Продуценты, биология, селекция, генетическая инженерия

УДК 579.66; 573.6

Экспрессия гена НАДФ⁺-зависимой формиатдегидрогеназы из *Pseudomonas* повышает продукцию лизина в *Corynebacterium glutamicum*

© **2019** Л. Е. РЯБЧЕНКО^{1,*}, Т. Е. ЛЕОНОВА¹, Т. Е. ШУСТИКОВА¹, Т. В. ГЕРАСИМОВА¹, Т. А. ИВАНКОВА¹, К. В. СИДОРЕНКО¹, А. С. ЯНЕНКО¹

¹ФГБУ Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Национального исследовательского центра «Курчатовский институт» (НИЦ «Курчатовский институт»–ГосНИИгенетика), Москва, 117545

*e-mail: ryabchenko@genetika.ru

Поступила в редакцию12.11.2019 г.После доработки20.11.2019 г.Принята к публикации27.11.2019 г.

В клетках штаммов *Corynebacterium glutamicum*, продуцирующих лизин, был экспрессирован ген *psefdh*_D221Q мутантной формиатдегидрогеназы (PseФДГ_D221Q) из *Pseudomonas*, которая катализирует окисление формиата с одновременным образованием НАДФН. Ген *psefdh*_D221Q был введен в штаммы *C. glutamicum* в составе автономной плазмиды, или интегрирован в хромосому с одновременной инактивацией хозяйских генов формиатдегидрогеназы. Результаты изучения штаммов *C. glutamicum* с НАДФ⁺-зависимой формиатдегидрогеназой показали, что такие штаммы в случае инактивации собственной формиатдегидрогеназы обладают повышенным уровнем синтеза L-лизина в присутствии формиата.

Ключевые слова: L-лизин, формиатдегидрогеназа, НАДФН, Corynebacterium glutamicum

doi: 10.21519/0234-2758-2019-35-6-21-29

Уровень синтеза аминокислот аспарагинового семейства (треонина, метионина, лизина, изолейцина) в клетках бактерий в значительной степени зависит от доступности кофактора НАДФН (рис. 1). Наличие в клетках достаточного количества НАДФН особенно важно для биосинтеза L-лизина, на синтез одной молекулы которого расходуется четыре молекулы НАДФН (рис. 1) [1, 2]. Известно, что в клетках C. glutamicum – ключевого продуцента аминокислот [3-5], НАДФН синтезируется в окислительной ветви пентозофосфатного пути с помощью двух ферментов глюкозо-6-фосфатдегидрогеназы (КФ 1.1.1.49) и 6-фосфоглюконатдегидрогеназы (КФ 1.1.1.44) [6], в цикле трикарбоновых кислот с помощью изоцитратдегидрогеназы (КФ 1.1.1.42) [7] и малик-фермента (КФ 1.1.1.40), превращающего малат в пируват [8] (рис. 1). В результате анализа метаболических потоков было показано, что в клетках *C. glutamicum*, продуцирующих L-лизин, НАДФН преимущественно образуется в окислительной ветви пентозофосфатного пути [9]. Однако синтез двух молекул НАДФН в пентозофосфатном пути сопровождается потерей одного атома углерода из молекулы глюкозы в виде CO_2 (рис. 1). В связи с этим представляется перспективным использование других метаболических реакций синтеза НАДФН для повышения уровня синтеза лизина.

Одним из подходов, позволяющих повысить доступность НАДФН в клетках *С. glutamicum* и увеличить уровень продукции лизина, является замена НАД⁺-зависимой глицеральдегид-3-фосфат

Список сокращений: ВКПМ – Всероссийская коллекция промышленных микроорганизмов; НАДФН – никотинамид-β-аденин динуклеотид фосфат восстановленный, ФДГ – формиатдегидрогеназа, PseФДГ_D221Q – НАДФ⁺-зависимая формиатдегидрогеназа с мутацией D221Q, ФС – ферментационная среда, РФ – ферментационная среда для рабочего ферментера, КЖ – культуральная жидкость.

РЯБЧЕНКО и др.

Рис. 1. Биосинтез L-лизина и других аминокислот аспарагинового семейства из глюкозы в клетках *C. glutamicum*. Синтез НАДФН (*1*–4) с помощью ферментов: глюкозо-6-фосфатдегидрогеназы (КФ 1.1.1.49) (*1*), 6-фосфоглюконатдегидрогеназы (КФ 1.1.1.44) (*2*), изоцитратдегидрогеназы (КФ 1.1.1.42) (*3*), малик-фермента (КФ 1.1.1.40) (*4*); потребление НАДФН (*5*–9) с помощью ферментов: аспартатаминотрансферазы (КФ 2.6.1.1) (*5*), аспартат-β-полуальдегиддегидрогеназы (КФ 1.2.1.11) (*6*), 4-гидрокси-тетрагидропиколинат редуктазы (КФ 1.17.1.8) (*7*), диаминопимелатдегидоогеназы (КФ 1.4.1.16) (*8*), сукцинилдиаминопимелаттрансаминазы (КФ 2.6.1.17) (*9*)

