split} L_0 \frac{dQ_0(t)}{dt} + R_0 Q_0(t) &= P_{\rm LV}(t) - P_{\rm A}(t), \\ L \frac{dQ(t)}{dt} + RQ(t) &= P_{\rm A}(t) - P_2(t), \\ C_0 \frac{dP_{\rm A}(t)}{dt} &= Q_0(t) - Q(t), \\ C \frac{dP_2(t)}{dt} &= Q(t) - \frac{P_2(t) - P_{\rm V}(t)}{R_{\rm per}} - \frac{P_2(t) - P_{\rm C}(t)}{R_{\rm C}}, \\ C_{\rm C} \frac{dP_{\rm C}(t)}{dt} &= \frac{P_2(t) - P_{\rm C}(t)}{R_{\rm C}}, \\ C_{\rm V} \frac{dP_{\rm V}(t)}{dt} &= \frac{P_2(t) - P_{\rm V}(t)}{R_{\rm per}} - Q_i(t), \end{split}$$

где $P_{\rm LV}$, $P_{\rm A}$, $P_{\rm V}$, P_2 и $P_{\rm C}$ – давления в левом желудочке, аорте, легочных венах и в магистральных артериях разного калибра соответственно; $Q_0 Q_i$, и Q – расход через аортальный и митральный клапаны и через магистральные артерии соответственно; $R_{\rm per}$, R_0 , R, $R_{\rm C}$ – периферическое сопротивление, сопротивление выводящего тракта желудочка, магистральных артерий и вязкое сопротивление стенок мелких артерий, а L_0 , L, C_0 , C, $C_{\rm V}$ и $C_{\rm C}$ – инерционные и эластические характеристики различных отделов сосудистого русла.

РЕЗУЛЬТАТЫ

Результаты расчета гемодинамических характеристик при «базовом» наборе параметров (таблица) модели показаны на рис. 1.

Видно, что модель достаточно хорошо воспроизводит стандартные характеристики сердечного цикла: вид кривых желудочкового и

Рис. 1. Временной ход основных гемодинамических параметров в цикле с частотой 65 в минуту при «базовом» наборе параметров модели центральной гемодинамики. Левая шкала относится к давлениям крови в различных разделах сердечно-сосудистой системы и к объему желудочка, правая – к расходу крови. $V_{\rm LV}$ – объем полости желудочка, остальные обозначения величин приведены в тексте.

артериального давления, включая фазовый сдвиг между ними, наличие дикротической впадины на кривой артериального давления сразу по окончании фазы изгнания крови из желудочка и др. Введение в модель дополнительных параметров, характеризующих артериальную часть сосудистого русла, позволило освободиться от недостатков исходной модели [6], предсказывающей увеличение давления в желудочке на протяжении почти всей фазы изгнания.

Одним из главных свойств левого желудочка сердца является так называемый закон Франка-Старлинга, согласно которому ударный объем резко возрастает при увеличении конечнодиастолической длины мышечных волокон или, пользуясь макроскопическими характеристиками, преднагрузки – конечно-диастолического объема или конечно-диастолического давления в желудочке. Полученные на модели зависимости конечно-диастолического и ударного объемов желудочка и давлений в желудочке и магистральных артериях от преднагрузки показаны на рис. 2.

Видно, что модель предсказывает значительный рост конечно-диастолического и ударного объемов и артериального давления в ответ на увеличение конечно-диастолического давления (рис. 2) при постоянных значениях параметров модели, в том числе периферического сопротивления кровотоку. Похожие зависимости были найдены в опытах на животных [9] и обна-

Рис. 2. Результаты расчета зависимостей конечнодиастолического ($V_{\rm ED}$) и ударного ($V_{\rm EJ}$) объемов (а) левого желудочка сердца, пикового давления в левом желудочке ($P_{\rm LV}$), а также систолического ($P_{\rm AS}$) и диастолического ($P_{\rm AD}$) артериального давления (б) от конечно-диастолического давления ($P_{\rm ED}$) при «базовом» наборе параметров модели.

ружены при наблюдениях за добровольцами и пациентами.

Одним из способов охарактеризовать производительность левого желудочка сердца, в том числе оценить выраженность закона Франка– Старлинга, являются введенные еще О. Франком [10] *P–V*-диаграммы в координатах объем–давление. Расчетные *P–V*-диаграммы для нашей модели, полученные при различных значениях конечно-диастолического объема или конечно-диастолического давления, показаны на рис. 3.

Кривые, показанные на рис. 3, весьма близки к тем, которые наблюдаются в экспериментах [11]. Это демонстрирует, что наша модель

Рис. 3. Расчетные P-V-диаграммы для различных значений конечно-диастолического давления $P_{\rm ED}$ в левом желудочке при «базовых» значениях параметров. Пунктирная линия – огибающая семейства замкнутых P-V-диаграмм, проведенная по точкам, соответствующим моменту завершения фазы изгнания крови.

достаточно хорошо описывает зависимость производительности левого желудочка сердца от преднагрузки. Таким образом, включение в модели миокардиальной ткани [2,3] зависимой активации от длины саркомеров в описание клеток и ткани сердечной мышцы, т.е. закон Франка–Старлинга на микроуровне, обеспечивает его выполнение и на макроуровне.

Расчетная зависимость сердечного выброса и давлений в желудочке и артериальном русле от постнагрузки, т.е. от периферического сопротивления кровотоку, показана на рис. 4.

