УДК 577.357.464.23

=БИОФИЗИКА КЛЕТКИ=

ОЦЕНКА ФОТО- И ЦИТОТОКСИЧНОСТИ ЭТЕРИФИЦИРОВАННЫХ ПРОИЗВОДНЫХ ХЛОРИНА е₆ И ИХ ЛИПОСОМАЛЬНЫХ ФОРМ

© 2015 г. Т.Е. Зорина, И.В. Янковский, И.Е. Кравченко, Т.В. Шман*, М.В. Белевцев*, В.П. Зорин

Белорусский государственный университет, 220030 Минск, просп. Независимости, 4, Республика Беларусь

E-mail: zorinate@mail.ru

*Республиканский научно-практический центр детской онкологии, гематологии и иммунологии, 223053, д. Боровляны Минской области, ул. Фрунзенская, 43, Республика Беларусь

Поступила в редакцию 20.05.15 г.

Проведено исследование фотофизических свойств и фотосенсибилизирующей активности этерифицированных производных хлорина e_6 – диметилового и триметилового эфиров – в различных растворах и в составе липосомальных форм. Включение в липосомальную форму производных хлорина e_6 обеспечивает их мономерность в водных растворах, позволяет полностью сохранять оптимальные фотофизические свойства и фотохимическую активность. Установлено, что скорость перераспределения диметилового эфира хлорина e_6 из липидных везикул на клетки значительно выше в сравнении с триметиловым эфиром хлорина e_6 , белки сыворотки крови оказывают разнонаправленное влияние на данный процесс. На клеточных культурах показано, что применение липосомальных форм производных хлорина e_6 значительно снижает их цитотоксичность; при этом сохраняется высокий цитотоксический эффект фотодинамического воздействия этерифицированных производных хлорина e_6 .

Ключевые слова: фотосенсибилизаторы, липосомальные формы, производные хлорина e₆, фотофизические характеристики, цитотоксичность.

Одним из ограничений в использовании многих фотосенсибилизаторов в методе фотодинамической терапии является необходимость создания лекарственных форм, обеспечивающих возможность их введения в организм. Активные субстанции наиболее эффективных фотосенсибилизаторов второго поколения (Visudine, Foscan, Tookad, Фотолон и др.) нерастворимы в водной среде, применение их в клинике сопряжено с использованием специальных фармакологических форм [1,2]. Наноразмерные липидные везикулы являются наиболее популярной формой для введения неполярных лекарственных соединений. Включение в липидные везикулы обеспечивает мономерное состояние и высокую фотосенсибилизирующую активность в водных растворах большинства гидрофобных тетрапиррольных фотосенсибилизаторов [3,4]. Вместе с тем использование липосомальных форм для введения фотосенсибилизаторов требует проведения дополнительных исследований,

так как фотофизические и фармакокинетические характеристики препарата в этом случае зависят не только от свойств самого фотосенсибилизатора, но и от структурных характеристик наноразмерных липидных везикул.

Ранее было показано, что химическая модификация хлорина е₆ (Хл е₆), связанная с этерификацией боковых карбоксильных групп, позволяет получить более эффективные для целей фотодинамической терапии сенсибилизирующие соединения – производные Хл е₆. Высокая фотодинамическая активность производных Хл е₆ была показана in vivo на животных-опухоленосителях с перевитой саркомой [5]; установлена высокая избирательность действия производных Хл е₆ в отношении лейкозных клеток при различных гематологических патологиях [6]. На моделях ех vivo получены данные, позволяющие полагать, что диметиловый эфир Хл е₆ (ДМЭ) может быть с успехом использован для развития новых технологий лечения заболеваний, основанных на контролируемом фотосенсибилизированном повреждении новообразованных сосудов глазного дна [7,8].

Сокращения: Хл е₆ – хлорин е₆, ДМЭ – диметиловый эфир хлорина е₆, ТМЭ – триметиловый эфир хлорина е₆, ДМФХ – димеристоилфосфатидилхолин.

Рис. 1. Структурные формулы хлорина e_6 , его производных и нормированные спектры поглощения ДМЭ в ацетоне и в экструзионных липосомах из ДМФХ. Структурные формулы – Хл e_6 : $R_1=R_2=R_3=H$; ДМЭ: $R_1=H$, $R_2=R_3=CH_3$; ТМЭ: $R_1=R_2=R_3=CH_3$. Спектры поглощения – ДМЭ в ацетоне (1); ДМЭ в экструзионных липосомах из ДМФХ (2). Соотношение ДМЭ:ДМФХ = 1:40.

Этерифицированные производные Хл е₆ являются неполярными соединениями и практически нерастворимы в воде. Это обуславливает необходимость применения для их введения липосомальных форм.

