УДК: 579.66

Использование альтернативного пути синтеза изолейцина в штаммах *Escherichia coli* – продуцентах треонина

© 2019 Т.В. ВЫБОРНАЯ^{1,*}, Т.В. ЮЗБАШЕВ¹, А.С. ФЕДОРОВ¹, Д.М. БУБНОВ¹, С.С. ФИЛИППОВА¹, Ф.В. БОНДАРЕНКО¹, С.П. СИНЕОКИЙ¹

¹ФГБУ «Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Национального исследовательского центра «Курчатовский Институт» (НИЦ «Курчатовский Институт» – ГосНИИгенетика), Москва, 117545

*e-mail: tatyana-vybornaya@yandex.ru

Поступила в редакцию	06.06.2019 г.
После доработки	05.07.2019 г.
Принята к публикации	22.07.2019 г.

Сконструирован штамм *Escherichia coli*, в котором инактивированы все известные пути катаболизма треонина: Δtdh , $\Delta ltaE$, $\Delta ilvA$, $\Delta tdcB$, $\Delta yiaY$. В штамме ауксотрофе по изолейцину продемонстрирована возможность альтернативного пути синтеза изолейцина посредством экспрессии гетерологичной цитрамалатсинтазы из *Leptospira interrogans*. Отмечено, что сверхэкспрессия гена *cimA* негативно влияет на продукцию треонина. Разработана система для регулируемой экспрессии генов на основе индуцируемого промотора $P_{LtetO-1}$ репрессора *tetR* тетрациклинового оперона. Получен штамм продуцент треонина B-1201, в котором ген *cimA* экспрессирован под регулируемым промотором. В ходе культивирования штамма B-1201 в ферментере показана корреляция продуктивности треонина и уровня экспрессии гена *cimA* определена концентрация индуктора, при которой достигается максимальная продукция треонина.

Ключевые слова: Escherichia coli, продуцент, треонин, цитрамалатсинтаза.

doi: 10.21519/0234-2758-2019-35-4-42-54

Важнейшей задачей при конструировании штаммов продуцентов является инактивация путей деградации целевого продукта. На сегодняшний день известны три пути деградации треонина в клетках E. coli. Катаболизм треонина осуществляется тремя группами ферментов: треониндегидрогеназами, треонинальдолазами и треониндеаминазами. Главную роль в деградации треонина играет треониндегидрогеназа, кодируемая геном tdh. Показано, что инактивация гена оказывает положительный эффект на продукцию треонина [1, 2]. Предположительно существует еще один ген, кодирующий НАД-зависимую треониндегидрогеназу, - yiaY [3]. В литературе встречаются противоречивые данные о фенотипе штаммов с делецией по гену уіа У [3, 4]. Инактивация гена *ltaE*, кодирующего треонинальдолазу, также приводит к увеличению продукции треонина [5]. Активностью треонинальдолазы обладает фермент серингидроксиметилтрансфераза, кодируемый геном glyA [6]. Однако инактивировать glyA в штамме продуценте нецелесообразно, так как в отсутствие glyA штамм становится ауксотрофом по глицину [7]. В клетках E. coli синтезируются две треониндеаминазы, кодируемые генами ilvA и tdcB. Делеция гена tdcB способствует повышению продукции треонина так же, как и инактивация других генов пути – деградации треонина [8]. К сожалению, блокировать полностью все пути деградации треонина невозможно. Штамм, несущий делецию гена ilvA, является ауксотрофом по изолейцину, что делает невозможным его

Список сокращений: АТс – ангидротетрациклин; ВКПМ – Всероссийская коллекция промышленных микроорганизмов; н.о. – нуклеотидные остатки; пн – пары нуклеотидов; ОП₆₆₀ – оптическая плотность, измеренная при длине волны 660 нм; SD-последовательность – последовательность Шайна-Дальгарно; отн. ед. – относительные единицы; 5UTR – 5'-нетранслиру-емая область.

применение в крупном производстве. Успешным подходом по конструированию продуцентов является поиск мутаций, приводящих к неполной инактивации треониндеаминазы.

В настоящей работе с целью повышения уровня продукции треонина было предложено инактивировать все возможные пути деградации аминокислоты, а именно конструировать штамм, несущий делеции Δtdh , $\Delta yiaY$, $\Delta ltaE$, $\Delta tdcB$, $\Delta ilvA$. После введения делеции *ДіlvA* штамм потерял способность синтезировать изолейцин. Для восстановления прототрофности по изолейцину без потери конверсии треонина было предложено экспрессировать в штамме продуценте гетерологичный ген cimA из Leptospira interrogans, кодирующий цитрамалатсинтазу [9]. Фермент CimA способствует реакции превращения пирувата в цитрамалат. Несмотря на то, что в клетках E. coli данный фермент не синтезируется, цитрамалат может быть превращен в альфа-кетобутират ферментами изопропилмалатизомеразой и изопропилмалатдегидрогеназой, кодируемыми генами биосинтеза пути лейцина, leuCD и leuB, соответственно (рис. 1). Далее из альфа-кетобутирата синтезируется изолейцин. Таким образом, посредством экспрессии гетерологичного гена cimA L. interrogans в клетках E. coli, несущих делецию $\Delta ilvA$, изолейцин синтезируется по альтернативному пути, не из треонина, а из пирувата.

Использование «цитрамалатного пути» синтеза альфа-кетобутирата в *Escherichia coli* нашло широкое применение для синтеза пропанола, бутанола, а также бета-оксимасляной кислоты и ее полимеров [10]. Однако, несмотря на очевидное преимущество синтеза изолейцина из альфа-кетобутирата по "цитрамалатному пути», в литературе не освещена возможность его использования при конструировании штаммов-продуцентов аминокислот.

Цель работы-использование «цитрамалатного пути» синтеза изолейцина в штаммах-продуцентах треонина *E. coli*.

УСЛОВИЯ ЭКСПЕРИМЕНТА

Штаммы и среды

Культивирование штаммов проводили в жидкой питательной среде LB, г/л: бакто-триптон, 10; дрожжевой экстракт, 5; NaCl, 10. Для приготовления агаризованной LB в среду добавляли агар-агар (Panreac, Испания), 20 г/л. Отбор штаммов прототрофных по изолейцину проводили на чашках с агаризованной средой М9 [11]. Для выращивания ауксотрофных штаммов в среду М9 добавляли L-изолейцин, 50 мг/л (Sigma, США).

При необходимости в среды вносили антибиотики (AppliChem, Германия): ампициллин, 50 мкг/мл; тетрациклин 12,5 мкг/мл; канамицин 100 мкг/мл; хлорамфеникол, 10 мкг/мл; спектиномицин (Кирин) (Медокеми Лтд, Кипр), 75 мкг/мл. Штаммы, полученные на основе MG1655, растили на средах с увеличенной концентрацией ампициллина (250 мкг/л) и хлорамфеникола (25 мкг/мл).

Штаммы и плазмиды, используемые в работе, указаны в табл. 1 и 2.

