УДК 575.113.1:[577.218:633.71]:615.371

Агробактериальная трансформация ряски малой (*Lemna minor* L.) генами гирудина и β-глюкуронидазы

© **2018** О.Н. КОЗЛОВ¹, Т.Ю. МИТЮШКИНА¹, И.В. ТАРАСЕНКО¹, Л.А. ШАЛОЙКО¹, А.П. ФИРСОВ^{1,*}, С.В. ДОЛГОВ¹

¹Филиал Федерального государственного бюджетного учреждения науки Института биоорганической химии им. акад. М.М. Шемякина и Ю.А. Овчинникова Российской академии наук. Московская область, Пущино 142290

*e-mail: aleksey firsov@mail.ru

Поступила 15.05.2018 г. Принята в печать 01.08.2018 г.

Проведена агробактериальная трансформация растений ряски малой (Lemna minor L.) с использованием органогенного каллуса и нуклеотидных последовательностей генов гирудина-1 и β -глюкуронидазы, оптимизированной для экспрессии в растениях. Получено 8 трансгенных линий ряски, трансформированных геном гирудина, и 7 линий, трансформированных геном β -глюкуронидазы. Экспрессия β -глюкуронидазы подтверждена методами гистохимического окрашивания и Вестерн-блот-анализа. ИФА трансгеннных растений показал, что содержание β -глюкуронидазы в растениях варьирует от 0,28% до 1,43% общего растворимого белка. Экспрессия гена гирудина-1 подтверждена методом ОТ-ПЦР, максимальное накопление рекомбинантного гирудина составило 0,02% от общего растворимого белка. Полученные результаты могут быть использованы в исследованиях по разработке экспрессионной системы на основе растений ряски для получения сирудина и других рекомбинантных белков фармацевтического назначения.

Ключевые слова: ряска малая, гирудин, β-глюкуронидаза, трансгенные растения, рекомбинантные белки, биофарминг.

doi: 10.21519/0234-2758-2018-34-5-23-36

В настоящее время производство различных рекомбинантных белков биофармацевтического назначения в трансгенных растениях (биофарминг) становится все более значимым направлением современной биотехнологии. Однако, несмотря на значительные шаги в этой области [1, 2], известно немного примеров успешной коммерциализации рекомбинантных белков, полученных в растительных экспрессионных системах [3, 4].

Одним из важных факторов, ограничивающих использование экспрессионных систем на основе растений, являются опасения случайного попадания генетически модифицированных растений в окружающую среду при культивировании продуцентов в поле или теплице [5]. В связи с этим, в настоящее время значительные усилия направлены на разработку экспрессионных платформ, использующих замкнутые культивационные системы (в первую очередь биореакторы различных типов), которые надежно предотвращают утечку растительного материала и рекомбинантной ДНК в окружающую среду [6]. К числу таких платформ относятся суспензионные культуры клеток растений, в разработке которых достигнут значительный прогресс [7]. В частности, единственный на данный момент рекомбинантный белок медицинского назначения – талиглюцераза-альфа (препарат ELELYSOTM, Pfizer Inc, США), одобренный

Список сокращений: 2,4Д – 2,4-дихлорфеноксиуксусная кислота; 6БАП – 6-бензиламинопурин; а.о. – аминокислотные остатки; ИУК – β-индолилуксусная кислота; Км – канамицин; МС - среда Мурасиге-Скуга; ОРБ – общий растворимый белок; ОТ-ПЦР – полимеразная цепная реакция с обратной транскрипцией; ПЦР –полимеразная цепная реакция; Цф – цефотаксим; ЭПР – эндоплазматический ретикулум; LB – среда Лурия–Бертани; NPM - среда для культивирования рясковых; PBS – натрий-фосфатный буфер; SH - среда Шенка-Хильдебрандта.

для использования, получен в суспензионной культуре клеток моркови [4]. Кроме того, в настоящее время активно изучается возможность использования культуры «бородатых корней» для получения рекомбинантных белков, в этом направлении получены обнадеживающие результаты [8–10]. Другим перспективным подходом является разработка экспрессионных систем на основе водных растений семейства рясковые, в частности ряски малой (Lemna minor L.). Ряска малая представляет собой маленькое (средний размер вегетативных побегов, фрондов, – длина 2–4 мм, ширина 2-3 мм) водное однодольное растение, характеризующееся высокой скоростью роста (время удвоения биомассы в жидкой культуре – 36–48 ч), высоким содержанием белка (до 45% от сухого веса) и преимущественно вегетативным размножением [11]. Рясковые могут выращиваться в культиваторах различной конструкции [12, 13], т.е. в полностью изолированных условиях, что исключает попадание рекомбинантной ДНК в окружающую среду. Уникальной особенностью рясковых является их способность к секреции рекомбинантных протеинов в среду культивирования, что позволяет существенно упростить методику последующего выделения и очистки целевых белков. Эти особенности делают ряску перспективным объектом для биофарминга. В результате производство рекомбинантных протеинов с использованием экспрессионных платформ на основе ряски малой может быть более выгодным, чем производство на основе других растительных систем.

К настоящему времени, в растениях ряски были успешно получены несколько коммерчески важных белков: моноклональные антитела (анти-CD30, анти-CD20 и анти-интерферон альфа-2b [14]), защитный антиген вируса эпидемической диареи свиней [15], рекомбинантный плазмин человека [12] и фермент индустриального назначения эндоглюканаза E1 из Acidothermus cellulolyticus [16].

Вызывает интерес изучение возможности экспрессии в трансгенных растениях ряски малой рекомбинантного гирудина. Гирудин – антикоагулянт, который, воздействуя на некоторые факторы свертывания крови, в том числе ингибируя тромбин, предотвращает свертывание крови. В связи с этим препараты гирудина используются в качестве противотромботического средства для предупреждения и лечения внутрисосудистого диссеминированного свертывания крови, возникающего в результате избытка тромбина в крови человека и способствующего развитию острой коронарной недостаточности, инфаркта миокарда, тромбоза глубоких вен нижних конечностей [17].

Рекомбинантный гирудин в настоящее время производится с использованием экспрессионных систем на основе клеток дрожжей Saccharomyces cerevisiae [18]. Определенные усилия были предприняты для разработки экспрессионных систем на основе других продуцентов – бактерий Bacillus subtilis [19] и E. coli [20], метилотрофных дрожжей Pichia pastoris [21, 22] и Hansenula polymorpha [23], нитчатого гриба Acremoniиm chrysogenum [24], трансгенных мышей [25]. Однако, эти исследования пока не получили дальнейшего развития, главным образом из-за низкого выхода рекомбинантного гирудина или его невысокой активности.