В данной работе проведено исследование спектральных и фотосенсибилизирующих свойств производных Хл е₆ и их комплексов с униламеллярными липидными везикулами, проанализированы особенности процессов накопления и проведена оценка цито- и фототоксичности производных Хл е₆ в клетках при их введении в растворах и в составе липосомальных форм.

МАТЕРИАЛЫ И МЕТОДЫ

Фотосенсибилизаторы и их липосомальные формы. Синтез хлоринов проводили по модифицированной методике Фишера и Орта [9]. При синтезе неполярных хлоринов, диметилового эфира Хл e_6 и триметилового эфира Хл e_6 (ТМЭ), в качестве исходных субстанций использовали феофитин или Хл e_6 . Чистоту Хл e_6 и его производных контролировали хроматографически. Содержание основного вещества в препаратах составляло более 95%. Структурные формулы исследуемых хлоринов представлены на рис. 1.

БИОФИЗИКА том 60 вып. 5 2015

Липосомы, нагруженные хлоринами в определенном соотношении липид:пигмент, готовили из синтетического димеристоилфосфатидилхолина (ДМФХ), производства Sigma (США), на ручном экструдере Avanti Mini-Extruder (метод Бенгема), используя поликарбонатные мембранные фильтры «Nuclepore®» (Whatman, Великобритания) с порами 100 нм. Фотосенсибилизаторы вводили в липидные везикулы на стадии получения липидной пленки. Размер везикул определяли методом динамического светорассеяния, диаметр липосом, нагруженных производными Хл е₆, составлял 110 ± 2 нм. Степень включения хлоринов в липидные везикулы составляет более 90% для ДМЭ и более 85% для ТМЭ.

Фотофизические характеристики хлорина e_6 и его производных. Исследования спектров электронного поглощения проводили с помощью спектрофотометра Solar PV 1251с (СОЛАР, Беларусь). Спектрально-флуоресцентные характеристики пигментов исследовали на спектрофлуориметре Solar SFL-1211A (СОЛАР, Беларусь). Квантовые выходы флуоресценции φ исследуемых соединений определяли по стандартной методике, в качестве эталона использовали раствор тетрафенилпорфина в толуоле ($\varphi = 0.09$).

Время жизни флуоресценции пигментов измеряли на импульсном флуорометре PRA-3000 (Канада), работающем в режиме счета фотонов. Квантовый выход генерации синглетного кислорода определяли на лазерном флуорометре в Институте физики им. Б.И. Степанова НАН Беларуси по методу, описанному в работе [10].

Клеточные культуры. В работе были использованы клетки лейкемической линии лимфоидного происхождения Raji (коллекция клеточных культур РНПЦ детской онкологии, гематологии и иммунологии). Суспензии клеток культивировали в среде RPMI-1640 (Sigma, США), содержащей 10% эмбриональной телячьей сыворотки (Sigma, США). При исследовании клетки отмывали и переводили в среду с различным содержанием эмбриональной телячьей сыворотки.

Исследование параметров накопления фотосенсибилизаторов клетками. Исследование процессов накопления пигментов в клетках проводили на проточном цитофлуориметре FC 500 (Beckman Coulter, США) согласно стандартной методике [11]. В качестве источника возбуждения использовали аргоновый лазер с длиной волны 488 нм (W = 20 мВт). Характеристики процессов накопления фотосенсибилизаторов клетками определяли на основании измерений интенсивности флуоресценции в полосе испускания хлоринов. Средние значения интенсивности флуоресценции клеточных популяций в каждом временном интервале рассчитывали с помощью статистического пакета программ CXP (Beckman Coulter, CIIIA).

Определение цитотоксичности хлоринов. Определение темновой цитотоксичности фотосенсибилизаторов проводили с помощью МТТ-теста по модифицированной методике, описанной в работе [12]. В пробы, содержащие среду RPMI-1640 с 5% эмбриональной телячьей сыворотки, добавляли Хл е₆ или его производные в разных концентрациях от 2·10⁻⁶ до 2·10⁻⁴ М и выдерживали в термостате (37°С) в течение 1 ч для мономеризации пигментов. Клетки Raji в концентрации 1·10⁶ клеток/мл помещали в подготовленные пробы и инкубировали при 37°С в течение 4 ч. По окончании инкубации клетки отмывали, ресуспендировали, в каждую пробу добавляли 3-(4,5-диметилтиазол-2-ил)-2,5-дифенилтетразолиум бромид (5 мкг/мл) и продолжали инкубировать в течение 5 ч. Затем для растворения образовавшихся гранул формазана в пробы добавляли кислый изопропанол (конечная концентрация НС1 0,04 Н), тщательно ресуспендировали и инкубировали в темноте при комнатной температуре до растворения гранул. Оптическую плотность определяли при длине волны 540 нм на многофункциональном микропланшетном детекторе Zenyth (Anthos, Австрия).