В работе использовали реактивы и ферменты для молекулярной биологии: эндонуклеазы рестрикции, Т4 лигазу, Pfu ДНК полимеразу (Thermo Fisher Scientific, США).

Используемые в работе олигонуклеотиды были синтезированы компанией «Евроген» (Россия) и центром коллективного пользования ГосНИИгенетика (табл. 3).

Подготовку компетентных клеток и трансформацию методом электропорации проводили согласно [12]. Конструирование плазмид выполняли в штамме XL1-Blue, если не указано иное.

Трансдукцию фагом Р1 осуществляли согласно методике [11].

Для интеграции ДНК-фрагментов в хромосому *E. coli* по гомологичной рекомбинации использовали хелперную плазмиду pKD46.

Ферментация в пробирках

Штаммы выращивали на чашках с агаризованной средой LB в течение 24 ч при 37 °С. Для приготовления инокулята использовали посевную среду следующего состава, г/л: дрожжевой экстракт (Biospringer, Франция) – 35; глюкоза – 2,5; NaCl – 2,5; KH₂PO₄ – 2,5. В пробирки объемом 50 мл, с рабочим объемом 2 мл посевной среды вносили биомассу клеток до стартового значения ОП₆₆₀ 0,1 ед. Пробирки инкубировали на роторной качалке в течение 5 ч. при 37 °С и скоростью перемешивания 220 об./мин.

Для основного процесса ферментации использовали среду следующего состава, г/л: глюкоза (Roquette Freres, Франция) – 40; $(NH_4)_2SO_4$ (Химмед, Россия) – 30; кукурузный экстракт (Roquette Freres, Франция) – 10; KH_2PO_4 (Химмед) – 2,5; $MgSO_4 \cdot 7H_2O$ (Химмед) – 2; лимонная кислота (Sigma, США) – 0,192; $FeSO_4 \cdot 7H_2O$ (Химмед) – 0,03; $MnSO_4 \cdot H_2O$ (Химмед) – 0,021; CaCO₃ (Sigma) – 20; pH 7,0. Растворы глюкозы с концентрацией 400 г/л, раствор $MnSO_4 \cdot H_2O$

Рис. 1. Схема биосинтеза разветвленных аминокислот. Названия ферментов заменены обозначениями кодирующих генов. Черным цветом обозначены реакции, проходящие в штаммах дикого типа в условиях аэробного роста на среде с глюкозой; серым цветом – реакции, не протекающие в этих условиях. Ген *cimA* является гетерологичным (см. комментарии в тексте). Асеt-CoA – ацетил-кофермент; Ala – аланин; Cit-Mal – цитратмалат; Citrac – цитраконат; DMC – диметилцитраконат; Glu – глютамат; Ile – изолейцин; Leu – лейцин; NADH – никотинамидадениндинуклеотидфосфат; Руг – пируват; Thr – треонин; Val – валин; α,β-DHIV – α,β-дигидрокси-изовалерат; α,β-DH-β-MV – α,β-дигидрокси-β-метилвалерат; α-AB-α-E – α-аминобутеноат; α-Acet-Lact – α-ацетолактат; а-Acet-α-HB – α-ацето-α-гидроксибутират; α-IB – α-иминобутаноат; α-IPM – α-изопропилмалат; α-KB – α-кето-б-метилвалерат; α-KIV – α-кето-изовалерат; α-K-β-MV – α-кето-β-метилвалерат; β-IPM – β-изопропилмалат; β-M-Mal – β-эритро-метилмалат

Fig. 1. The scheme of branched amino acids biosynthesis. Black color indicates reactions occurring in wild-type strains under aerobic growth conditions on a medium with glucose. Gray color indicates reactions that do not occur under these conditions. The *cimA* gene is heterologous (see comments in the text). Acet-CoA – acetyl coenzyme A; Ala – alanine; Cit-Mal – citramalate; Citrac – citraconate; DMC – dimethyl citraconate; Glu – glutamate; Ile – isoleucine; Leu – leucine; NADH – Nicotinamide adenine dinucleotide; NADPH – Nicotinamide adenine dinucleotide phosphate; Pyr – pyruvate; Thr – threonine; Val – valine; α , β -DHIV – α , β -dihydroxy-isovalerate; α , β -DH- β -MV – α , β -hydroxy- β -methylvalerate; α -AB- α -E – α -aminobut- α -enoate; α -Acet-Lact – α -acetolactate; α -Acet- α -HB – α -aceto- α -hydroxybutyrate; α -IB – α -iminobutanoate ; α -RG – α -ketoglutatrate; α -KIC – α -keto-isocaproate; α -KIV – α -keto-isovalerate; β -IPM – β -isopropylmalate; β -M-Mal – β -erythro-methylmalate

ИСПОЛЬЗОВАНИЕ АЛЬТЕРНАТИВНОГО ПУТИ СИНТЕЗА ИЗОЛЕЙЦИНА

Штаммы, используемые в работе

Strain used in the work

Штамм	Генотип	Источник
XL1-Blue	$recA1$, $endA1$, $gyrA96$, thi -1, $hsdR1$,7 $supE4$,4 $relA$,1 lac , $[F'proAB, lacIqZ\Delta M15, Tn10 (Tet*)]$	ВКПМ
MG1655	ilvG-, rfb-50, rph-1,	ВКПМ
MG1655Z1	$rph-1$, $lacI^q$, P_{N25} -tetR, Sp^R	[15]
B-632	$supE$, $\Delta lacI$, Δtdh , P_{tac} - $thrA^{fbr}BC$, $\Delta poxB$ - $ltaE(MGF-016)$, $\Delta ybiV$, $\Delta sstT$, $\Delta tdcBCDE$, $\Delta ytfG-P_{trc}$ - $pycA$	ВКПМ
B-849	$supE, P_{tac}$ - $thrA^{fbr}BC, \Delta ilvA::\Delta ilvA::\lambda attL-Sp^{R}-\lambda attR$	ВКПМ
B-926	supE, $\Delta lacI$, Δtdh , P_{tac} -thr $A^{tbr}BC$, $\Delta poxB$ -ltaE(MGF-016), $\Delta ybiV$, $\Delta sstT$, $\Delta tdcBCDE$, $\Delta ytfG$ - P_{trc} -pycA, $\Delta ilvA$:: $\lambda attL$ - Sp^{R} - $\lambda attR$	Настоящая работа
B-1044	$supE$, $ilvA^{442}$, $tdh::Tn5$, P_{thr} -thr $A\Delta BC$, $\Delta tdcBCDE$, $\Delta sstT$	ВКПМ
B-1091	supE, $ilvA^{442}$, $tdh::Tn5$, P_{thr} -thrA ΔBC , $\Delta tdcBCDE$, $\Delta sstT$, $\Delta yiaY::\lambda attL-Sp^{R}-\lambda attR$ - P_{trc} -cimA-TrrnB	Настоящая работа
B-1122	supE, $\Delta lacI$, Δtdh , P_{tac} - $thrA^{fbr}BC$, $\Delta poxB-ltaE(MGF-016)$, $\Delta ybiV$, $\Delta sstT$, $\Delta tdcBCDE$, $\Delta ytfG-P_{trc}$ - $pycA$, $\Delta ilvA$:: $\lambda attB$	То же
B-1127	supE, $\Delta lacI$, Δtdh , P_{tac} - $thrA^{fbr}BC$, $\Delta poxB$ - $ltaE(MGF$ -016), $\Delta ybiV$, $\Delta sstT$, $\Delta tdcBCDE$, $\Delta ytfG$ - P_{trc} - $pycA$, $\Delta ilvA$:: $\lambda attB$, $\Delta yiaY$:: $\lambda attL$ - Sp^{R} - $\lambda attR$ - P_{trc} ($phi10$)- $cimA$ - $TrrnB$	» »
B-1201	$supE$, $\Delta lacI$, Δtdh , P_{tac} - $thrA^{fbr}BC$, $\Delta poxB$ - $ltaE(MGF-016)$, $\Delta ybiV$, $\Delta sstT$, $\Delta tdcBCDE$, $\Delta ytfG-P_{trc}$ - $pycA$, $\Delta ilvA$:: $\lambda attB$, $\Delta yiaY$:: cat - $sacB$ - $tetR-P_{LtetO-I}(phi10)$ - $cimA-T_{rrnB}$	» »