Более перспективным представляется производство рекомбинантного гирудина с использованием растительных экспрессионных платформ. В исследованиях Parmenter et al. [26] была разработана экспрессионная система на основе растений рапса масличного (Brassica napus), где гирудин экспрессировался в слиянии с олеозином, накопление слитого белка гирудин-олеозин достигало 1% от общего белка семян (около 0,3% гирудина). Слитый белок гирудин-олеозин с высокой эффективностью транспортировался в масляные тельца, где и происходило его накопление. Выделение рекомбинантного белка осуществлялось с помощью простой процедуры флотации и центрифугирования. Аналогичные результаты были получены при использовании эфиопской горчицы Brassica carinata [27]. Экспрессионная система для получения гирудина, базирующаяся на экспрессии слитого белка гирудин-олеозин в растениях сафлора (Carthamus tinctorius) была разработана компанией Sembiosys Genetics (Канада), однако о практическом ее применении сведения отсутствуют.

Основным недостатком данной системы является необходимость ферментативного расщепления слитого белка гирудин-олеозин с последующей очисткой гирудина, что ведет к значительным дополнительным затратам. Поэтому изучение возможности экспрессии в растениях гирудина без белка-партнера является весьма актуальным. Гирудин накапливается в клетках слюнных желез пиявки и является секретируемым белком [28]. Гирудин экспрессируется в форме белка-предшественника размером 85 а.о., включающего отщепляемый N- концевой сигнальный пептид длиной 20 а.о. [29, 30]. Молекула зрелого гирудина стабилизирована тремя дисульфидными связями, тирозин в положении 63 сульфатирован. Гирудин характеризуется высокой устойчивостью к повышенным значениям температуры, к воздействию денатурантов, стабильностью в широком диапазоне pH 1,47–12,9 [31]. Кроме того, гирудин обладает свойствами ингибитора сериновых протеиназ [32]. Такая повышенная устойчивость гирудина к различным повреждающим факторам позволила нам предположить возможность экспрессии гирудина без слияния с каким-либо белком-носителем.

Для оценки потенциально возможного уровня экспрессии рекомбинантных белков в растениях ряски, нами была осуществлена ее трансформация геном β-глюкуронидазы. Характерной особенностью β-глюкуронидазы является способность к высокому уровню накопления в растительной клетке – до 10% от ОРБ [33]. Кроме того, трансформация ряски геном β-глюкуронидазы одновременно с трансформацией целевым геном гирудина, в двух экспериментах, позволяет отслеживать ход трансформационного процесса, что существенно облегчает получение трансгенов.

Цель данного исследования – экспрессия рекомбинантного гирудина в растениях ряски малой, включая получение вектора для трансформации растений с оптимизированной для экспрессии в ряске нуклеотидной последовательностью гирудина, получение трансгенных растений и анализ накопления в них рекомбинантных гирудина и β-глюкуронидазы.

УСЛОВИЯ ЭКСПЕРИМЕНТА

Векторы для трансформации ряски малой

Для экспрессии в растениях ряски была выбрана аминокислотная последовательность гирудина из пиявки медицинской *Hirudo medicinalis*, вариант 1 (DrugBank DB00001). N-концевой сигнальный пептид гирудина был заменен на соответствующий сигнальный пептид α-амилазы риса (GenBank AAA33897.1) для транспорта рекомбинантного гирудина в ЭПР и далее в апопласт.

Обратная трансляция и оптимизация кодонного состава нуклеотидной последовательности гирудина были выполнены с помощью программы Gene Composer [34]. Для оптимизации кодонного состава была использована таблица частоты встречаемости кодонов у *Lemna gibba* (http://www.kazusa.or.jp/codon). Дизайн набора перекрывающихся олигонуклеотидов был выполнен с помощью программы Gene2Oligo [35].

Нуклеотидная последовательность рекомбинантного гирудина была синтезирована методом ПЦР. Полученную в результате ПЦР последовательность амплифицировали с использованием праймеров Hirfor и Hirrev, в последовательности которых были добавлены сайты для клонирования XbaI и SacI, соответственно (табл. 1). Далее полученный фрагмент клонировали по этим сайтам в вектор рВI121 взамен гена β-глюкуронидазы. По результатам секвенирования (с использованием праймера 5727) были отобраны клоны, содержащие вставку нуклеотидной последовательности

Таблица 1

Нуклеотидные последовательности использованных праймеров и режимы ПЦР

The PCR regimens and nucleotide sequences of used primers

Амплифицируемая нуклеотидная последовательность	Праймер	Нуклеотидная последовательность праймера, 5'→3'	Режим ПЦР
Рекомбинантный	Hirfor	agc tctaga atggccaagaggattgc	1 мин, 94 °С; 1 мин, 63 °С;
гирудин	Hirrev	ttcgagctctcattggaggtactcttcagg	30 с, 72 °С; 30 циклов
Секвенирование последовательности гирудина	5727	aagggatgacgcacaatc	1 мин, 94 °C; 30 с, 56 °C; 1 мин, 72 °C; 25 циклов
Ген virC A. tumefaciens	virC1for	gcactatctacctaccgctacgtcatc	1 мин, 94 °C; 30 с, 59 °C; 1 мин, 72 °C; 30 циклов
	virC2rev	gttgtcgatcgggactgtaaatgtg	
β-глюкуронидаза	gusF	caaaaaactcgacggcctgtgg	1 мин, 94 °C; 30 с, 60 °C; 1 мин, 72 °C; 30 циклов
	gusR	atagccgccctgatgctccatc	

Примечание: жирным шрифтом показаны сайты клонирования XbaI и SacI.

Note: the XbaI and SacI cloning sites are shown in bold.

гирудина, полностью соответствующую ожидаемой. Полученная плазмида pBI121-hir была использована в дальнейших экспериментах.

Для трансформации ряски был также использован вектор pBI121, несущий ген β-глюкуронидазы [36]. В экспериментах был использован штамм *A. tumefaciens* CBE21, в который были перенесены плазмиды pBI121-hir и pBI121.

Агробактериальная трансформация растений ряски

В экспериментах был использован местный изолят ряски малой *L. minor* из реки Оки (Серпуховский р-он Московской обл.). Стерильные растения ряски культивировали в жидкой среде МС [37] без добавления регуляторов роста, содержащей 2% сахарозы [38].

Для проведения агробактериальной трансформации были использованы каллусы ряски. Для индукции каллусогенеза растения ряски помещали на чашки Петри на поверхность агаризованной среды NPM (макро-, микросоли и витамины по Мурасиге-Скугу, 3% сахарозы, 0,4% агара и 0,15% Gelrite (Duchefa Biochemie, Нидерланды) [38]), содержащей 1,0 мг/л тидиазурона. Каллусы, развивающиеся на фрондах, срезали, когда они достигали размера 2–3 мм, и далее культивировали на среде NPM, содержащей 2,0 мг/л 2,4-Д. Для трансформации использовали каллусы диаметром 4–5 мм, образовавшиеся в течение 45–60 дней.

Агробактерии *А. tumefaciens* CBE21, трансформированные векторами pBI121-hir или pBI121, выращивали в течение 16 ч на среде LB, содержащей 50 мг/л Км, в шейкере-инкубаторе (140 об/мин) при 28 °С. Бактериальные клетки осаждали и промывали 2 раза при помощи центрифугирования (5 мин, 4000 g) жидкой средой MC без гормонов. После промывок бактериальный осадок ресуспендировали в этой же среде, OП₆₀₀ бактериальной суспензии составляла 2,0.