Fig. 1. Biosynthesis of L-lysine and other amino acids of the asparagine family from glucose in *C. glutamicum* cells The numbers indicate *1* to *4* reactions of NADPH synthesis using enzymes: 1 - glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 2 - 6-phosphogluconate dehydrogenase (EC 1.1.1.44), 3 - isocitrate dehydrogenase (EC 1.1.1.42), 4 - malate dehydrogenase (oxaloacetate-decarboxylating) (NADP⁺) (EC 1.1.1.40); 5-9 reactions of NADPH consumption with the help of enzymes: 5 - aspartate transaminase (EC 2.6.1.1), 6 - aspartate semialdehyde dehydrogenase (EC 1.2.1.11), 7 - 4-hydroxy-tetrahydrodipicolinate reductase (EC 1.17.1.8), 8 - diaminopimelate dehydrogenase (EC 1.4.1.16), 9 - succinyl diaminopimelattransaminase (EC 2.6.1.17)

дегидрогеназы (КФ 1.2.1.12) (в природном штамме) на НАДФ⁺-зависимый фермент из других видов бактерий, либо полученный с помощью рационального дизайна [10, 11].

Другим подходом повышения доступности НАДФН является экспрессия в клетках *C. glutamicum* генов трансгидрогеназы (КФ 1.6.1.5) из *E. coli*, которая катализирует превращение НАДН в НАДФН и обратно [12]. Этот подход также позволяет повысить уровень синтеза лизина [13].

Известно, что штаммы *С. glutamicum* способны метаболизировать формиат благодаря наличию собственной формиатдегидрогеназы (КФ 1.17.1.9, ФДГ), которая не использует в качестве кофактора НАД⁺ или НАДФ⁺ [14].

Цель настоящей работы – повышение доступности НАДФН в клетках *С. glutamicum*, продуцирующих лизин, с помощью мутантной формиатдегидрогеназы из *Pseudomonas* sp. 101, катализирующией окисление формиата до углекислого газа с одновременным образованием НАДФН [15, 16].

Штаммы и плазмиды, используемые в работе

Strains and plasmids

Название Характеристика		Источник получения				
Штаммы						
E. coli						
XL1	Штамм дикого типа	ВКПМ				
C. glutamicum						
DSM 1412 (ATCC13869)	Штамм дикого типа	Немецкая коллекция микроорганизмов (DSMZ)				
A1	C. glutamicum DSM 1412 lysC ^{T3111}	Данная работа				
A1-30	A1 ΔfdhD–fdhF:: Peftu-psefdh_D221Q	То же				
ВКПМ В-12771	Штамм <i>C. glutamicum</i> (ранее <i>Brevibacterium flavum</i>) ВКПМ В-12771 продуцент лизина	[17]				
H215	Производный от штамма <i>C. glutamicum</i> ВКПМ В-12771, содержащий модификации в генах: <i>mur</i> E81, Δala T, Δlys I, Δodx , Δldh , Δsug R, Psod-ptsI	Данная работа				
H217	H215 ΔfdhD–fdhF:: Peftu- psefdh_D221Q	То же				
Плазмиды						
pJET1	Вектор для клонирования	Thermo Scientific				
pJET1- psefdh	pJET1 с <i>psefdh</i> _D221Q из <i>Pseudomonas</i> sp.	Данная работа				
pIKA-sac13	рUC19 + Km ^R из рUC4K + <i>sac</i> В из <i>B. subtilis</i> 168	[18]				
pIKA-sac13-lysC311	$pIKA-sac13 + lysC311^{T311I}$	Данная работа				
pNS-P <i>eftu</i> -psefdh	pNS2-Peftu-psefdh_D221Q	То же				
pJET1-fdh	pJET1 с генами fdhDF C. glutamicum	»» »»				
pJET1-∆fdh	pJET1- <i>fdh</i> с делецией SmaI-SmaI в генах <i>fdhDF</i>	» »				
pJET1-∆fdh::P <i>eftu</i> psefdh	pJET1-Δ <i>fdh</i> со встройкой P <i>eftu-psefdh</i> _D221Q	» »				
PIKA-∆fdh::P <i>eftu</i> psefdh	РІКА- <i>Δfdh</i> со встройкой Peftu-psefdh D221Q	» »				

УСЛОВИЯ ЭКСПЕРИМЕНТА

Бактериальные штаммы и плазмиды (табл. 1)

Штамм *C. glutamicum* A1 является производным штамма *C. glutamicum* DSM 1412 (или ATCC13869), в котором мутация в гене *lys*C приводит к замене треонина на изолейцин в позиции 311 и обеспечивает устойчивость аспартокиназы к ретроингибированию лизином и треонином. Для замены дикой копии гена на мутантную использовали нереплицирующуюся суицидную плазмиду pIKA-sac13 [18], способную встраиваться в хромосому *C. glutamiсит* по гомологичной рекомбинации. На ее основе получен вектор pIKA-sac13-lysC311.

Штамм *С. glutamicum* H215 – производный от штамма продуцента L-лизина *С. glutamicum* ВКПМ В-12771 [17] (прародитель – штамм *С. glutamicum* АТСС 13869) – был получен путем замещения нативных аллелей ряда генов (табл. 1) на мутантные аллели с использованием сконструированных на основе плазмиды pIKA-sac13 [17, 18] векторов, содержащих участки гомологии с генами-мишенями.