Таблица 2

Плазмиды, используемые в работе

Plasmids used in the work

Плазмида	Длина плазмиды, тпн, (маркеры устойчивости к анктибиотикам)	Репликон	Основные элементы	Источник
pKD46	6,3 (Amp ^R Ts)	pSC101	araC, bla, Para-gamma, beta,exo	[13]
pZE21lux	9,5 (Km ^R)	colE1	aphA, T(0), P _{LtetO-1} -lux operon	[14]
pICA	5,8 (Amp ^R Cm ^R SacB ^S)	pMB1	<i>bla</i> , λattR- <i>cat</i> -λattL	[16]
pMW118-λattR- cat-λattL	5,8 (Amp ^R Cm ^R)	pSC101	bla, cat, sacB	[16]
pMW118-λattL- cat-λattR-TrrnB	5,6 (Amp ^R Cm ^R)	pSC101	<i>bla</i> , λattR- <i>cat</i> -λattL- TrrnB	[17]
pINT-xis	5,9 (Amp ^R)	pSC101 ts	Bla, P _{m-} xis,-int	[18]
pZA31MCS	2,1 (Cm ^R)	p15A	P _{LtetO-1} , TrrnB T1, <i>cat</i> -T(0)	Expressys, Германия
pZE21	2,2 (Km ^R)	colE1	aphA, T(0), P _{LtetO-1}	» »
p-cimA-1	4,4 (Amp ^R)	pMB1	bla, cimA	IDT Integrated DNA Technologies, CIIIA
pMW118	4,2 kb (Amp ^R)	pSC101	bla	Nippon Gene, Япония
pACYC184	$4,2 (\mathrm{Tc}^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}})$	p15A	cat, tetA	ВКПМ

Таблица 1

Таблица 2 (Окончание)

Плазмида	Длина плазмиды, тпн, (маркеры устойчивости к анктибиотикам)	Репликон	Основные элементы	Источник
pBTB-1	3,8 kb (Amp ^R)	pMB1	araC, P _{BAD} , bla	» »
pUC19	2,7 kb (Amp ^R)	pMB1	bla	» »
pISA	6,1 (Amp ^R Sp ^R)	pSC101	bla, aadA	Настоящая работа
pMW-λattL-Sp ^R - λattR-P _{trc} (phi10)- <i>cimA</i> -TrrnB	7,5 (Amp ^R Sp ^R)	pSC101	bla, λattL-aadA-T(0)-λattR-TrrnB, P _{trc} (phi10)-cimA-TrrnB	» »
pMW-λattL-Sp ^R - λattR-TrrnB	5,8 (Amp ^R Sp ^R)	pSC101	Bla, λattL- <i>aadA</i> -T(0)-λattR-TrrnB	» »
pUC19-T _{soxR}	2,8 (Amp ^R)	pMB1	bla, T_{soxR}	» »
pUC-cat	$3,4 (Amp^{R} Cm^{R})$	pMB1	bla, cat	» »
pLtet1	4,1 (Sp ^R)	pSC101	P_{N25} -tetR, aadA-T(0)	» »
pLtet2	4,3 (Sp ^R)	pSC101	P _{N25} -tetR, aadA-T(0), P _{LtetO-1} , TrrnB T1	» »
pLtet9	2,6 (Km ^R)	colE1	<i>aphA</i> , T(0), P _{Ltet0-1} - <i>cat</i> (EcoRI/BamHI)	» »
pLtet10	2,9 (Km ^R Cm ^R)	colE1	aphA, T(0), P _{LtetO-1} -cat	» »
pLtet11	4,0 (Sp ^R)	pSC101	$\begin{array}{c} P_{\text{N25}}\text{-}tetR, T_{\text{soxR}}, aadA\text{-}T(0), TrrnB\\ T1 \end{array}$	» »
pLtet12	$4,1 (Sp^{R} Cm^{R})$	colE1	P_{N25} -tetR-T _{soxR} , aadA-T(0), TrrnB T1, $P_{LtetO-1}$ -cat	» »
pLtet13	3,4 (Sp ^R)	colE1	P _{N25} - <i>tetR</i> -T _{soxR} , <i>aa</i> dA-T(0), TrrnB T1, P _{LtetO-1}	» »
pLtet14	5,4 (Cm ^R SacB ^S)	colE1	P_{N25} -tetR-T _{soxR} , cat-sacB-T(0), TrrnB T1, P_{LtetO}	» »

с концентрацией 2,1 г/л, и 1М раствор MgSO₄·7H₂O стерилизовали отдельно автоклавированием при 121 °C в течение 40 мин. Отдельно готовили водный раствор FeSO₄·7H₂O с концентрацией 2 г/л. Для полного растворения сульфата железа в раствор вносили серную кислоту до pH 2,0. Полученный раствор стерилизовали фильтрованием через мембрану диаметром пор 22 мкм. Навески CaCO₃ по 40 мг стерилизовали автоклавированием при 121 °C в течение 40 мин в стеклянных пробирках объемом 50 мл. Непосредственно перед ферментацией в стерильной емкости смешивали все компоненты среды и разливали по 2 мл в пробирки с навесками мела.

Затем в пробирки с ферментационной средой засевали инокулят до ОП₆₆₀ 0,1 ед. Клетки культивировали в течение 24 ч при 37 °С на роторной качалке со скоростью 220 об./мин. По окончании

ферментации концентрацию накопленного в среде L-треонина определяли методом ВЭЖХ с помощью прибора Waters 2695 (Alliance, США).