Сравнение фотозависимой цитотоксичности производных Хл е₆. Для проведения фотосенсибилизированного воздействия клетки Raji инкубировали в средах с различным содержанием производных Хл е₆ или их липосомальных форм в течение 1 ч (для ТМЭ – 4 ч) при температуре 37°С, дважды отмывали от несвязавшегося фотосенсибилизатора и облучали диодным лазером ($\lambda = 660$ нм) с регулируемой мощностью облучения (ИЛМ-660-0,5; «ЛЭМТ», Беларусь). Фотооблучение проводили при комнатной температуре. Аликвоты суспензии клеток отбирали через определенные промежутки времени для определения числа поврежденных клеток в тесте с пропидиумом иодидом, как описано в работе [13]. Образцы анализировали на проточном цитофлуориметре FC 500.

Данные исследования темновой и фотозависимой цитотоксичности представляли как средние значения \pm стандартная ошибка ($M \pm m$). Все представленные данные являются результатом не менее трех повторных экспериментов.

РЕЗУЛЬТАТЫ

Фотофизические характеристики производных Хл е₆ в растворах и в липидных везикулах. Производных Хл е₆ в мономерной форме имеют близкие спектральные и фотофизические характеристики. Отличия в положении основных полос в спектрах поглощения для их растворов в органических растворителях не превышают 2-3 нм (табл. 1). Все исследованные производные Хл е₆ обладают интенсивной флуоресценцией ($\lambda_{max} = 668-670$ нм). Значения квантовых выходов флуоресценции ф и времени жизни флуоресценции т для данных соединений в органических растворителях близки и составляют $\varphi = 0,18-0,20, \tau = 5,2-5,3$ нм. При переводе хлоринов в водный раствор (фосфатно-солевой буфер Дюльбекко, рН 7,2) их флуоресцентные характеристики в различной степени изменяются. Если для Хл е₆ величина квантового выхода флуоресценции в фосфатном буфере равна 0,15, то для ДМЭ и ТМЭ значения ф снижаются до 0,012 и 0,010 соответственно (табл. 1). Время жизни флуоресценции производных Хл е₆ в водном растворе уменьшается. Аналогичные изменения при переводе производных Хл е₆ из органических растворителей в водный раствор характерны для их фотосенсибилизирующих свойств. Согласно данным анализа фосфорес-

ОЦЕНКА ФОТО- И ЦИТОТОКСИЧНОСТИ

Фотосенси-	^F λ _{max} , нм	Квантовый выход флуоресценции, %			Время жизни флуоресценции, нс		
билизатор		Ацетон	ФСБ, рН 7,4	ЭСТ	Ацетон	ФСБ, рН 7,4	ЭСТ
Хл е ₆	668	19,2 ± 1,0	$15,5 \pm 1,0$	16,7 ± 1,0	$5,3 \pm 0,03$	$4,5 \pm 0,04$	$4,8 \pm 0,03$
ДМЭ	670	18,0 ± 1,0	$1,3 \pm 1,0$	$15,5 \pm 1,0$	$5,2 \pm 0,04$	$2,4 \pm 0,10$	$4,8 \pm 0,02$
ТМЭ	670	18,2 ± 1,0	$1,1 \pm 1,0$	$9,2 \pm 1,0$	$5,2 \pm 0,03$	_	4,3 ± 0,03

Таблица 1. Спектрально-флуоресцентные характеристики хлорина е6 и его этерифицированных производных

Примечание. Длина волны (^Fλ_{max}) представлена для растворов хлоринов в ацетоне. ΦСБ – фосфатно-солевой буфер Дюльбекко, ЭСТ – эмбриональная телячья сыворотка. Время инкубирования хлоринов с ЭСТ – 40 мин.

Таблица 2. Спектрально-флуоресцентные и фотофизические характеристики липосомальных форм этерифицированных производных хлорина е₆

Липосомаль- ные формы хлоринов*	^F λ _{max} , HM	Квантовый выход флуоресцен- ции, %	Время жизни флуоресцен- ции, нс	Квантовый выход генерации синглетного кислорода ¹ О2**				
				Соотношение хлорины:ДМФХ				
				1:20	1:100	1:400	Производ- ные Хл е ₆ в С ₂ Н ₅ ОН	
Хл e ₆	672	$16,3 \pm 1,0$	$5,2 \pm 0,03$	_	-	_	$0,65 \pm 0,019$	
ДМЭ	672	$16,9 \pm 1,0$	$5,1 \pm 0,06$	$0,42 \pm 0,013$	$0,55 \pm 0,016$	$0,62 \pm 0,019$	$0,65 \pm 0,020$	
ТМЭ	674	17,1 ± 1,0	$5,2 \pm 0,02$	$0,35 \pm 0,034$	$0,52 \pm 0,021$	$0,60 \pm 0,018$	$0,60 \pm 0,018$	

Примечание. * Соотношение ДМФХ:хлорин – 40:1. ** При определении квантового выхода генерации ¹О₂ источником возбуждения являлся лазер с длиной волны 531 нм, концентрации ДМЭ уравнивались и не превышали 0, 05.