Таблица 1

Штаммы *E. coli* выращивали на среде LB при 37 °С. При необходимости в среду добавляли антибиотики: канамицин – 50 мкг/мл, ампициллин – 100 мкг/мл. Штаммы *C. glutamicum* выращивали на среде 2×LB с 1% мальтозой при 30 °С. Для трансформации *C. glutamicum* использовали BHIS-среду, следующего состава, г/л: сердечно-мозговой бульон (brain heart infusion, BHI) (Difco, USA) – 37,0; сорбит – 30,0; агар – 15,0 (в случае твердой среды). Для определения уровня продукции L-лизина штаммами *C. glutamicum* ферментации проводили в пробирках на ферментационной среде (ФС) и в 3 л лабораторных ферментерах (B.Braun Biotech Co, Германия) на среде РФ с подпиткой (табл. 2) при 30 °С.

В качестве подпитки использовали раствор, содержащий 65% глюкозы, а также при необходимости добавляли другие компоненты.

Конструирование плазмид и штаммов

Введение мутации АСС→АТС (Thr311Ile) в последовательность гена lysC, кодирующего аспартаткиназу, проводили с помощью ПЦР с мутантными праймерами. Левый фланг гена размером около 0,5 тпн амплифицировали с хромосомной ДНК штамма АТСС13869 с помощью праймеров F lysC1 и мутантного R lysC311m. Правый фланг гена размером около 0,5 тпн амплифицировали с хромосомной ДНК штамма АТСС13869 с помощью праймеров мутантного F lysC311m и R lysC2 (табл. 3). Оба фрагмента объединяли с помощью ПЦР за счет гомологичных последовательностей, находящихся в составе мутантных праймеров. Полученный фрагмент размером 0,98 тпн, содержащий в середине мутацию Thr311Ile клонировали в вектор pIKA-sac13 по уникальным сайтам рестрикции Sall и BamHI.

Последовательность нуклеотидов с мутацией проверяли с помощью секвенирования. Полученную плазмиду назвали pIKA-sac13-lysC311 (6,9 тпн).

Для конструирования штамма C. glutamicит ATCC13869 с мутацией в LysC полипептиде АСС→АТС (Thr311Ile), провели трансформацию штамма АТСС13869 плазмидой pIKA-sac13lysC311. У Кт^R трансформанта индуцировали выщепление плазмиды на среде BHI с 10% сахарозы, и среди выросших колоний искали Km^s по отсутствию роста на среде ВНІ с канамицином (10 мкг/мл). Из таких штаммов выделяли хромосомную ДНК и проводили ПЦР с двух пар праймеров F lysC311mseq/R lysC2 и F lysC311/R lysC2 (табл. 3) с использованием SNPdetect полимеразы («Евроген», Россия). Данная полимераза используется для выявления однонуклеотидных полиморфизмов. При наличии мутации в гене lysC ACC→ATC, ПЦР сигнал с пары праймеров F lysC311mseq/R lysC2 был более интенсивный, чем с пары праймеров F lysC311/R lysC2. В качестве контроля ставили ПЦР с хромосомной ДНК штамма АТСС13869. В результате скрининга отобран штамм C. glutamicum А1 с мутацией lvsC^{Thr311lle}. Наличие мутаций подтвердили секвенированием фрагмента, амплифицированного с хромосомной ДНК штамма С. glutamicum A1 с праймеров F lysC1 и R lysC2 (табл. 3).

Такую же схему применяли при конструировании плазмид для введения мутаций в гены *тиг*, *ala*T, *lys*I, *odx*, *ldh*, *sug*R и замены нативного промотора гена *pts*I на *Psod* при получении штамма *C. glutamicum* H215.

Для клонирования гена *psefdh*_D221Q использовали автономную плазмиду pNS-Peftu-cat [18]. Ген *psefdh*_D221Q амплифицировали с помощью ПЦР с ДНК, полученной от В.И. Тишкова, имеющего

Таблица 2

Состав сред для ферментации со штаммами C. glutamicum

Fermentation media for C. glutamicum strains

Karrovarr	Среда, г/л			
Компонент	ФС	РФ		
Глюкоза моногидрат	100,0	46,0		
Аммоний сернокислый	19,0	55,0		
Калий фосфорнокислый однозамещенный	1,0	9,0		
Магний сернокислый 7-водный	1,0	3,15		
Кальций углекислый	25,0	_		
d-биотин/дестиобиотин	$1 \cdot 10^{-4}$ / -	-/4,5·10 ⁻³		
Тиамин гидрохлорид (витамин В1)	2.10-4	4,5.10-4		
Железо сернокислое 7-водное	_	4,5.10-2		
Марганец хлористый 4-водый	_	4,5.10-2		
Экстракт кукурузный	_	7,3		
Гидролизат пшеничного глютена 50%-ный	100,0 мл	_		
нейтрализованный аммиаком водным				
Пеногаситель	_	1,0		
рН	7,0–7,2			