Ферментация штаммов в ферментерах

Культуру клеток выращивали на чашках с агаризованной LB-средой течение 24 ч при 37 °С. Для приготовления инокулята использовали посевную среду такую же, как для выращивания посевного материала для пробирочной ферментации. В качалочные колбы объемом 750 мл с рабочим объемом 15 мл посевной среды вносили суспензию клеток до получения ОП₆₆₀ 0,1 ед. Колбы инкубировали на качалке при скорости 220 об./мин и при температуре 37 °С до достижения ОП₆₆₀ 5–6 ед.

Для выращивания посевного материала в ферментере КФ-103 (объем 3 л) («Проинтех», Россия) готовили посевную среду следующего состава, г/л:

ИСПОЛЬЗОВАНИЕ АЛЬТЕРНАТИВНОГО ПУТИ СИНТЕЗА ИЗОЛЕЙЦИНА

Праймеры, используемые в работе

Primers used in the work

Праймер	Последовательность 5'->3'
SpecmycF	AACAGACATCGATGCTAGCGGCGCTTTAGTTTTGTTCCG
SpecmycR	ACAAGCCCATGGGATTTTGGTCATGACTAGTGC
yiaYinsF-new	ATCCTCAGTAAGCTGCCCGCCCTTTTTTACACTTTCAGGAGTGTGTTATGTCCCT GCAGGTCGACTAGA
yiaYinsR-new	AGTTGAAAAAGCGGCTAACAATTTGCCAGCCGTTGTGGAAATGATGATTACCAA GCTGCAAAAAGAGTTT
NotPn25f	AACGCGGCCGCTGTAAGTTAGCGCGAATTGTC
Pn25r	CTAATCTAGACATATCTATTCGGGGGCGGGATTT
TetRf	GCCCCGAATAGATATGTCTAGATTAGATAAAAGT
TetRaatR	CATCCGGATATCGACGTCTAAGAGCGCAAGGTGATTTTTGTCTT
aadAaatF	CTTAGACGTCGATATCCGGATG
t0-3resR	GTTAGCGGCCGCATTAATCTTACTGTACAAGTGCTTGGATTCTCACCAATAA
BspLtetFnew	GAATGTACACTTTCGTCTTCACCTCGAGT
VspTrrnR	GCATTAATATAAAACGAAAGGCCCAGTCTT
RBScatF	GACCGAATTCATTAAAGAGGAGAGGAGGTCTCAAATGGAGAAAAAAATCACTGG ATATAC
catXmaR	TAGCACGCGTCCTAGGTCTCGCTTACGCCCCGCCCTG
Sox-F	AGTCAGACGTCGATATCATTCAGGACGAGCC
Sox-R	ATGCAGACGTCCCGCGGAACAAAACTAAAGC
tetunioF	GCCCAGTAGTAGGTTGAGGTAGTGCTTGGATTCTCACC
tetunioR	ATGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTCTAGAGGGAAACCGTTGT GGTCTCCCTTGCTCAGTATCTCTATCACT
cimAuniR *(phi10)	CTCTCAAAGTTACGTCTAAAATTTCCAATCGGGTTTCCACTTTCGTCATATGTATA TCTCCTTCTTAAA
cimAtetF	ATCCTCAGTAAGCTGCCCGCCCTTTTTTACACTTTCAGGAGTGTGTTATGTAGTG CTTGGATTCTCACC

глюкоза – 60; кукурузный экстракт – 12; KH_2PO_4 – 1,25; $(NH_4)_2SO_4$ – 1; $MgSO_4 \cdot 7H_2O$ – 1; пеногаситель Бреокс (Волгохимнефть)– 0,5; лимонная кислота – 0,14; FeSO₄·7H₂O – 0,03; MnSO₄·H₂O – 0,021. Смешивали все компоненты среды, за исключением глюкозы, стерилизовали в ферментере автоклавированием в течение 40 мин при 121 °C. Отдельно стерилизовали раствор моногидрата глюкозы с концентрацией 770 г/л. После остывания среды в ферментер вносили 92 мл стерильного раствора моногидрата глюкозы. Засевали инокулят, выращенный в колбах, до стартового значения OП₆₆₀ 0,003 ед.

Культивирование проводили в ферментере с рабочим объемом 1 л при 39 °С, при перемешивании 700 об./мин, при аэрации 1,0 л/мин, при рН 6,9 с титрованием 25% (об.) водным аммиаком. Культивирование проводили до достижения ОП₆₆₀ 25 ед.

Биосинтез L-треонина

Основной процесс биосинтеза выполняли в среде следующего состава, г/л: глюкоза – 15; кукурузный экстракт – 10; $KH_2PO_4 - 2,5$; $MgSO_4 \times \times 7H_2O - 1,5$; $FeSO_4 \cdot 7H_2O - 1,03$; $(NH_4)_2SO_4 - 0,5$; пеногаситель Бреокс – 0,5; $MnSO_4 \cdot H_2O - 0,021$. Смешивали в ферментере все компоненты, кроме глюкозы, и стерилизовали автоклавированием в течение 40 мин при 121 °С. После остывания среды вносили в ферментер 23 мл стерильного раствора моногидрата глюкозы с концентрацией 770 г/л. Посевную культуру, выращенную в посевном ферментере, вносили до расчетного значения $O\Pi_{660}$ 2 ед.

Культивирование проводили при 33 °C с начальным рабочим объемом среды 1 л, при начальной скорости перемешивания 500 об./мин,

Таблица 3

аэрации 1,0 л/мин, при рН 6,9 с титрованием 25% (масс.) водным аммиаком. Значение рО₂ поддерживали на уровне 20% с использованием каскадной регулировки скорости вращения мешалки до 1200 об./мин.

Для подпитки готовили раствор моногидрата глюкозы с концентрацией 51,1% (мас.), раствор стерилизовали автоклавированием отдельно в течение 30 мин при 121 °С. По исчерпании глюкозы в ферментационной среде начинали подпитку со скоростью 3,47 г глюкозы/(ч[.]л нач. объема), далее непрерывно увеличивали скорость до 13,8 г глюкозы/(ч[.]л нач. объема) в течение 14 ч. Затем скорость подачи поддерживали на уровне 13,8 г глюкозы/(ч[.]л нач. объема) до окончания процесса. Культивирование продолжали в течение 36 ч. По окончании процесса количество накопленного в среде L-треонина определяли методом ВЭЖХ.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Интеграция гена *cimA Leptospira interrogans* в хромосому *E. coli* с одновременной инактивацией в ней гена *yiaY*

Нуклеотидная последовательность гена *cimA* L. *interrogans* serovar Lai (Genebank DQ 978311.1 GI: 1166646701) была синтезирована вместе с промотором P_{tre} и 5'-UTR *phi10* (IDT Integrated DNA Technologies, США) и клонирована в составе плазмиды p-cimA-1. Конструкция ограничена сайтами для клонирования *BamH*I и *Acc65*I.