ценции в полосе 1270 нм значения квантовых выходов генерации ${}^{1}O_{2}$ мономерными молекулами производных Хл e_{6} в растворе этанола практически одинаковы и составляют 0,6–0,65 (табл. 2). В водных растворах фотодинамическая активность для Хл e_{6} снижается более чем на 50%, а для его этерифицированных производных ДМЭ и ТМЭ данный показатель уменьшается более чем в 10 раз (данные не приведены).

Установленные изменения фотофизических характеристик являются следствием агрегации молекул фотосенсибилизаторов в водной среде и наиболее значительны для крайне неполярных ДМЭ и ТМЭ [14]. Процессы агрегации порфириновых пигментов интенсивно протекают в полярных растворителях вследствие гидрофобных и π-π-взаимодействий тетрапиррольных структур. Образование структур с различной степенью олигомеризации вызывает значительное снижение коэффициента экстинкции в полосе Соре, уширение и небольшие смещения Q-полос для многих порфириновых фотосенсибилизаторов. Характеристичным для процесса образования агрегатов также является значительное снижением величины квантового выхода и времени жизни флуоресценции [15,16]. Разрушение агрегатов при взаимодействии с

БИОФИЗИКА том 60 вып. 5 2015

коллоидами (мицеллы поверхностно-активных веществ, белки, полимеры) обычно устраняет агрегационно-зависимые изменения спектральных и кинетических характеристик порфириновых фотосенсибилизаторов. Добавление эмбриональной сыворотки в водный раствор производных Хл е₆ ведет к значительному увеличению квантового выхода и времени жизни их флуоресценции (табл. 1). Аналогичные изменения наблюдаются и при добавлении суспензии неокрашенных липидных везикул (данные не приведены). Следует отметить, что скорость разрушения агрегатов различных производных Хл е₆ в водной среде значительно различается. Если для Хл е₆ полная мономеризация осуществляется в течение нескольких секунд, то в случае ДМЭ для этого требуется 15-20 мин. В случае ТМЭ даже через 1 ч инкубации в присутствии сыворотки значительная часть его молекул находится в составе агрегатов.

Включение производных Хл е₆ в липосомы на стадии их приготовления позволяет сохранить полностью мономерное состояние фотосенсибилизаторов в водных растворах. Об этом свидетельствует отсутствие существенных различий спектров электронного поглощения и флуоресценции ДМЭ и ТМЭ в ацетоне и в липосомах из ДМФХ (рис. 1, табл. 2). Наблю-

Рис. 2. Кинетики накопления хлоринов (а) и их липосомальных форм (б) в клетках Raji. *1* – Хл е₆, 2 – ДМЭ, 3 – ТМЭ. Соотношение пигмент:ДМФХ = 1:40. Концентрация хлоринов – 5·10⁻⁶ М. Концентрация клеток – 1·10⁶ клеток/мл. Концентрация эмбриональной телячьей сыворотки – 5%.

даемое смещение максимумов полосы Соре и длинноволновой полосы на 2-3 нм, вероятно, связано с особенностями микроокружения молекул в составе липидной матрицы. Ранее было показано, что молекулы ДМЭ и ТМЭ локализованы в мембране липосом и располагаются в неполярном окружении углеводородной фазы в области концевых остатков жирнокислотных цепей фосфолипидов [17]. Квантовый выход флуоресценции и время жизни флуоресценции исследуемых хлоринов в липосомах близки к значению, характерному для их растворов в органических растворителях. Включение производных Хл е₆ в состав липидных везикул не влияет на их фотодинамическую активность. Согласно полученным данным величины квантового выхода генерации ¹О₂ ДМЭ и ТМЭ в липосомах близки к аналогичным параметрам этих фотосенсибилизаторов в спиртовых растворах (табл. 2).

Спектрально-флуоресцентные характеристики ДМЭ и ТМЭ в составе липидных везикул, приготовленных экструзионным способом, остаются постоянными при изменении степени нагрузки в диапазоне 1:1000–1:100 (данные не приведены). Лишь при увеличении нагрузки везикул до отношений фотосенсибилизатор липид, бо́льших чем 1:100, некоторые абсорбционные и флуоресцентные характеристики производных Хл е₆ изменяются.