ЭКСПРЕССИЯ ГЕНА НАДФ⁺-ЗАВИСИМОЙ ФОРМИАТДЕГИДРОГЕНАЗЫ

Таблица 3

ДНК-специфические праймеры, использованные в работе

DNA-specific primers used in the work

Праймер	Последовательность	Назначение		
F lysC1	CCGTCGACTGGGTCGTGGTGGTTCTGACACCACTGC	Клонирование гена lysC ^{т3111}		
R lysC311m	CGGCCGTCAGCACGAGGGCAGGTGAAGATGATGTCGG	То же		
F lysC311m	CCGACATCATCTTCACCTGCCCTCGTGCTGACGGCCGC	» »		
R lysC2	GCGGATCCCGGAATTCAATCTTACGGCCTGCGGAACG	»> »>		
F lysC311mseq	TGCTTCTGTAGAAGACGGCACCACCGACATCAT	Тестирование мутации <i>lys</i> C ^{т3111}		
lysC311	TGCTTCTGTAGAAGACGGCACCACCGACATCAC	То же		
F-psefdh	TT GGATCC GCAAAGGTCCTGTGCGTT	Клонирование гена <i>psefdh_</i> D221Q из <i>Pseudomonas</i>		
R-psefdh	<i>TTGATATC</i> GAATTCTCAGACCGCCTTCTT	То же		
F fdhD–Coryn	GATATCTTATCCGAGCTCGCCCGCAT	Клонирование генов <i>fdhF,</i> <i>fdhD</i> , cg0617 из <i>C. glutamicum</i>		
R fdhF–Coryn	GATATCATGACAACCCCTCCAACTGA	То же		
F _{M13/pUC(-40)}	GTTTTCCCAGTCACGAC	Клонирование генов $\Delta f dhD - f dhF$:: Peftu- psefdh_D221Q		
14-Km20sqrev	CTACCTTCTTCACGAGGCAGACCTC	То же		

Примечание: выделены сайты рестрикции.

Note: restriction sites are shown in bold.

коллекцию бактериальных мутантных формиатдегидрогеназ [15], используя праймеры F-psefdh и R-psefdh (табл. 3). 1,2 тпн ПЦР фрагмент лигировали с вектором pJET1, отбирали клоны, несущие вставку. После секвенирования плазмидную ДНК pJET1-psefdh рестрицировали ферментами Ват-НІ и EcoRV (сайты для этих рестриктаз присутствуют на концах праймеров F-psefdh и R-psefdh) и лигировали с вектором pNS2-Peftu-cat, рестрицированным ферментами Ватни и Ecl136I. В результате рестрикции ферментами BamHI и Ес-1136І из векторной плазмиды pNS2-Peftu-cat вырезается ген хлорамфеникол ацетилтрансферазы (cat), а на его место под промотор гена фактора элонгации (Peftu) встраивается ген psefdh D2210. Полученная плазмида названа pNS-Peftu-psefdh.

Для интеграции гена *psefdh*_D221Q в хромосому штаммов *C. glutamicum* использовали плазмиду pIKA- Δ fdh, полученную в данной работе. Кластер *fdh*-генов *C.glutamicum* – *fdh*F (cg0618), *fdh*D (cg0616) и cg0617 (3630 п.о.) был амплифицирован с хромосомы штамма *C. glutamicum* DSM 1412, используя праймеры F fdhD-Coryn. и R fdhF-Coryn. (табл. 3). ПЦР фрагмент лигирован с вектором pJET1. Внутренний SmaI-SmaI фрагмент вставки, размером 2324 п.о. был вырезан из полученной плазмиды pJET1*-fdh*, а на его место встроен 1,4 тпн ПЦР фрагмент P*eftu-psefdh*_D221Q, полученный с помощью ПЦР, используя праймеры F_{M13/pUC(-40)} и 14-Km20sqrev и плазмиду pNS-P*eftu*-psefdh_D221Q как матрицу. Далее ген Peftu-psefdh_D221Q с плечами коринебактериальных генов fdhD и fdhF вырезали по EcoRV сайтам, введенным в плазмиду с праймерами F fdhD-Coryn. и R fdhF-Coryn., и клонировали в pIKA-sac13.

Генно-инженерные методы

Вылеление плазмил и трансформацию E. coli проводили по стандартным методикам [19]. Рестрикцию и лигирование ДНК проводили в условиях, рекомендованных изготовителем ферментов (Thermo Scientific). Амплификацию проводили с использованием Mastercycler gradient (Eppendorf), с помощью полимеразы Phusion High-Fidelity (#F-503L, Thermo Scientific) или Таqполимеразы (#ЕРО404 Fermentas, Литва) в условиях, рекомендованных изготовителем. Олигонуклеотиды были синтезированы ЦКП ГосНИИгенетика. Приготовление компетентной культуры С. glutamicum и электропорацию проводили в соответствии с методом Van der Rest [20]. Условия электропорации: 2500 В, 25 мкФ, 200 Ом. Длительность электроимпульса составляла 4.5–5.5 мс. в зависимости от качества клеток и чистоты ДНК.

Культивирование штаммов для биосинтеза L-лизина

При проведении лизиновых ферментаций в пробирках с 3 мл среды ФС без/с формиатом аммония (8,0 г/л) посевной материал вносили в количестве 10% от начального объема среды. Культивирование осуществляли на шейкер-инкубаторе

Биотехнология 2019 Т. 35 № 6

Multitron 2 (Infors, США) в течение 72 ч при 30 °C и 300 об/мин. При необходимости вносили канамицин (10 мкг/мл). Ферментации в 3 л лабораторных ферментерах проводили при 34 °C, рН 7,0–7,1 в течение 50 ч. Посевной материал вносили в количестве 25% от начального объема среды. В процессе ферментации рН среды поддерживали аммиаком водным. Подпитку подавали периодически в зависимости от содержания глюкозы в среде. При необходимости в среду РФ вносили формиат аммония до 5 г/л и в подпитку на 1 ферментацию–12 г.