Ген устойчивости к спектиномицину *aadA* был амплифицирован по праймерам SpecmycF, SpecmycR, матрицей послужила хромосома штамма MG1655Z1. ПЦР продукт рестрицировали по *Bsu15*I и *Nco*I и лигировали с плазмидой pMW118λattR-cat-λattL, обработанной сходным образом. В результате была получена плазмида pISA.

Ранее описанная в литературе плазмида pMW118-λattR-cat-λattL-TrrnB была рестрицирована по BglII и XbaI, липкие концы были зачищены Pfu полимеразой. В полученный вектор клонирован фрагмент рестрикции плазмиды pISA, обработанной по Acc65I, PaeI и Pfu полимеразой для удаления липких концов, несущий маркер устойчивости к спектиномицину, фланкированный λattL и λattR сайтами. Результирующая плазмида pMW-λattL-Sp^R-λattR-TrrnB была обработана эндонуклеазами рестрикции BamHI / Acc65I и лигирована с продуктом рестрикции плазмиды p-cimA-1, обработанной сходным образом. Сконструированная плазмида была названа pMWλattL-Sp^R-λattR -Ptre(phi10)-cimA-TrrnB.

Интегративную конструкцию для одновременной инактивации гена уіаУ и сверхэкспрессии гена *cimA* получали путем амплификации методом ПЦР с плазмиды pMW-λattL-Sp^R-λattR-P_{trc}(phi10)cimA-TrrnB по праймерам: yiaYinsF-new, yiaYinsR-new. Праймеры содержат на 5'-конце по 50 н.о., комплементарных последовательностям выше и ниже положения гена yiaY, включая старти стоп-кодоны. Полученной кассетой, размером 3970 пн, трансформировали компетентные клетки штамма B1044/pKD46. Трансформантов отбирали на чашках с добавлением канамицина и спектиномицина. Присутствие целевой вставки подтверждали методом ПЦР. Клон с подтвержденным генотипом был обозначен В-1091. После интеграции кассеты от ORF гена yiaY в хромосоме оставались старт- и стоп-кодоны. Схема локуса гена уіа Y после интеграции кассеты $\Delta yia Y$:: $\lambda attL-Sp^{R}$ λattR-P_{trc}(phi10)-*cimA*-TrrnВ приведена на рис. 2.

Инактивация гена *ilvA* в хромосоме штамма-продуцента треонина

Ранее в ГосНИИгенетика был сконструирован штамм продуцент L-треонина E. coli B-632 (табл. 1). В указанном штамме инактивированы три гена, участвующие в деградации треонина, кодирующие треониндегидрогеназу (Δtdh), треонинальдолазу $(\Delta ltaE)$ и треониндеаминазу ($\Delta tdcB$). Также в штамме сверхэкспрессированы гены треонинового оперона с десенсибилизирующей мутацией под сильным конститутивным промотором (P_{tac} -thr $A^{fbr}BC$), экспрессирована пируваткарбоксилаза (*ΔytfG-P*_{trc}русА), инактивированы пути транспорта треонина внутрь клетки ($\Delta sstT$, $\Delta tdcC$) и удален ген, кодирующий пируватоксидазу (ДрохВ). Все перечисленные модификации были направлены на повышение биосинтеза треонина, инактивацию боковых путей метаболизма и блокирование транспорта аминокислоты внутрь клетки. Благодаря их наличию штамм является продуцентом и перспективным штаммом хозяином для дальнейших модификаций.

Для повышения продуктивности в штамме был инактивирован основной путь деградации L-треонина, осуществляемый треониндеаминазой IlvA. В геном штамма была внесена интегративная кассета *ilvA*::λattL-Sp^R-λattR посредством трансдукции фагом P1. В качестве донора ДНК использовали клетки штамма B-849. Трансдуктантов отбирали на агаризованной среде с добавлением спектиномицина. Высев трансформантов на минимальную среду М9 подтвердил наличие ауксотрофности по изолейцину. Отобранный штамм был обозначен как B-926. Для удаления

Рис. 2. Схема интеграции гена *cimA L. interrogans* в хромосому *E. coli* с одновременной инактивацией в ней гена *yiaY*: l – схема нативного локуса *yiaY*; 2 – схема интегративной конструкции для экспресси *cimA* под конститутивным промотором P_{uc} ; 3 – схема делеции локуса *yiaY* ($\Delta yiaY$: λ attL-Sp^R- λ attR- P_{uc} (phi10)-*cimA*-TrrnB). Стрелки – сайты отжига праймеров, незакрашенные области – гомологичные последовательности ДНК, по которым прошла рекомбинация

Fig. 2. The scheme of *cimA L. interrogans* integration into *E. coli* chromosome with simultaneous inactivation of *yiaY*: (1), the scheme of the native *yiaY* locus; (2), the scheme of an integrative construction for expressing *cimA* under constitutive promoter Ptrc; (3), scheme of deletion *yiaY* locus ($\Delta yiaY$:: λ attL-Sp^R- λ attR-Ptrc (phi10)-*cimA*-TrrnB). The arrows indicate the sites of primer annealing, the open areas indicate homologous DNA sequences

кассеты с селективным маркером, компетентные клетки штамма B-926 трансформировали плазмидой pINT-xis. Трансформантов отбирали по устойчивости к ампициллину, затем высевали методом реплик на среду с добавлением и без добавления спектиномицина. В клонах, чувствительных к спектиномицину, произошло выщепление маркера устойчивости по att-сайтам фага λ. Потерю маркеров также подтверждали методом ПЦР.

Элиминацию плазмиды pINT-xis проводили рассевом клонов на среде без добавления антибиотиков при 37 °С. Отобранный клон, чувствительный к ампициллину и спектиномицину, был назван B-1122. В нем инактивированы четыре гена, участвующие в деградации треонина: Δtdh , $\Delta tdcB$, $\Delta ltaE$, $\Delta ilvA$. Полный генотип штамма B-1122 – [supE, $\Delta lacI$, Δtdh , P_{tac} -thr $A^{fbr}BC$, $\Delta poxB$ ltaE(MGF-016), $\Delta ybiV$, $\Delta sstT$, $\Delta tdcBCDE$, $\Delta ytfG P_{trc}-pycA$, $\Delta ilvA::\lambda attB$].

Экспрессия гена *cimA* под конститутивным промотором в штамме-продуценте L-треонина

Для сверхэкспрессии гена *cimA* под регуляцией конститутивного промотора P_{trc} в штамме B-1122 конструкция *ΔyiaY*::attL-Sp^R-attR-P_{trc}(phi10)-*cimA*-TrrnB была перенесена трансдукцией фагом P1 из хромосомы выше описанного штамма B-1091. Отбор трансдуктантов проводили на чашках со средой LA с добавлением спектиномицина. Подтверждение генотипа отобранных клонов проводили методом ПЦР.