Одной из основных причин этого может служить эффект внутреннего фильтра для везикул с высоким уровнем содержания хлоринов. Кроме того, повышение содержания молекул фотосенсибилизатора в составе липидных везикул значительно увеличивает вероятность безизлучательных взаимодействий их хромофоров, следствием чего является снижение квантового выхода флуоресценции и других эффектов [18]. Согласно полученным данным высокий уровень нагрузки липосом (1:20) снижает квантовый выход генерации синглетного кислорода. Однако перераспределение фотосенсибилизаторов из сильно окрашенных везикул на биологические структуры (например, неокрашенные везикулы, белки сыворотки крови и др.) полностью восстанавливает уровень квантового выхода генерации ¹О₂.

Проведенные исследования показывают, что включение этерифицированных производных Хл е₆ в липосомальные везикулы полностью предотвращает их агрегацию в водных растворах и сохраняет фотохимическую активность фотосенсибилизатора на высоком уровне.

Исследование процессов накопления производных Хл е₆ в клетках Raji. Результативность фотодинамического воздействия в биологических системах определяется не только фотофизическими характеристиками сенсибилизатора, но в значительной степени зависит от процессов связывания и локализации в составе клеточных и тканевых структур. Исходя из этого, представляет интерес сравнение процессов накопления Хл е₆ и его производных в клетках при введении их в растворе и в липосомальной форме.

Согласно данным цитофлуориметрии кинетики накопления хлоринов, введенных в растворе в суспензию клеток Raji, существенно различаются: для ДМЭ характерно быстрое увеличение в течение нескольких минут концентрации в клетках с последующим выходом на равновесный уровень (рис. 2a, кривая 2), в случае ТМЭ происходит медленное возрастание концентрации фотосенсибилизаторов в клетках на протяжении нескольких часов (рис. 2a, кри-

Рис. 3. Влияние концентрации эмбриональной телячьей сыворотки на накопление хлоринов, введенных в растворах C_2H_5OH (а) и в липосомах из ДМФХ (б) в клетках Raji. $I - Xл e_6$, 2 - ДМЭ, 3 - TМЭ. Концентрация хлоринов $-5 \cdot 10^{-6}$ М. Концентрация клеток $-1 \cdot 10^6$ клеток/мл. Время инкубирования -120 мин, $t_{\text{инк с ЭСТ}} = 0$. Соотношение пигмент:ДМФХ = 1:40.

вая 3). Для Хл е₆ наблюдается двухфазная кинетика накопления: вслед за быстрым связыванием в течение 1–2 мин наблюдается очень медленное увеличение содержания фотосенсибилизатора в течение нескольких часов (рис. 2а, кривая 1). При этом уровень накопления Хл е₆ в клетках значительно ниже в сравнении с его этерифицированными производными.

Введение фотосенсибилизатора в клеточную культуру в составе липидных везикул не изменяет характера кинетики их связывания клетками, но оказывает влияние на равновесный уровень окрашивания клеток (рис. 2б). В случае Хл е₆ максимальный уровень окрашивания клеток при использовании липосомальной формы лишь на 10-15% ниже, чем при использовании спиртового раствора этого фотосенсибилизатора. Для этерифицированных производных Хл е₆ при использовании липосомальной формы равновесный уровень связывания фотосенсибилизатора клетками снижается в 2,1-2,5 раза (рис. 2). Различия в уровнях накопления липосомальных форм и свободных этерифицированных производных Хл е₆ зависят от концентрации сыворотки в среде (рис. 3). Они максимальны при окрашивании клеток в среде без сыворотки и практически исчезают при окрашивании клеток в средах с высоким содержанием белков сыворотки крови.

Оценка темновой токсичности и фотосенсибилизирующей активности липосомальных форм производных Хл е₆ в клеточной культуре. Характеристики темновой и фотоиндуцированной цитотоксичности сенсибилизаторов в значительной степени определяют возможность их использования для целей фотодинамической терапии. Цитотоксичность принято оценивать по

БИОФИЗИКА том 60 вып. 5 2015

величине концентрации препарата в молях, при которой погибает 50% клеток в исследуемой пробе (ЛС₅₀). Наибольшую темновую токсичность проявляет ДМЭ (ЛС₅₀ = $6,0\cdot10^{-5}$ М), для ТМЭ ЛС₅₀ составляет $8,5\cdot10^{-5}$ М. Наименее токсичным является Хл e_6 , для которого при концентрации пигмента $1,0\cdot10^{-4}$ М в культуре клеток Raji наблюдается повреждение не более 10% клеток.

Введение производных Хл е₆ в клеточную культуру в составе липидных везикул значительно снижает их темновую токсичность. Об этом свидетельствует отсутствие статистически достоверных изменений числа поврежденных клеток в образцах клеточной культуры, окрашенных липосомальных форм ДМЭ и ТМЭ во всем исследованном диапазоне концентраций фотосенсибилизаторов (табл. 3). Исследование дозозависимой активности фотосенсибилизатора показало, что темновая токсичность липосомальных форм ДМЭ при инкубировании в течение 3 ч не проявлялась в интервале концентраций от 2·10⁻⁶ до 1·10⁻⁴ М, тогда как по тесту с пропидиумом иодидом при концентрации 5.10⁻⁵ М в течение 70 мин погибает 40% клеток, окрашенных ДМЭ.