Для трансформации каллусы (общая масса 2 г) были перенесены со среды NPM в стеклянный стакан емкостью 100 мл, содержащий 20 мл суспензии агробактерий. Каллусы инкубировали с *A. tumefaciens* в течение 30 мин. Процедура трансформации каллуса ряски включала шесть этапов: **1-й этап** – каллусы переносили в чашки с агаризованной средой NPM, содержащей 2,0 мг/л 2,4-Д, и культивировали в течение двух дней; **2-й этап** – каллусы переносили на среду того же состава, дополнительно содержащую 500 мг/л Цф и культивировали в течение 30 дней; **3-й** этап – каллусы пассировали на среду NPM, содержащую, мг/л: 2,4-Д – 2,0; Цф – 500; селективный антибиотик Км – 35. По мере появления и роста (2-3 мм) устойчивых к канамицину каллусов, их отделяли от отмирающего нетрансгенного каллуса и продолжали культивировать на среде того же состава до достижения ими размера порядка 5-6 мм; 4-й этап – устойчивые к канамицину каллусы для регенерации и селекции трансформантов переносили на среду NPM следующего состава, мг/л: 6-БАП – 2,0; ИУК – 0,1 мг/л; Цф – 500 мг/л и Км – 35 мг/л. Каллусы культивировали на данной среде в течение 2-3 мес, до появления канамициноустойчивых фрондов. 5-й этап устойчивые к канамицину фронды переносили на агаризованную среду МС, содержащую 2,0 мг 6-БАП; 0,1 мг/л ИУК; 500 мг/л Цф и 10 мг/л Км, для дальнейшего роста и селекции трансформантов. На этом этапе фронды культивировали в течение 3 мес. 6-й этап – активно пролиферирующие фронды, без признаков токсического действия селективного агента, переносили на жидкую среду SH [39], содержащую 200 мг/л Цф и 10 мг/л Км и без регуляторов роста, для дальнейшего развития и селекции трансформантов (рис. 1).

На всех этапах трансформации каллусы пассировали каждые две недели; растения-регенеранты переносили на свежие среды с интервалом в три недели. Культивирование ряски, индукцию каллуса и регенерацию трансгенных растений проводили при следующих условиях: температура 24±2°С, фотопериод 16/8 ч, интенсивность освещения 5500 лк.

ПЦР- и ОТ-ПЦР- анализ трансгенных растений

Геномная ДНК ряски была выделена из канамициноустойчивых и нетрансформированных растений по методу Dellaporta и др. [40]. ПЦР-анализ на присутствие нуклеотидной последовательности гирудина проводили, используя праймеры Hirfor и Hirrev, а β-глюкуронидазы – праймеры gusF и gusR (см. табл. 1). Предварительно канамициноустойчивые растения были проверены методом ПЦР на отсутствие агробактериальной контаминации. Для этого использовали праймеры virC1for и virC2rev, которые амплифицируют участок гена virC A. tumefaciens (см. табл. 1).

Выделение РНК из растений проводили с использованием набора реактивов QuantumPrep AquaPure RNA Isolation Kit (BioRad, CША) согласно рекомендациям фирмы-изготовителя. Полученную РНК дополнительно очищали от примесей ДНК с помощью обработки ДНКазой

Fig. 1. Stages of agrobacterium – mediated transformation of duckweed with a vector pBI121-hir. *1*, induction of organogenic callus (indicated by an arrow); *2*, growth of organogenic callus on NPM medium with 2.0 mg/l 2,4-D (stage 1); *3*, beginning of transgenic callus growth. Areas of transgenic callus (lighter) are indicated by arrows (stage 3); *4*, proliferation of kanamycin-resistant calli on the medium with kanamycin (stage 3); *5*, fronds regeneration from kanamycin-resistant callus (stage 4); *6*, selection of kanamycin-resistant fronds on an agarized medium (stage 5); *7*, kanamycin-resistant duckweed plants in a liquid medium (step 6).

(Fermentas, Литва). Обратную транскрипцию выполняли с использованием обратной транскриптазы M-MuLV RT (Fermentas) и праймеров Hirfor и Hirrev в соответствии с инструкцией производителя. Полученные препараты кДНК были проанализированы методом ОТ-ПЦР на наличие целевых последовательностей с использованием праймеров Hirfor и Hirrev (см. табл. 1).

Гистохимический анализ активности β-глюкуронидазы

Гистохимическое определение активности β-глюкуронидазы проводили согласно протоколу Jefferson [36].

Иммуноферментный анализ трансгенных растений

Общий белок был экстрагирован из растений ряски, культивировавшихся на жидкой среде SH без регуляторов роста, содержащей 10 мг/л канамицина. Образцы сырой массой 1 г растирали в жидком азоте и ресуспендировали в 3 мл экстракционного буфера следующего состава: 50 мМ трис-HCl, pH 8,0; 10 мМ ЭДТА, pH 8,0; 30 мМ 2-меркаптоэтанола; 4 мкг/мл апротинина; 4 мкг/мл лейпептина. Экстракцию проводили в течение 20 мин при температуре +4 °C, затем центрифугировали в течение 20 мин при 12000 g и отбирали супернатант, который использовали для дальнейших анализов. Препараты хранили при температуре –70 °C, концентрацию белка определяли по методу Bredford.

Препараты белка ряски серийно разводили в натрий-фосфатном буфере PBS (137 мМ NaCl, 2,7 мМ KCl, 10 мМ Na₂HPO₄, 1,8 мМ KH₂PO₄; pH 7,4) и 100 мкл образца наносили на плашку для ИФА (по 0,5, 1,0 и 2,0 мкг белка на лунку). Сорбцию белков проводили в течение 2 ч при комнатной температуре на орбитальном шейкере; после промывки (4 раза по 3 мин в PBS, содержащем 0,05% твин-20) плашку блокировали в PBS, содержащем 0,05% твин-20 и 2% бычьего сывороточного альбумина (1 ч при комнатной температуре). В качестве первичных антител использовали мышиные моноклональные антитела к гирудину в разведении 1:500 (AbCam, Великобритания), в качестве вторичных - антимышиные IgG, конъюгированные с пероксидазой хрена (BioRad), в разведении 1:2000. Для анализа растений, трансформированных вектором pBI121, были использованы кроличьи поликлональные антитела к β-глюкуронидазе в разведении 1:1000 (Sigma, США), а в качестве вторичных антител - антикроличьи IgG, коньюгированные со щелочной фосфатазой (Pierce, США) в разведении 1:3000. В качестве стандартов были использованы рекомбинантный гирудин (AbCam) и β-глюкуронидаза из E. coli (Sigma).

Гибридизацию с первичными антителами проводили в течение 16 ч при температуре +4 °C. После промывки, как описано выше, добавляли вторичные антитела; гибридизацию со вторичными антителами проводили в течение 1 ч при комнатной температуре, далее проводили промывку и детекцию связавшихся антител.