Таким образом, был получен штамм-продуцент, обозначенный как B-1127 (см. табл. 1), у которого были инактивированы все известные гены, участвующие в деградации треонина, в том числе ген *ilvA*, а в хромосому был интегрирован ген *cimA*, экспрессирующий под конститутивным промотором цитрамалатсинтазу из *Leptospira interrogans* [*supE*, $\Delta lacI$, Δtdh , P_{tac} - $thrA^{fbr}BC$, $\Delta poxB-ltaE(MGF-016)$, $\Delta ybiV$, $\Delta sstT$, $\Delta tdcBCDE$, $\Delta ytfG-P_{trc}$ -pycA, $\Delta ilvA::\lambda attB$, $\Delta yiaY:: \lambda attL-Sp^R-\lambda at$ $tR-P_{trc}$ (phi10)-cimA-TrrnB].

Клоны были посеяны методом реплики на чашках с агаризованной минимальной средой М9 с добавлением (50 мг/л) и без добавления изолейцина. Все проверенные клоны оказались прототрофами по изолейцину; подтверждено, что экспрессия гена *cimA* комплементирует ауксотрофность по изолейцину, вызванную делецией гена *ilvA*.

В пробирках была проведена сравнительная ферментация полученных штаммов В-632, В-926 и В-1127, как описано в разделе Условия эксперимента (рис. 3).

Как видно из рис. 3, делеция гена *ilvA* значительно увеличивает продукцию треонина с 11,5 до 14,4 г/л при культивировании в ферментационной среде без добавления изолейцина, и с 10,9 до 15,1 г/л при внесении изолейцина в концентрации 50 мг/л. Однако при сверхэкспрессии гена *cimA* в штамме с делецией гена *ilvA* наблюдалось значительное снижение уровня биосинтеза аминокислоты. Можно предположить, что сверхэкспрессия гена цитрамалатсинтазы под контролем сильного конститутивного промотора приводит к излишнему оттоку пирувата на синтез изолейцина, что уменьшает общую конверсию глюкозы в треонин. Для проверки этого предположения были сконструированы штаммы, в которых транскрипция гена *cimA* осуществлялась под контролем регулируемого промотора.

Конструирование матричной плазмиды для регулируемой экспрессии генов

Для регулируемой экспрессии гена *cimA* был выбран промотор Р_{LtetO-1},ввиду его хорошо изученного механизма регуляции транскрипции [19]. Промотор характеризуется строгой зависимостью количества синтезируемой мРНК от концентрации индуктора. В качестве индуктора применяют ангидротетрациклин (АТс), который связывается с белком-репрессором TetR. В отсутствие или при низкой концентрации АТс в клетке белок-репрессор обратимо соединяется с оператором tetO1 и препятствует транскрипции с промотора Р_{LtetO-1}. Таким образом, конструирование штаммов, в которых транскрипция гена сітА осуществляется под контролем регулируемого промотора, предполагает не только замену нативного промотора на P_{LtetO-1}, а также введение в геном tetR. Была разработана универсальная матричная плазмида pLtet14 для регулируемой экспрессии различных генов E. coli (рис. 4), схема конструирования которой приведена в электронном виде в дополнительном материале к статье (рис. S1 (Дополнительный материал)).

Кассету SC-tetR-P_{LtetO-1} для индуцируемой экспрессии генов получали посредством ПЦР-амплификации с матричной плазмиды по праймерам, гомологичным промоторной области исследуемого гена. Праймеры подбирали таким образом, чтобы кассета встраивалась непосредственно перед старт-кодоном исследуемого гена. При необходимости в последовательность праймера, комплементарного промотору P_{LtetO-1}, добавляли различные SD-последовательности. Ген *cat*, обеспечивающий устойчивость к хлорамфениколу, позволил отобрать трансформанты, несущие интегративную кассету SC-tetR-P_{LtetO-1}. Кассета могла быть удалена из хромосомы посредством гена *sacB* – маркера негативной селекции.

Рис. 3. Результаты ферментации треонина в пробирках штаммов В-632, В-926 и В-1127 с добавлением (50 мг/л) и без добавления изолейцина в ферментационную среду. По результатам пяти независимых повторностей определены средние значения и стандартное отклонение продукции треонина

Fig. 3. The results of threonine fermentation of tstrains B-632, B-926 and B-1127 in test tubes with and without addition (50 mg/L) of isoleucine. Based on the results of five independent replications, the mean and standard deviation of threonine production was determined

Экспрессия гена *cimA* под контролем регулируемого промотора в штамме продуценте L-треонина

Для оптимизации уровня экспрессии гена *cimA* были сконструированы штаммы, в которых перед старт-кодоном гена *cimA* была интегрирована кассета, содержавшая промотор $P_{LtetO-1}$, 5'-нетранслируемую область гена *phi10* фага T7, репрессор *tetR* и два селективных маркера – *cat*, *sacB*. Схема делеции локуса $\Delta yiaY$::SC-tetR-P_{LtetO-1} (phi10)-*cimA*-T_{rmB} показана на рис. 4 (ч. 3). Первичную матрицу для экспрессии гена *cimA* получили амплификацией по паре праймеров tetunioF и tetunioR, в качестве матрицы для ПЦР использовали ДНК плазмиды pLtet14.

Вторым раундом ПЦР по праймерам cimAuniR*(phi10) и cimAtetF были добавлены к кассете участки гомологии длиною по 50 пн выше и ниже гена yiaY. Полученным ПЦР продуктом трансформировали компетентные клетки штамма B-1127/pKD46. Трансформантов отбирали на чашках с агаризованной средой LB с добавлением хлорамфеникола. В результате трансформации были отобраны три клона, которые проверены ферментацией треонина в пробирках при концентрациях ATc 0, 10, 200 нг/мл (рис. 5).

Рис. 4. Схема интеграции гена *cimA L. interrogans* под регулируемым промотором в хромосому *E. coli* с одновременной инактивацией в ней гена *yiaY.* 1 – схема плазмиды pLtet14. *Bpil/EcoRI* (95 пн) – фрагмент плазмиды pZE21, несущий промотор $P_{LtetO-1}$; *EcoRI/BamHI* – фрагмент плазмиды pUC-cat, содержащий SD-последовательность гена *cat*; *BamHI/Ecl136*II (1057 пн) – фрагмент плазмиды pZE21, содержащий репликон colE1 и терминатор T(0), *Ecl136*II/*Aat*II (3141 пн) – фрагмент, несущий маркеры прямой и обратной селекции, гены *cat* и *sacB*, соответственно; *Aat*II/*Bpi*I (88 пн) – фрагмент, несущий терминатор транскрипци $T_{soxR:}$ *Bpil/Bpi*I (990 пн) – фрагмент содержит репрессор *terR* под промотором P_{N25} ; 2 – схема интегративной конструкции для экспрессии *cimA* под регулируемым промотором $P_{LtetO-1}$; *3* – схема делеции локуса *yiaY* ($\Delta yiaY$::SC-tetR- $P_{LtetO-1}$ (phi10)-*cimA*- T_{rmB}). Стрелки – сайты отжига праймеров, незакрашенные области – гомологичные последовательности ДНК, по которым прошла рекомбинация