Облучение клеток Raji в присутствии нетоксичных концентраций производных Xл е₆ излучением диодного лазера 660 нм сопровождается их фотосенсибилизированным повреждением. Следствием этого является уменьшение размера клеток и увеличение проницаемости клеточной мембраны к ряду флуоресцентных зондов, например пропидиума иодида. На основании сравнения зависимостей числа поврежденных клеток от дозы облучения можно сравнить фотосенсибилизирующую активность раз-

	Концентрация пигмента, М						
ФС-ЛФ	5.10-6	1.10^{-5}	$2 \cdot 10^{-5}$	$5 \cdot 10^{-5}$	1.10^{-4}	Контроль	Время, мин
	Число погибших клеток, N/N0						
ДМЭ-ДМФХ	4,0	3,3	4,2	4,8	5,1	2.0	60
ТМЭ-ДМФХ	3,4	3,9	3,5	4,1	4,2	3,0	
ДМЭ-ДМФХ	4,6	4,7	5,0	5,3	5,2	2 0	240
ТМЭ-ДМФХ	4,2	4,5	4,1	4,5	4,8	5,8	

Таблица 3. Цитотоксичность ДМЭ и ТМЭ, введенных в суспензию клеток Raji в липосомальной форме

Примечание. ФС-ЛФ – липосомальная форма фотосенсибилизатора. Число погибших клеток определяли по тесту с пропидиумом иодидом. Соотношение пигмент:ДМФХ = 1:40, концентрация эмбриональной телячьей сыворотки – 5%. Температура инкубирования – 37°С, среда инкубирования – RPMI-1640. Ошибка зксперимента, рассчитанная по трем идентичным экспериментам, не превышала 5%.

личных производных Хл e_6 в клеточной культуре. Согласно полученным результатам наибольшая сенсибилизирующая активность наблюдается для ДМЭ – повреждение 50% клеток происходит при облучении культуры в дозе 0,75 Дж/см². При использовании в качестве фотосенсибилизатора ТМЭ и Хл e_6 подобный результат достигается при дозах, больших в три и пять раз соответственно. Использование для фотосенсибилизации липосомальных форм производных Хл e_6 не оказывало значительного влияние на процессы фотоинактивации клеток (рис. 4).

ОБСУЖДЕНИЕ

Этерифицированные производные $Xл e_6 xa$ рактеризуются очень низкой полярностью и, как следствие, практически нерастворимы в водных растворах. В отличие от $Xл e_6$ использование при их введении полимерных носителей для снижения степени агрегации недостаточно. Ранее было показано, что производные Хл е₆ обладают высоким сродством к ультразвуковым и инъекционным униламеллярным липидным везикулам. Коэффициент распределения липидный бислой/водная среда (К_{л/в}) для ДМЭ и ТМЭ составляет: $^{\text{ДМЭ}}K_{_{\text{Л/B}}} = (1,1 \pm 0,3) \cdot 10^5$ и $^{\text{ТМЭ}}K_{_{\text{Л/B}}} = (9,8 \pm 0,3) \cdot 10^5$, что более чем на порядок превышает аналогичную величину для Хл $e_6 - X_{\pi} e_6 K_{\pi/B} = (2,5 \pm 0,2) \cdot 10^3$. Жесткая фиксация молекул производных Хл е₆ в липидном бислое этих носителей обеспечивает полностью мономерное состояние при различных степенях нагрузки. Показано, что структурные характеристики и состав липидных везикул оказывают значительное влияние на величину сродства молекул фотосенсибилизатора к липидному бислою, а также на величины скоростей их включения и выхода молекул фотосенсибилизатора из липидного бислоя [19].

Рис. 4. Фотоцитотоксичность Хл е₆, ДМЭ, ТМЭ и липосомальных форм производных хлорина е₆ при различных дозах светового воздействия. Предварительное инкубирование фотосенсибилизатора с клетками Raji 40 мин. Концентрация пигментов: $2\cdot10^{-6}$ М, отношение пигмент:ДМФХ = 1:40. Жизнеспособность клеток в образце определяли по тесту с пропидиумом иодидом. Дозы облучения: 1 - 0.56 Дж/см²; 2 - 0.85 Дж/см²; 3 - 1.13 Дж/см².