Вестерн-блот анализ трансгенных растений

Общий белок из растений, трансформированных вектором pBI121, экстрагировали как описано выше, в состав буфера для экстракции дополнительно был добавлен 1%-ный SDS. Концентрацию белка определяли по методу Bredford, препараты хранили при температуре -70 °С. Электрофорез белков проводили в 10%-ном SDS-ПААГ по методу Laemmli; на каждую дорожку наносили по 70 мкг белка. В качестве положительного контроля была использована β-глюкуронидаза из E. coli (Sigma). После электрофореза протеины переносили на нитроцеллюлозную мембрану (BioRad). Мембраны блокировали в 4%-ном обезжиренном молоке (BioRad) в PBS в течение 1 ч при комнатной температуре; гибридизацию с первичными антителами проводили в течение 16 ч при 4 °С. Для детекции β-глюкуронидазы были использованы кроличьи поликлональные антитела в разведении 1:2000 (Sigma), в качестве вторичных антител – антикроличьи IgG, коньюгированные со щелочной фосфатазой (Pierce, США), в разведении 1:4000. Гибридизацию со вторичными антителами проводили в течение 1 ч. Изображение на мембранах получали с помощью хромогенного субстрата BCIP/NBT (Fermentas).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Конструирование вектора для трансформации ряски

Для оптимизации кодонного состава нуклеотидной последовательности, кодирующей гирудин, нами были использованы данные о частоте использования кодонов у ряски горбатой (L. gibba), родственной ряске малой. Предполагалось, что частоты использования кодонов у этих родственных видов существенно не различаются. Нуклеотидная последовательность, кодирующая гирудин, с оптимизированным для экспрессии в ряске кодонным составом была синтезирована и клонирована в вектор pBI121 вместо гена β-глюкуронидазы, под контролем 35S промотора вируса мозаики цветной капусты. Структура экспрессионной кассеты вектора pBI121-hir, аминокислотная и нуклеотидная последовательности гирудина с оптимизированным для экспрессии в растениях L. minor кодонным составом представлены на рис. 2.

Индукция органогенного каллуса ряски

Индукция каллуса растений ряски малой начиналась на 5–6-й неделе культивирования фрондов на среде NPM, содержащей 1,0 мг/л тидиазурона. Каллусы появлялись в виде маленьких белых или зеленоватых точек, в среднем на одном фронде индуцировалось по 2–3 каллуса. Инициация каллусов происходила, главным образом, на участках фрондов, соседствующих с корневой или меристиматической зонами. (рис. 1, *1*). Через две недели, когда каллусы достигали размера 2–3 мм, их отделяли от фрондов и переносили для дальнейшего культивирования в чашки Петри на поверхность агаризованной среды NPM с 2,0 мг/л 2,4-Д (рис. 1, *2*). Для трансформации использовали каллусы диаметром 4–5мм.

Агробактериальная трансформация ряски

После трансформации каллусы культивировали на среде NPM, содержащей 2,0 мг/л 2,4-Д и 500 мг/л Цф (рис. 1, 3). На этом этапе (этап 2) происходила пролиферация каллусной ткани и частичная очистка трансформированных тканей от агробактерий. В наших предварительных экспериментах (данные не представлены) было показано, что в случае отсутствия этого этапа, элиминация агробактерий в ходе последующего получения трансгенных растений была затруднена. В частности, наблюдалось зарастание каллусов агробактериями, что вело к их отмиранию и невозможности регенерации адвентивных фрондов.

АГРОБАКТЕРИАЛЬНАЯ ТРАНСФОРМАЦИЯ РЯСКИ МАЛОЙ

 $l.\ \underline{makriasmssllliallclsshlaqa} lvytdctesgqnlclcegsnvcgqgnkcilgsdgeknqcvtgegtpkpqshndgdfeeipeeylq$

2. tctagaatggccaagaggattgcctccatgtcttcgctcctcttatcgcgctgttgtgcttgtcctcccatctcgcccaggcgcttgtttac accgactgcaccgagagcggccaaaatctgtgtctctgcgaaggatccaacgtctgcggacaagggaacaagtgcatcctggcagcgac ggagaaaagaaccagtgcgtcaccggcgaaggaaccccaaagcctcagagccataatgacggagacttcgaagaaatccctgaagagta cctccaatgagggtc

Рис. 2. Структура экспрессионной кассеты («гирудин» – нуклеотидная последовательность синтетического гирудина; RB и LB – правый и левый граничные повторы T-ДНК; pNOS и nos-ter – промотор и терминатор гена нопалинсинтазы, соответственно; nptII – ген неомицинфосфотрансферазы II; 35S CaMV–35S промотор вируса мозаики цветной капусты); *I* – аминокислотная последовательность гирудина (подчеркнута последовательность N-концевого сигнального пептида α-амилазы риса); *2* – нуклеотидная последовательность гирудина после оптимизации кодонного состава (жирным шрифтом показаны сайты клонирования XbaI и SacI, подчеркнут стоп-кодон tga)

Fig. 2. The expression cassette structure. ("гирудин" – the optimized nucleotide sequence of hirudin; RB and LB - right and left borders of T-DNA; pNOS and nos-ter - promoter and terminator of the nopaline synthase gene, respectively; nptII - a gene of neomycin phosphotransferase II; 35S CaMV- 35S promoter of cauliflower mosaic virus); 1 – amino acid sequence of hirudin (the sequence of α -amylase rice N-terminal signal peptide is underlined); 2, nucleotide sequence of hirudin after co-don usage optimization (the cloning sites XbaI and SacI are shown in bold; the stop codon tga is underlined.)

Канамициноустойчивые участки на трансформированном каллусе появлялись после 4–5 недель культивирования на среде NPM, содержащей 2,4-Д, цефотаксим и канамицин. Они достигали размера 3–4 мм в течение 10–12 дней (этап 3, см. рис. 1, 4). На этом этапе канамициноустойчивые каллусы отделяли от исходного каллуса и переносили на свежую среду того же состава для дальнейшего роста (этап 3, см. рис. 1, 4). Устойчивые к канамицину каллусы размером 5–6 мм переносили на среду для регенерации и селекции трансформантов. Первые адвентивные фронды появлялись спустя 8–10 нед. культивирования на среде для регенерации и селекции трансформантов (этап 4, см. рис. 1, 5).

По мере их появления, когда размер фрондов достигал 3–4 мм, регенерировавшие фронды отделяли от каллуса и переносили на чашки Петри со средой МС, содержащей 500 мг/л Цф и 10 мг/л Км для дальнейшего роста, пролиферации и селекции трансформантов (этап 5, см. рис. 1, *б*). На этом этапе регенеранты культивировали в течение 2–3 мес. В ходе культивирования фрондов наблюдалось их массовое отмирание, когда погибало около 60% регенерантов. Активно пролиферирующие фронды без признаков токсического действия канамицина переносили на жидкую среду SH без регуляторов роста, каждый фронд в отдельный культуральный сосуд (этап 6, см. рис. 1, 7). На этой среде фронды культивировали 2 мес, в течение которых продолжалось отмирание регенерантов. Оставшиеся фронды, активно растущие и без признаков действия канамицина, рассматривали как потенциально трансгенные линии и культивировали на среде того же состава до проведения молекулярно-биологических анализов. Результаты экспериментов по трансформации ряски векторами pBI121-hir и pBI121 представлены в табл. 2.