Аналитические методы

Оптическую плотность выращенных культур измеряли на спектрофотометре UV-1800 (Shimadzu, Япония) при 600 нм в 1-см кювете. Концентрацию L-лизина и формиата определяли методом ВЭЖХ с помощью хроматографа UltiMate 3000 с детектором Fluorescence Detector FLD-3100 и автосемплером WPS-3000TSL ANALYTICAL (Thermo Scientist). Прием и обработку данных производили с использованием компьютерной программы Chromeleon Dionex Version 7.2.3.755. Активность ФДГ определяли при 25 °С на спектрофотометре UV-1800 (Shimadzu) по поглощению образующегося НАДФН при длине волны 340 нм (є₃₄₀=6220 М⁻¹·см⁻¹) [15]. Измерения проводили в 0,1 M фосфатном буфере (pH 7,0), содержащем НАД Φ^+ (1 мг/мл) и формиат аммония (0,4 М). Активность НАДФ⁺-зависимой ФДГ рассчитывали исходя из коэффициента поглощения НАДФН как нмоль НАДФН, образующегося в 1 мин в расчете на 1 мг общего белка (ед/мг белка).

По окончании культивирования рассчитывали конверсию как отношение количества синтезированного L-лизина (по лизин гидрохлориду) к затраченной глюкозе (при культивировании без формиата) и к сумме затраченных глюкозы и формиата (в присутствии формиата).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Влияние НАДФ⁺-зависимой ФДГ из *Pseudomonas* sp. 101 на синтез лизина в клетках низкопродуктивных штаммов *C. glutamicum*

Синтез аминокислот аспарагинового семейства, в т.ч. лизина и треонина, в клетках *C. glutamicum* зависит от доступности кофактора НАДФН. С целью повышения доступности НАДФН, в клетках *C. glutamicum* был экспрессирован ген *psefdh*_D221Q мутантной формиатдегидрогеназы (PseФДГ_D221Q) из *Pseudomonas* sp. 101, которая катализирует окисление формиата с одновременным образованием НАДФН,

$$HCOO^- + HAJ\Phi^+ \rightarrow HAJ\PhiH + CO_2\uparrow$$

и исследован уровень синтеза лизина в рекомбинантных штаммах.

Ген *psefdh*_D221Q, кодирующий НАД Φ^+ -зависимую ФДГ, вводили в штаммы *C. glutamicum* с разным уровнем продукции лизина либо в составе автономной плазмиды pNS-P*eftu*-psefdh, либо интегрировали в хромосому с одновременной инактивацией собственных генов формиатдегидрогеназы как описано в разделе «Условия эксперимента».

На первом этапе были сконструированы произволные штамма А1 с низким уровнем пролукции лизина, содержащие ген psefdh D221Q под сильным промотором фактора элонгации (Peftu) как в составе плазмиды (штамм A1 (pNS2-Peftu-psefdh)), так и в хромосоме с инактивацией собственной ФДГ (штамм А1-30). Ростовые характеристики и уровень продукции лизина при выращивании полученных штаммов с/без формиата аммония приведены в табл. 4. Штаммы выращивали на среде ФС в пробирках как описано в «Условиях эксперимента». Прирост количества лизина за счет формиата рассчитывали по формуле: (Л2-Л1)/Ф, где Л2 – конечная концентрация лизина в КЖ в присутствии формиата, г/л; Л1 – конечная концентрация лизина в КЖ без формиата, г/л; Ф – израсходованный формиат, г/л

Можно видеть, что введение гена *psefdh* D221Q приводило к появлению активности НАД Φ^+ -зависимой формиатдегидрогеназы, тогда как в исходном штамме A1 такая активность не определялась. Причем, уровень активности НАД Φ^+ -зависимой формиатдегидрогеназы не зависел от присутствия в среде формиата. Штамм A1 (pNS2-P*eftu*-psefdh), содержащий ген *psefdh* D221Q в составе плазмиды, обладал более высокой НАД Φ^+ -зависимой ФДГ активностью, чем штамм A1-30, что, по-видимому, связано с разной копийностью гена в разных штаммах.

Следует отметить, что все штаммы, в том числе А1 – родительский штамм и его производные A1 (pNS2-Peftu-psefdh) и A1-30, метаболизировали формиат совместно с глюкозой в процессе культивирования. Причем, родительский штамм А1 и штамм А1 с плазмидой pNS2-Peftu-psefdh, у которых синтез собственной не НАДФ⁺-зависимой ФДГ [16] не был нарушен, утилизировали формиат быстрее, чем штамм А1-30, у которого собственная ФДГ была инактивирована за счет встройки psefdh D221Q. К 72-му часу культивирования первые два штамма полностью утилизировали формиат, в то время как в культурах А1-30 оставалась почти половина внесенного формиата. При этом добавление формиата приводило к снижению роста культур, причем в наибольшей степени (13-16%) подавлялся рост исходного штамма А1 и его плазмид-содержащего производного.