Как и в экспериментах на сердцах собак [12], значительное (в 7,5 раз) увеличение периферического сопротивления приводит лишь к относительно небольшому (28%) снижению ударного объема крови даже без учета увеличения кровоснабжения сердца за счет увеличения артериального давления, которое изменяется при этом в несколько раз. Отметим, что расчетная фракция выброса также несколько снижается с ростом $R_{\rm per}$: от 64% при 500 г·см⁻⁴с⁻¹ до 50% при 3750 г·см⁻⁴с⁻¹.

Мы также провели расчеты зависимости насосной функции левого желудочка от динамических характеристик артериальной нагрузки: показателя растяжимости артерий *C* и коэффициента *L*, описывающего инерционные свойства крови. Оказалось, что ударный объем остается практически постоянным при двукратном увеличении или уменьшении каждого из

БИОФИЗИКА том 60 вып. 6 2015

Рис. 4. Результаты моделирования зависимостей ударного объема ($V_{\rm EJ}$), а также систолического ($P_{\rm AS}$) и диастолического ($P_{\rm AD}$) давления крови от периферического сопротивления $R_{\rm per}$ показаны на (а) и (б) соответственно.

этих параметров. При этом форма пульсовых кривых давления в желудочке и магистральных артериях сильно меняется. При снижении эластичности артерий амплитуда колебаний артериального давления возрастает, а при увеличении, наоборот, снижается. Увеличение L или снижение C приводят к появлению колебаний на пульсовой кривой артериального давления. Наоборот, двукратное снижение L делает пульсовую кривую «треугольной» (рис. 5).

ЗАКЛЮЧЕНИЕ

Результаты расчетов показывают, что наша модель адекватно описывает увеличение сер-

Рис. 5. Расчетные кривые пульсового давления в левом желудочке сердца (непрерывные линии) и в магистральных артериях (пунктир). В центре – «базовые» значения параметров; двукратное увеличение (\times 2) или уменьшение (/2) растяжимости *C* или инерционности *L* обозначено над кривыми.

дечного выброса в ответ на увеличение конечно-диастолического давления (и конечно-диастолического объема), т.е. проявление закона Франка-Старлинга. Модель также адекватно описывает относительное постоянство сердечного выброса в ответ на увеличение периферического сопротивления (и артериального давления), т.е. воспроизводит хорошо известные данные о том, что левый желудочек ведет себя как «жесткий» насос, производительность которого практически не зависит от нагрузки, пока последняя остается в разумных пределах. Динамические компоненты нагрузки, т.е. инерционность крови и эластичность артериального русла, не влияют на производительность левого желудочка, хотя их вариация существенно изменяет вид пульсовых кривых давления. Таким образом, предложенная модель описывает физиологические реакции нормального сердца и может послужить основой для разработки индивидуализированных моделей сердца больных с различными патологиями.

Работа выполнена при финансовой поддержке Российского научного фонда (грант 14-35-00005).

СПИСОК ЛИТЕРАТУРЫ

- N. A. Trayanova and J. J. Rice, Front Physiol. 2 (43) (2011). doi: 10.3389/fphys.2011.00043.
- 2. Ф. А. Семин и А. К. Цатурян, Биофизика 57 (5), 840 (2012).
- 3. Ф. А. Семин, Биофизика 59 (4), 951 (2014).
- 4. J. J. Rice, F. Wang, D. M. Bers, and P. P. de Tombe, Biophys. J. **95** (5), 2368 (2008).
- S. A. Niederer, P. J. Hunter, and N. P. Smith, Biophys. J. 90 (5), 1697 (2006).
- Ф. А. Семин и А. К. Цатурян, Докл. РАН 462 (2), 233 (2015).
- 7. O. Frank, Z. Biol. 37, 483 (1899).
- R. Burattini and G. Gnudi, Med. Biol. Eng. Comput. 20 (2), 134 (1982).
- 9. W. Patterson and E. H. Starling, J. Physiol. 48 (5), 357 (1914).
- 10. O. Frank, Z. Biol. 37, 483 (1899).
- 11. K. Sagawa, Circ. Res. 43 (5), 677 (1978).
- 12. J. Markwalder and E. H. Starling, J. Physiol. 48 (4), 348 (1914).

Mathematical Modelling of the Dependence of the Performance of the Left Ventricle of the Heart on Preload and Afterload

F.A. Syomin* **, M.V. Zberia* **, N.A. Koubassova* **, and A.K. Tsaturyan* **

*Institute of Mechanics, Lomonosov Moscow State University, Mitchurinsky prosp. 1, Moscow, 119192 Russia

**Ural Federal University, ul. Mira 19, Ekaterinburg, 620002 Russia

The results of the numerical simulation of the end-diastolic, end-systolic and stroke volumes of the left ventricle of the heart are presented. The simulation was based on a published simple kinetic model of cardiac muscle and approximation of the ventricle geometry with thick-wall cylinder where the fibre orientation varied linearly from sub-epicardium towards sub-endocardium. Blood flow was modelled with a liner compartment model. This simplified approach provides correct dependencies of the stroke volume on the pre- and afterload, namely end-diastolic pressure and peripheral resistance. The calculations show that the stroke volume is independent of arterial compliance and blood inertia.

Key words: heart, left ventricle, mathematical model, preload, afterload