ПЦР-анализ трансгенных растений ряски

ПЦР-анализ с использованием праймеров virC1 for и virC2rev подтвердил отсутствие агробактериальной контаминации в потенциально трансгенных линиях ряски. Фрагмент ожидаемой длины, соответствующий нуклеотидной последовательности гирудина, амплифицировался в образцах ДНК всех 8 изученных линий (рис. 3, *a*).

КОЗЛОВ и др.

Таблица 2

Агробактериальная трансформация ряски малой векторами pBI121-hir (вариант А) и pBI121 (вариант Б)

Эксперимент	Каллусы, шт (этап 3)*	Адвентивные фронды, шт (этап 4)	Линии, устойчивые к канамицину, шт (этап 6)*		
Вариант А					
Al	63	35	2		
A2	75	41	4		
A3	70	38	2		
Всего	205	114	8		
Вариант Б					
Б1	50	23	3		
Б2	50	18	4		
Всего	100	41	7		

Agrobacterium - mediated transformation of duckweed with vectors pBI121-hir (variant A) and pBI121 (variant B)

*Количество каллусов, достигших размера 5–6 мм на среде для регенерации и селекции трансформантов (этап 3) и перенесенных на среду NPM для образования канамициноустойчивых фрондов (этап 4)

*The number of calli that reached a size of 5-6mm on the medium for transformants regeneration and selection (stage 3) and transferred on NPM medium to form kanamycin-resistant fronds (stage 4)

Рис. 3. ПЦР-анализ геномной ДНК трансгенных линий ряски на присутствие нуклеотидной последовательности гирудина (*a*) и β-глюкуронидазы (*b*). h1-h8 – различные трансгенные линии, полученные после трансформации вектором pBI121-hir, g2–g8 – вектором pBI121. М – маркер молекулярной массы ДНК; К1+ – ДНК вектора pBI121-hir; К2+ – ДНК вектора pBI121. Стрелками показаны амплифицируемые фрагменты: 294 пн (вектор pBI121-hir) и 298 пн (вектор pBI121)

Fig. 3. PCR analysis of genomic DNA of transgenic duckweed lines on hirudin (*a*) and β -glucuronidase (*b*) genes. h1–h8 – the transgenic lines obtained after transformation with vector pBI121-hir; g2–g8 – obtained after transformation with vector pBI121. M – the DNA molecular size marker; K1+ – DNA of plasmid pBI121-hir; K2+ – DNA of plasmid pBI121. The arrows indicates of the amplified fragments the fragments length are 294 bp (vector pBI121-hir) and 298 bp (vector pBI121) Таким образом, присутствие целевой нуклеотидной последовательности было подтверждено во всех изученных линиях. Присутствие нуклеотидной последовательности β -глюкуронидазы в геномной ДНК также было подтверждено во всех линиях ряски, полученных после трансформации вектором pBI121 (рис. 3,*b*).

Анализ экспрессии β-глюкуронидазы в растениях ряски, трансформированных вектором pBI121

После двух месяцев роста на жидкой безгормональной среде SH, содержащей 200 мг/л Цф и 10 мг/л Км, трансгенные растения были проанализированы методом гистохимического окрашивания на наличие активности β-глюкуронидазы. Все семь полученных линий продемонстрировали окрашивание, в то время как нетрансформированные контрольные растения не окрашивались (рис. 4*a*).

Интенсивность окрашивания варьировала от слабой, почти неразличимой бледно-голубой (линии g1 и g5), до темно-синей, почти черной (линии g2, g3 и g4). Трансгенные фронды были окрашены по всей поверхности, причем наиболее интенсивно окрашивались жилки и кармашек, что согласуется с тем фактом, что 35S промотор CaMV работает наиболее интенсивно в метаболически активных частях растения [41, 42]. Исходя из полученных результатов, линии ряски со слабой экспрессией β-глюкуронидазы (g1 и g5) были исключены из дальнейших исследований.

АГРОБАКТЕРИАЛЬНАЯ ТРАНСФОРМАЦИЯ РЯСКИ МАЛОЙ

а

Рис. 4. Анализ экспрессии β-глюкуронидазы в различных линиях ряски, полученных после трансформации вектором pB1121: *a* – гистохимическое окрашивание растений; *b* – Вестерн-блот-анализ экспрессии β-глюкуронидазы; *c* – количественная оценка накопления β-глюкуронидазы. g2–g8 – различные трансгенные линии ряски; (K–) – нетрансформированные растения ряски; (K+) – β-глюкуронидаза, 40 нг; M – маркер молекулярной массы белка

Fig. 4. Analysis of β -glucuronidase expression in specified duckweed lines obtained after transformation with vector pBI121: *a*, histochemical staining of plants; *b*, Western blot analysis of β -glucuronidase expression; *c*, quantification of β -glucuronidase accumulation. g2–g8 – transgenic duckweed lines; (K-), non-transformed duckweed plants; (K +), β -glucuronidase protein, 40 ng; M, the protein molecular size marker

Методом Вестерн-блот в препаратах белка изученных линий было показано присутствие двух иммунореактивных белковых полос с молекулярной массой около 70 кДа. Масса этих полос соответствовала β-глюкуронидазе *E. coli*, которая также детектировалась в виде двух полос близкой молекулярной массы (рис. 4b). В контрольных нетрансгенных растениях иммунореактивные полосы, соответствующие β-глюкуронидазе, не детектировались. Таким образом, Вестерн-блот-анализ подтведил экспрессию β-глюкуронидазы во всех изученных линиях.

Количественная оценка накопления β-глюкуронидазы была выполнена с использованием иммуноферментного анализа (рис. 4*c*). Накопление β-глюкуронидазы варьировало в диапазоне от 0,28% до 1,43% ОРБ. Максимальное накопление рекомбинантной β -глюкуронидазы наблюдалось в линиях g3 и g4 (1,43±0,23% и 1,27±0,11% ОРБ, соответственно), минимальное – в линии g8 (0,28±0,07% ОРБ). Линии g2, g6 и g7 по уровню накопления β -глюкуронидазы занимали промежуточное положение (0,42±0,14%; 1,07±0,27% и 0,76±0,13% ОРБ, соответственно).

Анализ экспрессии гирудина в растениях ряски, трансформированных вектором pBI121-hir

ОТ-ПЦР-анализ трансгенных растений ряски продемонстрировал амплификацию фрагментов кДНК гирудина ожидаемой длины (рис. 5). Полученные данные подтверждают транскрипцию гена гирудина в трансгенных растениях всех полученных линий.

Количественная оценка накопления рекомбинантного гирудина в трансгенных линиях была выполнена с использованием иммуноферментного анализа (рис. 6). Присутствие гирудина было детектировано в трех линиях (h3, h4 и h5) из восьми изученных. В остальных пяти линиях рекомбинантный гирудин не детектировался.