Вместе с тем липосомальные препараты производных Хл е₆ на основе инъекционных и ультразвуковых малых униламеллярных липидных везикул из природных и синтетических фосфатидилхолинов нестабильны. Результаты, представленные в данной работе, показывают, что применение техники экструзии позволяет получить липидные везикулы с различной степенью нагрузки производными Хл е₆ в мономерной форме. Дополнительные исследования показали, что препараты экструзионных липосом, нагруженных ДМЭ и ТМЭ, сохраняют неизменной степень полидисперсности на протяжении нескольких недель.

Отличия в степени полярности молекул производных Хл е₆ определяют особенности процессов накопления их в клетках. Как было показано ранее [20], относительно полярные молекулы Хл е₆ быстро равновесно связываются с плазматической мембраной, но их дальнейшее проникновение в клетку ограничено низкой мембранной проницаемостью. Для ДМЭ и ТМЭ, легко проникающих через мембранные структуры, основным фактором, контролирующим кинетику накопления в клетках, является скорость перераспределения их молекул между белками среды (преимущественно липопротеинами низкой и высокой плотности) и клеточной мембраной [15]. Характер кинетики накопления в клетках производных Хл е₆, введенных в составе липосомальных форм, очевидно, зависит от процессов распределения молекул фотосенсибилизатора между липидными везикулами, клетками и белками культуральной среды. Высокая скорость выхода и относительно низкое сродство молекул Хл е₆ к липидным везикулам предполагают отсутствие значительных различий в активности данного фотосенсибилизатора при окрашивании клеток Raji его липосомальной формой или раствором (рис. 2). В случае ДМЭ и ТМЭ низкая скорость выхода фотосенсибилизатора из липидных везикул тормозит процесс их накопления в клетках в начале инкубирования. Кроме того, присутствие в суспензии клеток липидных везикул оказывает значительное влияние на равновесный уровень распределения фотосенсибилизаторов между клетками и средой инкубирования. Этот эффект особенно выражен при низком содержании эмбриональной телячьей сыворотки в среде инкубирования. С увеличением концентрации сыворотки в среде различия в равновесных уровнях накопления этерифицированных хлоринов в клетках, при их введении в виде растворов или липосомальных форм, значительно снижаются (рис. 3).

Альтерация процессов распределения производных Хл е₆ между клетками и средой может являться причиной уменьшения их темновой цитотоксичности при введении фотосенсибилизатора в составе липосомальных форм. Действительно, при инкубировании клеток в среде с 5% сывороткой уровень внутриклеточного накопления липосомальных форм ДМЭ и ТМЭ в 2,0-2,5 раза ниже, чем при окраске в присутствии эквимолярных концентраций фотосенсибилизатора без липосом (рис. 2). Вместе с тем отметим, что относительное снижение степени окраски клеток, наблюдаемое в этом случае, существенно меньше в сравнении с изменениями темновой токсичности производных Хл е₆. Это позволяет предположить, что эффект влияния липосомальной формы на цитотоксичность фотосенсибилизатора не сводится механически к вариациям их внутриклеточного накопления.

Аналогичное заключение справедливо и в отношение сенсибилизирующей активности исследованных фотосенсибилизаторов. Ранее с использованием большого числа производных Хл е₆ было показано наличие корреляции между накоплением клетками фотосенсибилизаторов и скоростью их фотоинактивации [6]. Результаты сравнения фотосенсибилизирующей активности различных хлоринов в культуре клеток Raji, представленные в работе, подтверждают данную закономерность. Содержание хлоринов в клетках и эффективность фотосенсибилизированного повреждения при различных дозах облучения возрастают в ряду производных Хл е₆ – ТМЭ – ДМЭ (рис. 4). Эта закономерность нарушается при анализе результативности фотоинактивации клеток в присутствии липосомальных форм производных Хл е₆: при использовании липосомальных форм ДМЭ и ТМЭ уровень накопления фотосенсибилизаторов в клетках снижается в 2,0-2,5 раза, тогда как фотосенсибилизирующая активность лишь на 5-15% ниже в сравнении с нелипосомальными формами ДМЭ и ТМЭ. Контроль спектральных характеристик образцов клеток показал отсутствие фотовыгорания исследованных фотосенсибилизаторов при фотооблучении. Независимо от типа образца в клеточной суспензии большинство молекул сенсибилизатора находились в мономерном состоянии. Можно предположить, что повышенная удельная фотодинамическая активность липосомальных форм производных Хл е₆ обусловлена влиянием липосомальных носителей на процессы локализации, накопления фотосенсибилизаторов в клетках и сенсибилизации ими повреждений клеточных структур.

Таким образом, представленные в данной работе результаты показывают, что этерифи-

цированные производные хлорина е₆ в липосомальной форме являются эффективными фотосенсибилизаторами. Включение в липосомальную форму производных Хл е₆ обеспечивает их мономерность в водных растворах, позволяет полностью сохранять оптимальные фотофизические свойства и фотохимическую активность.