При отсутствии формиата в среде культивирования уровень продукции лизина варьировался от 14 до 24 г/л для разных штаммов, при этом

Таблица 4

Влияние гена psefdh_D221Q на уровень биосинтеза L-лизина штаммами C. glutamicum

	Локализация гена <i>psefdh</i>	Показатели ферментации при культивировании				Прирост		
Штамм		без формиата		с 8 г/л формиата			лизина,	РѕеФДГ
		ОП	Л1	ОП	Л2	Φ	г/г	
A1	_	89,0±2,0	17,8±1,0	78,0±2,0	27,1±1,0	8,0	1,16	НД
A1(pNS2-Peftu-cat)	_	78,0±2,0	16,1±1,0	68,0±2,0	19,8±1,0	8,0	0,46	НД
A1 (pNS2-Peftu-	Плазмида	75,0±2,0	14,2±1,0	72,0±2,0	17,2±1,0	8,0	0,38	1,65
psefdh)								
A1-30	Хромосома $\Delta fdhD$ —fdhF::							
	Peftu- psefdh_D221Q	82,0±2,0	24,1±1,0	81,0±2,0	30,4±1,0	4,25	1,48	0,65
H215	_	56,0±2,0	43,2±1,0	49,6±2,0	48,0±1,0	8,0	0,6	НД
H217	Хромосома $\Delta fdhD$ –fdhF::							
	Peftu- psefdh_D221Q	57,0±2,0	42,8±1,0	44,1±2,0	52,1±1,0	3,7	2,5	1,4

The effect of the psefdh_D221Q gene on the level of biosynthesis of L-lysine by C. glutamicum strains

Примечания: ОП – оптическая плотность, ед; РѕеФДГ – активность НАДФ⁺-зависимой ФДГ, ед/мг белка; Л1 – конечная концентрация лизина в КЖ без формиата, г/л; Л2 – конечная концентрация лизина в КЖ в присутствии формиата, г/л; Ф – израсходованный формиат, г/л; НД – не детектировалась.

Notes: OII – optical density (OD), units; Pse Φ ДГ – activity of NADP ⁺-dependent FDG, units/mg of protein; Π 1 – final concentration of lysine in CM without formate, g/L; Π 2 – final concentration of lysine in CM with formate, g/L; Θ – spent formate, g/L; Π 2 – not detected.

максимальный уровень (24,1 г/л) наблюдался у штамма A1-30, содержащего ген psefdh D221Q в хромосоме. При добавлении формиата (8 г/л) в среду, для всех штаммов наблюдалось повышение продукции лизина. Однако в случае плазмид-содержащих штаммов уровень продукции лизина не превышал уровень родительского штамма А1, что, по-видимому, объясняется значительным снижением роста таких штаммов. В то же время штамм A1-30, содержащий ген psefdh D221Q в хромосоме, демонстрировал максимальный уровень продукции (30,4 г/л). Если сравнить прирост продукции лизина на грамм утилизированного формиата, то в этом случае максимальный прирост (1,48 г/г против 1,16 г/г) наблюдался также для штамма А1-30, у которого инактивирована собственная Φ ДГ и экспрессируется НАД Φ^+ -зависимая Φ ДГ.

Влияние НАДФ⁺-зависимой ФДГ из *Pseudomonas* sp. 101 на синтез лизина в клетках высокопродуктивного штамма *C. glutamicum*

Учитывая ухудшение ростовых характеристик плазмид-содержащих штаммов, на следующем этапе был сконструирован штамм H217, производный штамма H215 с высоким уровнем продукции лизина, в хромосому которого был введен ген *psefdh_*D221Q под сильным промотором фактора элонгации (*Peftu*) с инактивацией собственной ФДГ. В штамме H215 повышена продукция лизина благодаря модификации путей биосинтеза, в том числе усилению экспрессии генов пентозофосфатного пути [17]. Ростовые характеристики и уровень продукции лизина при выращивании этих штаммов на средах, не содержащих и содержащих формиат аммония представлены в табл. 4.

Введение гена *psefdh* D221Q в штамм Н215 путем его интеграции в состав хромосомы приводило к появлению в клетках активности НАДФ⁺-зависимой формиатдегидрогеназы. Рекомбинантный штамм H217 с HAДФ⁺-зависимой формиатдегидрогеназой медленнее, чем исходный штамм Н215, утилизировал формиат (за 72 ч культивирования исходный штамм Н215 полностью утилизировал добавленный формиат, тогда как штамм Н217 – только около 50%). Как и в случае штамма А1 и его производных, рост штаммов Н215 и Н217 снижался на 17-22% при добавлении формиата в среду культивирования. При этом штамм Н217 синтезировал 52,1 г лизина в 1 л культуральной жидкости за 72 ч культивирования, что на 8,5% превышало продуктивность исходного штамма Н215. Прирост продукции лизина в расчете на израсходованный формиат в случае штамма Н217 был в 4 раза выше (2,5 г/г против 0,6 г/г), по сравнению с исходным штаммом.

Влияние НАДФ⁺-зависимой ФДГ из *Pseudomonas* sp. 101 на синтез лизина при ферментации штамма-продуцента *C. glutamicum* H217 в больших объемах

Для того, чтобы оценить перспективы применения штамма H217 с HAДФ⁺-зависимой формиатдегидрогеназой в промышленных условиях, были изучены ростовые характеристика штамма и его продуктивность по лизину при культивировании в 3-литровых ферментерах (см. «Условия эксперимента»).