Максимальное накопление гирудина наблюдалось в линиях h3 и h5 ($0,02\pm 0,003$ и $0,01\pm 0,002\%$ ОРБ, соответственно). В линии h4 накопление гирудина было ниже — $0,005\pm 0,001\%$ ОРБ. Исходя из содержания общего растворимого белка в

Рис. 5. РТ-ПЦР-анализ транскрипции гена гирудина в трансгенных растениях ряски. h1–h8 – различные трансгенные линии, полученные после трансформаци вектором pBI121-hir. М – маркер молекулярной массы ДНК; (К–) – РНК нетрансформированного растения; (К+) – ДНК вектора pBI121-hir. Стрелкой показан амплифицируемый фрагмент нуклеотидной последовательности гирудина (294 пн)

Fig. 5. RT-PCR analysis of hirudin gene transcription in transgenic duckweed plants. h1-h8 – the different transgenic lines obtained after transformation with vector pBI121-hir. M – the DNA molecular size marker; (K-), RNA of the non-transformed plants; (K +), DNA of plasmid pBI121-hir. The arrow indicates the amplified fragment of hirudin nucleotide sequence (294 bp)

Рис. 6. Результаты иммуноферментного анализа экспрессии рекомбинантного гирудина в растениях ряски, трансформированных вектором pBI121-hir. h1-h8 – различные трансгенные линии; (К–) – нетрансформированные растения ряски

Fig. 6. Results of ELISA on the recombinant hirudin expression in duckweed plants transformed with vector pBI121-hir. h1-h8 – different transgenic lines; (K–) – non-transformed duckweed plants

трансгенных линиях ряски (в среднем 12,4 мг/г сырой массы), в линии h3 накопление рекомбинантного гирудина составило 2,1 мкг/г сырой массы, линии h5 – 1,3 мкг/г.

Протокол агробактериальной трансформации ряски малой был впервые разработан Yamamoto et al. [43] и затем адаптирован к физиологическим особенностям различных географических изолятов этого вида растений [44-46]. Эти протоколы включают индукцию органогенного каллуса, его трансформацию агробактериями и последующую регенерацию трансформантов на средах в присутствии селективных антибиотиков. Эта схема была эффективной и в наших исследованиях. Всего было получено 15 независимых трансгенных линий ряски. Трансгенные растения не отличались по своей морфологии от нетрансгенных, экспрессия гетерологичных белков не оказала влияния ни на скорость роста растений в жидкой культуре, ни на содержание общего растворимого белка в них.

В последнее время значительные усилия исследователей были направлены на разработку методов экспрессии в трансгенных растениях пептидов различного назначения. В первую очередь внимание было уделено антибактериальным пептидам с целью защиты растений от бактериальных патогенов и получения новых антимикробных агентов для биофармацевтического применения. К числу таких пептидов относятся кателицидин [47], лактостатин [48], дермасептин [49] и др. Определенное внимание уделялось также разработке методов экспрессии других пептидов, в первую очередь, проинсулина человека [50, 51] и глюкагоноподобного пептида-I [52].

В большинстве исследований выход целевого продукта был невысоким и, как правило, находился в диапазоне 0,5–10 мкг/г сырой массы растения-продуцента, что соответствовало тысячным долям процента от общего растворимого белка [53]. Кроме того, экспрессия рекомбинантных пептидов в растениях характеризовалась нестабильностью [54]. С другой стороны, рекомбинантный апротинин (полипептид, размером 58 а.о.) как классический примером ингибитора сериновых протеиназ накапливался в растениях на высоком уровне – до 9% ОРБ в семенах кукурузы [55, 56].

В настоящем исследовании накопление рекомбинантного гирудина в трансгенных растениях ряски линии h3 составило 2 мкг/г сырой массы (соответствует 0,02% ОРБ). Такой уровень накопления является обычным при экспрессии в трансгенных растениях различных рекомбинантных белков и пептидов [53]. По-видимому, низкий уровень накопления гирудина является следствием его нестабильности в растениях ряски, в частности из-за деградации под воздействием растительных протеолитических ферментов.

Как отмечалось выше, апротинин может накапливался в растениях на очень высоком уровне. В исследовании Rival et al. [57] уровень аккумуляции апротинина в растениях другого представителя семейства рясковых, спироделлы (Spirodela oligorrhiza), достигал 3,7% ОРБ. В этих исследованиях апротинин экспрессировался без слияния с каким-либо белком-партнером. Предполагается, что основным фактором, определяющим уровень аккумуляции рекомбинантного белка, является его устойчивость к действию растительных протеиназ, а не размер белка как таковой. Возможно, условия апопластного пространства ряски, включая его протеолитический фон, не являются оптимальными для накопления рекомбинантного гирудина.

В растениях, трансформированных вектором pBI121, наблюдался высокий уровень накопления рекомбинантной β-глюкуронидазы – 1,4% ОРБ в линии g3 (соответствует 120 мкг рекомбинантного белка в 1 г сырой массы ряски). Такое высокое накопление β-глюкуронидазы в трансгенных растениях является обычным и в случае ее накопления в цитоплазме клетки. Например, при экспрессии пептида 2L21 парвовируса собак в слиянии с β-глюкуронидазой накопление слитого белка 2L21-β-глюкуронидаза в трансгенных растениях арабидопсиса превышало 3% ОРБ [58]. В случае экспрессии высокоиммуногенного эпитопа структурного протеина VP1 вируса ящура накопление слитого белка VP1-β-глюкуронидаза в растениях люцерны достигало 1,0 мг/г сырой массы [59]. Экспрессия пептида М2е вируса гриппа птиц H5N1 в составе слитого белка М2е-β-глюкуронидаза в трансгенных растениях ряски обеспечивала накопление этого белка на уровне до 1,0 мг/г сырой массы (соответствует 2,0% ОРБ) [38], а в растениях табака – до 0,2 мг/г (около 0,3% ОРБ) [60]. В исследованиях Dugdale et al. накопление β-глюкуронидазы в стабильно трансформированных растениях табака доходило до 10% ОРБ [61].

Во всех этих исследованиях β -глюкуронидаза находилась в составе слитого белка или отдельно накапливалась в цитоплазме. По-видимому, способность β -глюкуронидазы накапливаться в таких больших количествах связана с ее высокой стабильностью (период полужизни в цитоплазме живых протопластов мезофилла листа около 50 ч [36]). Таким образом, потенциальный уровень накопления рекомбинантных белков в растениях ряски является весьма высоким. При условии устойчивости целевого белка к различным клеточным факторам он может достигать величин, существенно превышающих 100 мг рекомбинантного белка на 1кг сырой массы растения-продуцента.

В результате проведенных исследований нами были получены растения ряски малой, трансформированные генами гирудина и β-глюкуронидазы, и показана возможность экспрессии рекомбинантного гирудина в трансгенных растениях. Предполагается, что уровень накопления рекомбинантного гирудина в трансгенных растениях ряски может быть повышен или путем его локализации в других, более подходящих, компартментах клетки, например в эндоплазматическом ретикулуме, или путем экспрессии в составе более стабильного слитого белка. Полученные результаты могут быть использованы в последующих исследованиях по разработке экспрессионной системы на основе растений ряски для получения рекомбинантного гирудина.