Fig. 4. The scheme of integration of *cimA L. interrogans* under regulated promoter into the *E. coli* chromosome with simultaneous inactivation of the *yiaY. (1)*, the scheme of plasmid pLtet14 the plasmid includes the following elements: *BpiI/EcoRI* (95 bp) – a fragment of plasmid pZE21 carrying the P_{Ltet0-1} promoter; *EcoRI/BamHI* – fragment of the plasmid pUC-cat containing the SD sequence of the cat gene; *BamHI/Ecl136*II (1057 bp) – a fragment of plasmid pZE21 containing replicon colE1 and terminator T(0); *Ecl136*II/*Aat*II (3141 bp) – fragment carrying markers of direct and negative selection, *cat* and *sacB* genes, respectively; *Aat*II/*BpiI* (88 bp) – fragment carrying the T_{soxR} transcription terminator; *BpiI/BpiI* (990 bp) – the fragment contains the *terR* repressor under the P_{N25} promoter; (2), the scheme of an integrative construction for expressing *cimA* under regulated promoter P_{Ltet0-1};(3), the scheme of deletion *yiaY* locus ($\Delta yiaY$::SC-tetR-P_{Ltet0-1}(phi10)-*cimA*-T_{rmB}) The arrows indicate the sites of primer annealing, the open areas indicate homologous DNA sequences

В зависимости от степени индукции экспрессии гена *cimA* продукция треонина менялась: при низкой концентрации индуктора она была повышена, но при внесении высокой его концентрации (200 нг/мл) она могла оставаться прежней (клон 1) или немного снижаться (клон 2), или немного повышаться (клон 3).

Именно клон 2 выбран для дальнейшей работы, ему присвоен номер В-1201. Генотип штамма – [supE, $\Delta lacI$, Δtdh , P_{tac} - $thrA^{fbr}BC$, $\Delta poxB-ltaE(MGF-016)$, $\Delta ybiV$, $\Delta sstT$, $\Delta tdcBCDE$, $\Delta ytfG-P_{trc}-pycA$, $\Delta ilvA::\lambda$ attB, $\Delta yiaY::cat-sacB-tetR-P_{LtetO-l}(phi10)-cimA-T_{rrnB}].$ Результаты ферментации штамма В-1201 в ферментере приведены на рис. 6. Согласно полученным данным при концентрации индуктора 25–50 нг/мл достигается максимальное значение продукции треонина (рис. 6*b*). Максимальный уровень конверсии треонина получен при АТс 25 нг/мл (рис. 6*c*). При увеличении концентрации индуктора, продукция треонина снижается, при этом возрастает оптическая плотность культуры (рис. 6*a*, 6*b*). Полученные данные коррелируют с результатами пробирочной ферментации штамма В-1127, в котором ген цитрамалатсинтазы был экспрессирован под сильным конститутивным промотором Р_{ис}.

Рис. 5. Результаты ферментации в пробирках трансформантов с регулируемой экспрессией гена *cimA* при различных концентрациях индуктора ангидротетрациклина (АТс, нг/мл)

Fig. 5. The results of fermentation of transformants with regulated expression of the *cimA* gene in tubes at various concentrations of the anhydrotetracycline inducer (ATc, ng/mL)

Полученные результаты не дают точного ответа на вопрос, каким образом сверхэкспрессия гена *cimA* снижает продукцию треонина, и связано ли уменьшение продукции с оттоком пирувата на синтез изолейцина или оно вызвано другими механизмами в клетке.

Итак, в настоящей работе успешно продемонстрирована возможность использования альтернативного пути синтеза изолейцина в штаммах-продуцентах треонина. С целью повышения продуктивности в штамме продуценте B-926 были инактивированы основные пути биодеградации треонина $\Delta tdcB$, Δtdh , $\Delta ltaE$, $\Delta ilvA$. Несмотря на то, что B-926 является ауксотрофом по изолейцину, при культивировании в пробирках для роста и продукции треонина штамму достаточно того количества изолейцина, который присутствует в среде на основе кукурузного экстракта. Однако при

Рис. 6. Результаты ферментации штамма B-1201 в ферментере при различных концентрациях индуктора ангидротетрациклина: a — максимальное значение оптической плотности, ед.; b — концентрация треонина в КЖ на финальный час ферментации, г/л; c — конверсия глюкозы в треонин на 30-й час ферментации, %

Fig. 6. The results of the fermentation of strain B-1201 in fermenter at various concentrations of the anhydrotetracycline (5, 10, 25, 100, 500 ng / mL): (*a*), the maximum value of optical density, U, (*b*), threonine concentration at the final hour of fermentation, g/L, (*c*), the conversion value at 30 hours of fermentation,%

культивировании в ферментере, когда титр клеток возрастает более чем в 10 раз по сравнению с ферментацией в пробирках, для роста клеток не хватает аминокислот, присутствующих в среде. При культивировании штамма В-926 в ферментере для комплементации ауксотрофности в среду вносили 0,5 г/л изолейцина (данные не представлены).

Для возвращения прототрофности по изолейцину в геном штамма был интегрирован гетерологичный ген cimA. С целью подбора оптимального уровня экспрессии гена сітА была разработана система для регулируемой экспрессии генов на основе промотора Р_{LtetO-1}. Данная система является универсальной и не требует специальной подготовки штамма. Регуляция экспрессии целевого гена происходит посредством добавления в среду индуктора, ангидротетрациклина. По результатам ряда ферментаций проведен подбор концентрации индуктора, при которой достигается максимальная продукция треонина, а именно свыше 100 г/л при концентрации АТс 25 нг/мл в ферментере. Показано, что увеличение уровня сверхэкспрессии гена сітА приводит к увеличению уровня компенсации ауксотрофности и к переключению метаболизма с синтеза треонина на синтез биомассы.

Дальнейшие исследования предполагают скрининг ферментов цитрамалатсинтаз из различных источников и направленную модификацию ферментов с целью уменьшения сродства к пирувату, а также подбор конститутивных промоторов с оптимальным уровнем экспрессии, обеспечивающим, максимальное накопление треонина в ферментационной среде.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке государства в лице Министерства науки и высшего образования Российской Федерации (Уникальный идентификатор проекта RFMEFI61017X0011) с использованием УНУ – Национальный биоресурсный центр «Всероссийская коллекция промышленных микроорганизмов» НИЦ «Курчатовский институт» – ГосНИИгенетика.

БЛАГОДАРНОСТИ

Авторы выражают благодарность Манухову И.В. за предоставление штамма MG1655Z1 и плазмиды pZE21-lux и за помощь в освоении методики измерения биолюминесценции.