Биотехнология 2019 Т. 35 № 6

Оказалось, что добавление формиата аммония в среду культивирования приводит к незначительному снижению роста штамма H217 в 3-литровом ферментере (с 111,5±2,0 до 106,5±2,0 ед. ОП). Однако при этом значительно улучшались показатели биосинтеза лизина: конечная концентрация лизина в культуральной жидкости увеличилась с 173±1,0 до 181±1,0 г/л, а конверсия возросла с 43,5% до 53,6%.

Таким образом, результаты изучения штаммов С. glutamicum с НАДФ⁺-зависимой формиатдегидрогеназой показали, что такие штаммы в случае инактивации собственной формиатдегидрогеназы обладают повышенным (на 7-8%) уровнем синтеза L-лизина в присутствии формиата. Одной из возможных причин повышения продукции лизина могло быть повышение доступности НАДФН в клетках C. glutamicum за счет функционирования мутантной НАДФ⁺-зависимой ФДГ из Pseudomonas sp. 101, которая катализирует окисление формиата с одновременным образованием НАДФН. Следует отметить, что активность НАДФ+-зависимой PseФДГ D221Q в клетках штаммов С. glutamicum была невысокой. Перспективным представляется получение коринебактериальных штаммов-продуцентов L-лизина с более высокой активностью НАДФ⁺-зависимой ФДГ, что, как ожидается, будет способствовать улучшению процесса биосинтеза L-лизина в присутствии формиата. Ранее отмечалось, что мутантная НАДФ⁺-зависимая РseФДГ Asp221Ser была менее стабильна, чем исходная НАД⁺-зависимая ФДГ, но замена Ala198Gly в РѕеФДГ Asp221Ser значительно увеличивала ее термостабильность [15]. ФДГ из Mycobacterium vaccae N10 с аминокислотной заменой D221Q (как в нашем случае) и той же дополнительной заменой Ala198Gly также имела повышенную каталитическую НАДФ⁺-активность, а замещение двух цистеинов (C145S/C255V) увеличивало активность в 6 раз [21]. Возможно, введение дополнительных мутаций, повышающих каталитическую активность известных НАДФ⁺-зависимых ФДГ, позволит повысить активность используемой нами РѕеФДГ D221Q.

Такой подход может оказаться полезным и для усиления синтеза других аминокислот аспарагинового семейства, в частности треонина, в синтезе которого также участвуют НАДФН-зависимые ферменты.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке государства в лице Минобрнауки России (Уникаль-

ный идентификатор проекта – RFMEFI61017X0011) с использованием УНУ – БРЦ ВКПМ и ЦКП НИЦ «Курчатовский институт» – ГосНИИгенетика.

ЛИТЕРАТУРА

- Kjeldsen K. and Nielsen J. In silico genome-scale reconstruction and validation of the *Corynebacterium glutamicum* metabolic network. *Biotechnol. Bioeng.*, 2009, 102(2), 583–597. doi: 10.1002/bit.22067
- Melzer G., Esfandabadi M.E., Franco-Lara E., Wittmann C. Flux Design: In silico design of cell factories based on correlation of pathway fluxes to desired properties. *BMC Syst Biol.*, 2009, 3, 120. doi: 10.1186/1752-0509-3-120
- Becker J. and Wittmann C. Systems and synthetic metabolic engineering for amino acid production - the heartbeat of industrial strain development. *Curr. Opin. Biotechnol.*, 2012, 23(5), 631–640. doi: 10.1016/j.copbio.2011.12.025
- Eggeling L. and Bott M. A giant market and a powerful metabolism: L-lysine provided by *Corynebacterium glutamicum. Appl. Microbiol. Biotechnol.*, 2015, 99(8), 3387–3394. doi: 10.1007/s00253-015-6508-2
- Becker J., Giebelmann G., Hoffmann S.L., Wittmann C. *Corynebacterium glutamicum* for sustainable bioproduction: from metabolic physiology to systems metabolic engineering. *Adv. Biochem. Eng. Biotechnol.*, 2018, 162, 217–263. doi: 10.1007/10_2016_21
- Moritz B., Striegel K., de Graaf A.A., Sahm H. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from *Corynebacterium glutamicum* and their application for predicting pentose phosphate pathway flux *in vivo. Eur. J. Biochem.*, 2000, 267(12), 3442–3452. doi: 10.1046/j.1432-1327.2000.01354.x
- Eikmanns B.J., Rittmann D., Sahm H. Cloning, sequence analysis, expression, and inactivation of the *Corynebacterium glutamicum icd* gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme. *J. Bacteriol.*, 1995, 177(3), 774–782. doi: 10.1128/jb.177.3.774-782.1995
- Gourdon P., Baucher M.F., Lindley N.D., Guyonvarch A. Cloning of the malic enzyme gene from *Corynebacterium glutamicum* and role of the enzyme in lactate metabolism. *Appl. Environ. Microbiol.*, 2000, 66(7), 2981–2987. doi: 10.1128/aem.66.7.2981-2987.2000
- Marx A., de Graaf A.A., Wiechert W., et al. Determination of the fluxes in the central metabolism of *Corynebacterium glutamicum* by nuclear magnetic resonance spectroscopy combined with metabolite balancing. *Biotechnol. Bioeng.*, 1996, 49(2), 111–129. doi: 10.1002/(SICI)1097-0290(19960120)49:2<111::AID-BIT1>3.0.CO;2-T
- Takeno S., Murata R., Kobayashi R., Mitsuhashi S., Ikeda M. Engineering of *Corynebacterium glutamicum* with an NADPH-generating glycolytic pathway for L-lysine production. *Appl. Enviromen. Microbiol.*, 2010, 76(21), 7154–7160. doi: 10.1128/AEM.01464-10