Работа была выполнена с использованием УНУ «ФИТОТРОН» (рег. № 2-2.9) в соответствии с Государственным заданием №0101-2014-0069.

ЛИТЕРАТУРА

- Tschofen M., Knopp D., Hood E., et al. Plant molecular farming: Much more than medicines. *Ann. Rev. Anal. Chem.*, (Palo Alto Calif)2016, 9(1), 271–294. doi: 10.1146/annurev-anchem-071015-041706
- Moustafa K., Makhzoum A., Tremouillaux-Guiller J. Molecular farming on rescue of pharma industry for next generations. *Crit. Rev. Biotechnol.*, 2016, 36(5), 840–850. doi: 10.3109/07388551.2015.1049934
- 3. Park K.Y., Wi S.J. Potential of plants to produce recombinant protein products. *J. Plant Biology*, 2016, 59(6), 559–568. doi: 10.1007/s12374-016-0482-9
- 4. Walsh G. Biopharmaceutical benchmarks 2014. *Nature Bio-technology* 2014, 32(10), 992–1000. doi: 10.1038/nbt.3040
- Kirk D.D., McIntosh K., Walmsley A.M., et al. Risk analysis for plant-made vaccines. *Transgenic Res.*, 2005, 14(4), 449–462. doi: 10.1007/s11248-005-5697-3
- Franconi R., Demurtas O.C., Massa S. Plant-derived vaccines and other therapeutics produced in contained systems. *Expert. Rev. Vaccines*, 2010, 9(8), 877–892. doi: 10.1586/erv.10.91
- Xu J., Zhang N. On the way to commercializing plant cell culture platform for biopharmaceuticals: present status and prospect. *Pharm. Bioprocess.*, 2014, 2(6), 499–518. doi: 10.4155/pbp.14.32
- Georgiev M.I., Agostini E., Ludwig-Muller J., et al. Genetically transformed roots: from plant disease to biotechnological resource. *Trends Biotechnol.*, 2012, 30(10), 528–537. doi: 10.1016/j.tibtech.2012.07.001
- Gurusamy P.D., Schafer H., Ramamoorthy S., et al. Biologically active recombinant human erythropoietin expressed in hairy root cultures and regenerated plantlets of Nicotiana tabacum L. *PloS one*, 2017, 12(8), e0182367. doi: 10.1371/journal.pone.0182367
- Phan H.T., Floss D.M., Conrad U. Veterinary vaccines from transgenic plants: highlights of two decades of research and a promising example. *Curr. Pharm. Des.*, 2013, 19(31), 5601–5611. doi: 10.2174/1381612811319310014
- 11. Landolt E. Physiologische und ökologische Untersuchungen an Lemnaceen. *Ber. Schweiz. Bot. Ges.*, 67(1957), 271–410.
- 12. Everett K. M., Dickey L., Parsons J., et al. Development of a plant-made pharmaceutical production platform. *Bioprocess. Int.*, 2012, 10(1), 16–25.
- Khvatkov, P. A., Chernobrovkina, M. A., Sinyov, V. V., et al. Study on conditions for *Wolffia arrhiza* (L.) Horkel ex Wimm submerged culturing in a modified bioreactor. *Biotechnology*, 2013, 29(6), 51–56. doi: 10.21519/0234-2758-2013-6-51-56
- Cox K.M., Sterling J.D., Regan J.T., et al. Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. *Nature Biotechnology*, 2006, 24(12), 1591–1597. doi: 10.1038/nbt1260

- Ko S.-M., Sun H.-J., Oh M.J., et al. Expression of the protective antigen for PEDV in transgenic duckweed, Lemna minor. *Horticulture, Environment, Biotechnology*, 2011, 52(5), 511. doi: 10.1007/s13580-011-0007-x
- Sun Y., Cheng J.J., Himmel M.E., et al. Expression and characterization of Acidothermus cellulolyticus E1 endoglucanase in transgenic duckweed Lemna minor 8627. *Bioresour. Technol.*, 2007, 98(15), 2866–2872. doi: 10.1016/j.biortech.2006.09.055
- Greinacher A., Warkentin T.E. The direct thrombin inhibitor hirudin. *Thromb. Haemost.*, 2008, 99(5), 819–829. doi: 10.1160/th07-11-0693
- Niazi S.K., Brown J.L. Fundamentals of Modern Bioprocessing, 1thedn. Boca Raton, USA: CRC Press; 2015.
- Chen H.Y., Qi X.H., Geng X., et al. Expression, Purification and characterization of the recombinant hirudin variant III in the *Bacillus subtilis*. *Advanced Materials Research*, 2012, 343-344, 753–763. doi: 10.4028/AMR.343-344.753
- Dodt J., Schmitz T., Schafer T., et al. Expression, secretion and processing of hirudin in E. coli using the alkaline phosphatase signal sequence. *FEBS. Lett.*, 1986, 202(2), 373–377. doi: 10.1016/0014-5793(86)80721-9
- Hu Z., Zhang N., Gu F., et al. Expression, purification and characterization of recombinant targeting bifunctional hirudin in Pichia pastoris. *African J Biotechnology*, 2009, 8(20), 5571–5577. doi: 10.5897/AJB09.701
- Rosenfeld S.A., Nadeau D., Tirado J., et al. Production and purification of recombinant hirudin expressed in the methylotrophic yeast Pichia pastoris. *Protein Expr. Purif.*, 1996, 8(4), 476–482. doi: 10.1006/prep.1996.0127
- Kim C.H., Seo H.W., Kim H.Y., et al. Production of recombinant hirudin in Hansenula polymorpha: variation of gene expression level depends on methanol oxidase and fermentation strategies. *J. Industrial Microbiology Biotechnology*, 1998, 21(1), 1–5. doi: 10.1038/sj.jim.2900545
- Radzio R., Kuck U. Efficient synthesis of the blood-coagulation inhibitor hirudin in the filamentous fungus Acremonium chrysogenum. *Appl. Microbiol. Biotechnol.*, 1997, 48(1), 58–65. doi: 10.1007/s002530051015
- Yen C.H., Yang C.K., Chen I.C., et al: Expression of recombinant Hirudin in transgenic mice milk driven by the goat beta-casein promoter. *Biotechnol. J.*, 2008, 3(8), 1067–1077. doi: 10.1002/biot.200800069
- Parmenter D.L., Boothe J.G., van Rooijen G.J., et al. Production of biologically active hirudin in plant seeds using oleosin partitioning. *Plant. Mol Biol.*, 1995, 29(6), 1167–1180. doi: 10.1007/BF00020460
- Chaudhary S., Parmenter D.L., Moloney M.M. Transgenic Brassica carinata as a vehicle for the production of recombinant proteins in seeds. *Plant Cell Reports*, 1998, 17(3), 195–200. doi: 10.1007/s002990050377