Дополнительный материал

Электронная версия статьи содержит дополнительный материал, доступный безвозмездно на сайте журнала http://www.biotechnology-journal.ru

ЛИТЕРАТУРА

- Биндер Т.П, Брэдшоу Д.С., Ванг М.Д. Лио Х.Д. Свишер С.Л., Хэнк П.Д. Штамм микроорганизма Escherichia coli -продуцент L-треонина, способ получения продуцирующего L-треонин штамма E.coli и способ получения L-треонина (варианты). Патент РФ RU2212448, C12N15/52, C12N1/21, C12P13/08, C12N1/21, C12R1/19 2003.
- Lee K.H., Park J.H., Kim T.Y., et al. Systems metabolic engineering of Escherichia coli for L-threonine production. *Molecular Systems Biology.*, 2007, 3(1), 1349. doi: 10.1038/msb4100196
- Ma F., Wang T., Ma X., et al. Identification and characterization of protein encoded by orf382 as L-threonine dehydrogenase. *J. Microbiol. Biotechnol.*, 2014, 24. 748–755. doi: 10.4014/jmb.1312.12030
- Baba T., Ara T., Hasegawa M., et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. *Molecular Systems Biolo*gy., 2006, 2(1), doi: 10.1038/msb4100050
- Рыбак К.В., Сливинская Е.А, Саврасова Е.А, и др. Способ получения L-треонина с использованием бактерии, принадлежащей к роду *Escherichia*, в которой инактивирован ген ltaE. Патент РФ RU2304166, C12N1/21, C12P13/08, C12R1/19 2007.
- 6. Schirch L.V., Gross T. Serine transhydroxymethylase identification as the threonine and allothreonine aldolases. *J. Biol. Chemistry.*, 1968, 243(21), 5651–5655.
- 7. Pizer L.I. Glycine synthesis and metabolism in *Escherichia coli*. J. Bacteriology., 1965, 89(4), 1145–1150.
- Пак Д.У., Ли Б.Ч., Ким Д.Ч. и др. Способ получения L-треонина. Патент РФ RU2288265, C12N15/00, C12N15/11, C12N1/21, C12P13/08, C12R1/19 2006.
- Xu H., Zhang Y., Guo X., et al. Isoleucine biosynthesis in Leptospira interrogans serotype lai strain 56601 proceeds via a threonine-independent pathway. *J. Bacteriology.*, 2004, 186(16), 5400–5409. doi: 10.1128/JB.186.16.5400-5409.2004
- Wang Q., Liu X., Qi Q. Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose with elevated 3-hydroxyvalerate fraction via combined citramalate and threonine pathway in *Escherichia coli. Appl. Microbiol. Biotechnol.*, 2014, 98(9), 3923–3931. doi: 10.1007/s00253-013-5494-5
- Sambrook J., Fritsch E.F., Maniatis T. Molecular cloning: a laboratory manual, 2ndedn. New York, USA: Cold Spring Harbor Laboratory Press, 1989.

- Bubnov D.M., Yuzbashev T.V., Vybornaya T.V., et al. Development of new versatile plasmid-based systems for λRed-mediated Escherichia coli genome engineering. *J. Microbiological Methods*, 2018, 151, 48–56. doi: 10.1016/j.mimet.2018.06.001
- Datsenko K.A., Wanner B.L. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proceedings Nat. Acad. Sci.*, 2000, 97(12), 6640–6645. doi: 10.1073/pnas.120163297
- Zavilgelsky G., Kotova V.Y., Rastorguev S. Antirestriction and antimodification activities of T7 Ocr: Effects of amino acid substitutions in the interface. *Mol. Biol.*, 2009, 43(1), 93–100. doi: 10.1134/S0026893309010130
- Zavilgelsky G., Kotova V.Y., Rastorguev S. Comparative analysis of anti-restriction activities of ArdA (Collb-P9) and Ocr (T7) proteins. *Biochemistry (Moscow)*. 2008, 73(8), 906–11. doi: 10.1134/S0006297908080087

- Derbikov D., Novikov A., Gubanova T., et al. Aspartic acid synthesis by *Escherichia coli* strains with deleted fumarase genes as biocatalysts. *Appl. Biochem. Microbiol.*, 2017, 53(9), 859–866. doi: 10.1134/S0003683817090046
- Каташкина Ж.И., Скороходова А.Ю, Зименков Д.В. и др. Направленное изменение уровня экспрессии генов в бактериальной хромосоме. *Молекулярная биология*. 2005, 39(5), 823–831.
- Hasan N., Koob M., Szybalsk W. *Escherichia coli* genome targeting I. Cre-Zox-mediated *in vitro* generation of ori– plasmids and their *in vivo* chromosomal integration and retrieval. *Gene*, 1994, 150(1), 51–56. doi: 10.1016/0378-1119(94)90856-7
- Lutz R., Bujard H. Independent and tight regulation of transcriptional units in *Escherichia coli* via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. *Nucleic Acids Res.*, 1997, 25(6), 1203–1210. doi: 10.1093/nar/25.6.1203

Use of an Alternative Pathway for the Synthesis of Isoleucine in *Escherichia coli* Threonine-Producing Strains

T.V. VYBORNAYA^{1,*}, T.V. YUZBASHEV¹, A.S. FEDOROV¹, D.M. BUBNOV¹, S.S. FILIPPOVA¹, F.V. BONDARENKO¹, S.P. SINEOKY¹

¹State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center «Kurchatov Institute» (NRC «Kurchatov Institute» – GosNIIgenetika), 117545, Moscow Russia

*e-mail: tatyana-vybornaya@yandex.ru

Received 06 June, 2019 Revised 05 July, 2019 Accepted 22 July, 2019

Abstract – An *E. coli* strain in which all known pathways of threonine catabolism were inactivated (Δtdh , $\Delta ltaE$, $\Delta ilvA$, $\Delta tdcB$, $\Delta yiaY$) has been constructed. The possibility of an alternative pathway for the isoleucine synthesis by expressing heterologous citramalate synthase from *Leptospira interrogans* in an *E. coli* strain carrying the $\Delta ilvA$ deletion was demonstrated. It was observed that the *cimA* overexpression has a negative effect on the threonine production. We developed a system for regulated gene expression based on the inducible promoter P_{LtetO} and *TetR* repressor of the tetracycline operon. A threonine producing strain B-1201 in which the *cimA* gene is expressed under the control of the regulated promoter was constructed. A correlation of the threonine productivity and the expression level of the *cimA* gene was shown by culturing the B-1201 strain in fermenter. The optimal inductor content for the maximum threonine accumulation was also determined.

Key words: Escherichia coli, strain, threonine, citramalate synthase.

Funding – This work was supported by the Ministry of Education and Science of the Russian Federation (project code RFMEFI61017X0011), and it was carried out using the equipment of the National Bio-Resource Center «All-Russian Collection of Industrial Microorganisms», NRC «Kurchatov Institute» – GOSNIIGENETIKA.

Acknowledgement – The authors are grateful to Dr. I. V. Manukhov for providing the MG1655Z1strain and pZE21-lux plasmid, and for teaching techniques of bioluminescence measuring.

doi: 10.21519/0234-2758-2019-35-4-42-54