- Bommareddy R.R., Chen Z., Rappert S., Zeng A.P. A *de* novo NADPH generation pathway for improving lysine production of *Corynebacterium glutamicum* by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. *Metabolic Engineering.*, 2014, 25, 30–37. doi: 10.1016/j.ymben.2014.06.005
- Sauer U., Canonaco F., Heri S., Perrenoud A., Fischer E. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of *Escherichia coli. J. Biol. Chem.*, 2004, 279(8), 6613–6619. doi: 10.1074/jbc.M311657200
- Kabus A., Georgi T., Wendisch V.F., Bott M. Expression of the *Escherichia coli pnt*AB genes encoding a membrane-bound transhydrogenase in *Corynebacterium glutamicum* improves L-lysine formation. *Appl. Microbiol. Biotechnol.*, 2007, 75(1), 47–53. doi: 10.1007/s00253-006-0804-9
- Witthoff S., Eggeling L., Bott M., Polen T. Corynebacterium glutamicum harbours a molybdenum cofactor-dependent formate dehydrogenase which alleviates growth inhibition in the presence of formate. *Microbiology*, 2012, 158(9), 2428–2439. doi: 10.1099/mic.0.059196-0
- Тишков В.И., Попов В.О. Механизм действия формиатдегидрогеназы и ее практическое применение. Биохимия, 2004, 69(11), 1537–1554.
- Alekseeva A.A., Fedorchuk V.V., Zarubina S.A., et al. The role of Ala198 in the stability and coenzyme specificity of bacterial formate dehydrogenases. *Acta Naturae*, 2015, 7(1), 60–69.

- Рябченко Л.Е., Шустикова Т.Е., Шереметьева М.Е. Герасимова Т.В., Леонова Т.Е., Яненко А.С. L-лизинпродуцирующая коринеформная бактерия с инактивированным геном *ltb*R и способ получения L-лизина с использованием этой бактерии, Патент РФ, RU 2639247 C1, C12N 1/21, C12N 15/09, C12R 1/13, C12R 1/15, C12P 13/08.
- Тарутина М.Г., Раевская Н.М., Шустикова Т.Е. и др. Оценка эффективности промоторов *Corynebacterium* glutamicum и их использование для усиления активности генов у лизин-продуцирующих бактерий. *Биотехнология*, 2015, 6, 16–24.
- Green M.R., Sambrook J. Molecular cloning: A laboratoty manual. 4th edition. New York: Cold Spring Harbor Laboratory press. 2011, 11–27.
- Van der Rest M.E., Lange C., Molenaar D. A heat shock following electroporation induces highly efficient transformation of *Corynebacterium glutamicum* with xenogeneic plasmid DNA. *Appl. Microbiol. Biotechnol.*, 1999, 52(4), 541–545. doi: 10.1007/s002530051557
- Hoelsch K., Sührer I., Heusel M., et al. Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability. *Appl. Microbiol. Biotechnol.*, 2013, 97, 2473–2481. doi: 10.1007/s00253-012-4142-9

Expression of the NADP⁺-Dependent Formate Dehydrogenase Gene from *Pseudomonas* Increases the Lysine Production in *Corynebacterium glutamicum*

L. E. RYABCHENKO^{1,*}, T. E. LEONOVA¹, T. E. SHUSTIKOVA¹, T. V. GERASIMOVA¹, T.A. IVANKOVA¹, K. V. SIDORENKO¹, and A. S. YANENKO¹

¹State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center «Kurchatov Institute» (NRC «Kurchatov Institute» – GosNIIgenetika), Moscow, 117545 Russia

*e-mail: ryabchenko@genetika.ru

Received November 12, 2019 Revised November 20, 2019 Accepted November 27, 2019

Abstract-The *psefdh*_D221Q gene coding for a mutant formate dehydrogenase (PseFDG_D221Q) from *Pseudomonas*, which catalyzes the formate oxidation with the simultaneous formation of NADPH, has been expressed in the cells of lysine-producing *Corynebacterium glutamicum* strains. The *psefdh*_D221Q gene was introduced into *C. glutamicum* strains as part of an autonomous plasmid or was integrated into the chromosome with simultaneous inactivation of host formate dehydrogenase genes. It was shown that the *C. glutamicum* strains with NADP⁺ -dependent formate dehydrogenase have an increased level of L-lysine synthesis in the presence of formate, if their own formate dehydrogenase is inactivated.

Key words: L-lysine, formate dehydrogenase, NADPH, Corynebacterium glutamicum

Acknowledgements-This work was carried out on the equipment of the Multipurpose Scientific Installation of «All-Russian Collection of Industrial Microorganisms», National Bio-Resource Center, NRC «Kurchatov Institute»- GosNIIgenetika.

Funding–This work was financially supported by the Ministry of Education and Science of Russia (Unique Project Identifier - RFMEFI61017X0011).

doi: 10.21519/0234-2758-2019-35-6-21-29