Различия в скоростях накопления пигментов, имеющих близкую фотохимическую активность (таких как ДМЭ и ТМЭ), могут быть использованы при решении специальных задач, например, при необходимости элиминации отдельных типов клеток в краткосрочных культурах (препаратах) крови и костного мозга пациентов с гематологическими патологиями.

Авторы выражают искреннюю благодарность к.ф.-м.н. М.В. Пархоц и к.ф.-м.н. А.П. Ступаку за помощь в постановке и проведении экспериментов по измерению фотофизических характеристик хлоринов.

СПИСОК ЛИТЕРАТУРЫ

- C. A. Robertson, D. H. Evans, and H. Abrahamse, J. Photochem. Photobiol. 96, 1 (2009).
- 2. R. R. Allison and C. H. Sibata, Photodiagn. Photodynamic Therapy 7, 61 (2010).
- 3. M. Slingerland, H. Guchelaar, and H. Gelderblom, Drug Discovery Today 17, 160 (2012).
- J. Berlanda, T. Kiesslich, V. Engelhardt, et al., J. Photochem. Photobiol. B: Biol. 100, 173 (2010).
- 5. G. P. Gurinovich, T. E. Zorina, S. B. Melnov, et al., J. Photochem. Photobiol. B:Biol. **13**, 51 (1992).

- 6. V. P. Zorin, V. P. Savitskiy, and M. P. Potapnev, Experim. Oncol. 24, 142 (2002).
- Т. Е. Зорина, А. А. Далидович, Л. Н. Марченко и др., Офтальмология. Восточная Европа 4, 93 (2011).
- А. А. Далидович, Л. Н. Марченко, А. С. Федулов и др., Фотодинамическая терапия Фотолоном[®] миопической макулопатии (Парадокс, Минск, 2012).
- 9. H. Fischer and H. Orth, *Die chemie des pyrrolis* (Acad. Verlag, 1937).
- А. С. Сташевский, В. А. Галиевский и Б. М. Джагаров, Приборы и методы измерений 1 (2), 25 (2011).
- 11. M. G. Ormerod, *Flow Cytometry: A Practical Approach* (Oxford University Press, Oxford, 2000).
- 12. А. П. Шпакова, К. С. Палова и Т. И. Булычева, Иммунология 2, 20 (2000).
- 13. Е. П. Вашкевич, Иммунопатология, аллергология, инфектология 1, 6 (2011).
- 14. В. П. Зорин, И. С. Михаловский, Т. Е. Зорина и др., Журн. прикл. спектроскопии **62**, 179 (1995).
- 15. В. П. Зорин, И. И. Хлудеев и Т. Е. Зорина, Биофизика **45**, 313 (2000).
- C. M. N. Yow, J. Y. Chen, N. K. Mak, et al., Cancer Lett. 157, 123 (2000).
- 17. В. П. Зорин, И. С. Михаловский, Т. Е. Зорина и др., Биофизика **40**, 328 (1995).
- 18. В. А. Решетов, Т. Е. Зорина, М.-А. Д'Аллеван и др., Журн. прикл. спектроскопии **78**, 114 (2011).
- V. P. Zorin., I. I. Khludeyev, T. E. Zorina, et al., Proc. SPIE. Lazer Use in Oncology II. 4059, 139 (2000).
- В. П. Савицкий, В. П. Зорин, М. П. Потапнев и А. Я. Потапенко, Бюл. эксперим. биологии и медицины 138 (8), 180 (2004).

Evaluation of Photo- and Cytotoxicity of Chlorin e₆ Ester Derivatives and Their Liposomal Forms

T.E. Zorina*, I.V. Yankovsky*, I.E. Kravchenko*, T.V. Shman**, M.V. Belevtsev**, and V.P. Zorin*

*Belarusian State University, prosp. Nezavisimosti 4, Minsk, 220030 Republic of Belarus

**Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, der. Borovlyany, ul. Frunzenskaya 43, Minsk Region, 223053 Republic of Belarus

Photophysical characteristics and photosensitizing activity of the chlorin e_6 dimethyl and trimethyl ester derivatives in various solution and their liposomal forms were studied. It was shown that in lipid vesicles chlorin e_6 ester derivatives are predominantly in the monomeric state and possess optimal photophysical properties and high photochemical activity. The rate of redistribution of the chlorin e_6 dimethyl ester from lipid vesicle to cells was higher as compared with that one of the chlorin e_6 trimethyl ester. The increase of the serum concentration in the incubation medium has a different effect on processes of accumulation of the liposomal forms of the chlorin e_6 dimethyl and trimethyl ester derivatives significantly decreases their cytotoxicity but keeps high cytotoxic effect of photodynamic activity of the chlorin e_6 ester derivatives.

Key words: photosensitizers, liposomal forms, chlorin e_6 ester derivatives, photophysical characteristics, cytotoxicity