- Bagdy D., Barabas E., Graf L., et al. Hirudin. Methods Enzymol., Elsevier Inc, 1976, 45, 669–678. doi: 10.1016/S0076-6879(76)45057-7
- Harvey R.P., Degryse E., Stefani L., et al. Cloning and expression of a cDNA coding for the anticoagulant hirudin from the bloodsucking leech, *Hirudo medicinalis*. *Proc. Natl. Acad. Sci. USA*, 1986, 83(4), 1084–1088. doi: 10.1073/pnas.83.4.1084
- Müller C., Mescke K., Liebig S., et al. More than just one: multiplicity of Hirudins and Hirudin-like Factors in the Medicinal Leech, *Hirudo medicinalis. Mol. Genet. Genomics.*, 2016, 291(1), 227–240. doi: 10.1007/s00438-015-1100-0
- Chang J.Y. Stability of hirudin, a thrombin-specific inhibitor. The structure of alkaline-inactivated hirudin. *J. Biol. Chem.*, 1991, 266(17), 10839–10843.
- 32. Stone S.R., Dennis S., Wallace A., et al. Use of protein chemistry and molecular biology to determine interaction areas between proteases and their inhibitors: The thrombin-hirudin interaction as an example. In: serine proteases and their serpin inhibitors in the nervous system: Regulation in development and in degenerative and malignant disease. 1thedn. N.Y., USA: Springer Science+Business Media, 1990, 115–126. doi: 10.1007/978-1-4684-8357-4
- Butaye K.M., Goderis I.J., Wouters P.F., et al. Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regions. *Plant J.*, 2004, 39(3), 440–449. doi: 10.1111/j.1365-313X.2004.02144.x
- Lorimer D., Raymond A., Walchli J., et al. Gene composer: database software for protein construct design, codon engineering, and gene synthesis. *BMC Biotechnology*, 2009, 9, 36. doi: 10.1186/1472-6750-9-36
- Rouillard J.M., Lee W., Truan G., et al. Gene2Oligo: oligonucleotide design for *in vitro* gene synthesis. *Nucleic Acids Res.*, 2004, 32(Web Server issue), 176–180. doi: 10.1093/nar/gkh401
- Jefferson R.A., Kavanagh T.A., Bevan M.W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. *EMBO J.*, 1987, 6(13), 3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x
- Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. *Physiologia Plantarum*, 1962, 15(3), 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x
- Firsov A., Tarasenko I., Mitiouchkina T., et al. High-Yield Expression of M2e peptide of avian influenza virus h5n1 in transgenic duckweed plants. *Mol. Biotechnol.*, 2015, 57(7), 653–661. doi: 10.1007/s12033-015-9855-4
- Schenk R.U., Hildebrandt A.C. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. *Canadian J. Botany*, 1972, 50(1), 199–204. doi: 10.1139/b72-026
- Dellaporta S.L., Wood J., Hicks J.B. A plant DNA minipreparation: Version II. Plant *Molecular Biology Reporter*, 1983, 1(4), 19–21. doi: 10.1007/bf02712670

- 41. Dutt M., Dhekney S.A., Soriano L., et al. Temporal and spatial control of gene expression in horticultural crops. *Hortic. Res.*, 2014, 1, 140–147. doi: 10.1038/hortres.2014.47
- Sunilkumar G., Mohr L., Lopata-Finch E., et al. Developmental and tissue-specific expression of CaMV 35S promoter in cotton as revealed by GFP. *Plant Mol. Biol.*, 2002, 50(3), 463–474. doi: 10.1023/A:1019832123444
- Yamamoto Y.T., Rajbhandari N., Lin X., et al. Genetic transformation of duckweed Lemna gibba and Lemna minor. *In Vitro Cellular & Developmental Biology – Plant*, 2001, 37(3), 349–353. doi: 10.1007/s11627-001-0062-6
- Chhabra G., Chaudhary D., Sainger M., et al. Genetic transformation of Indian isolate of Lemna minor mediated by Agrobacterium tumefaciens and recovery of transgenic plants. *Physiology Molecular Biology Plants :International J. Functional Plant Biology*, 2011, 17(2), 129–136. doi: 10.1007/s12298-011-0059-5
- Li J., Jain M., Vunsh R., et al. Callus induction and regeneration in Spirodela and Lemna. *Plant Cell Rep.*, 2004, 22(7), 457–464. doi: 10.1007/s00299-003-0724-4
- Гайдукова С.Е., Ракитин А.Л., Равин Н.В. et al: Разработка системы генетической трансформации ряски малой Lemna minor. Экологическая генетика, 2008, 6(4), 20–28. doi: 10.17816/ecogen6420-28
- Morassutti C., De Amicis F., Skerlavaj B., et al. Production of a recombinant antimicrobial peptide in transgenic plants using a modified VMA intein expression system. *FEBS Lett.*, 2002, 519(1-3), 141–146. doi: 10.1016/S0014-5793(02)02741-2
- Cabanos C., Ekyo A., Amari Y., et al. High-level production of lactostatin, a hypocholesterolemic peptide, in transgenic rice using soybean A1aB1b as carrier. *Transgenic Res.*, 2013, 22(3), 621–629. doi: 10.1007/s11248-012-9672-5
- Yevtushenko D.P., Misra S. Transgenic Expression of Antimicrobial Peptides in Plants: Strategies for Enhanced Disease Resistance, Improved Productivity, and Production of Therapeutics. *Small Wonders: Peptides for Disease Control. ACS Symposium Series*, 2012, 1095, 445–458. doi: 10.1021/bk-2012-1095.ch021
- Boyhan D., Daniell H. Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide. *Plant Biotechnol. J.*, 2011, 9(5), 585–598. doi: 10.1111/j.1467-7652.2010.00582.x
- Yarbakht M., Jalali-Javaran M., Nikkhah M., et al. Dicistronic expression of human proinsulin-protein A fusion in tobacco chloroplast. *Biotechnol. Appl. Biochem.*, 2015, 62(1), 55–63. doi: 10.1002/bab.1230
- Yasuda H., Tada Y., Hayashi Y., et al. Expression of the small peptide GLP-1 in transgenic plants. *Transgenic Res.*, 2005, 14(5), 677–684. doi: 10.1007/s11248-005-6631-4
- Holaskova E., Galuszka P., Frebort I., et al. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. *Biotechnol. Adv.*, 2015, 33(6 Pt 2), 1005–1023. doi: 10.1016/j.biotechadv.2015.03.007

- Obembe O.O., Popoola J.O., Leelavathi S., et al. Advances in plant molecular farming. *Biotechnol. Adv.*, 2011, 29(2), 210–222. doi: 10.1016/j.biotechadv.2010.11.004
- 55. Delaney D., Jilka J., Barker D., et al. Production of Aprotinin in Transgenic Maize Seeds for the Pharmaceutical and Cell Culture Markets. Plant Biotechnology 2002 and Beyond: Proceedings of the 10th IAPTC&B Congress June 23–28, 2002 Orlando, Florida, USA. Dordrecht, Netherlands: Springer, 2003, 393–394.
- Karg S.R., Kallio P.T. The production of biopharmaceuticals in plant systems. *Biotechnol. Adv.* 2009, 27(6), 879–894. doi: 10.1016/j.biotechadv.2009.07.002
- Rival S., Wisniewski J.P., Langlais A., et al. Spirodela (duckweed) as an alternative production system for pharmaceuticals: a case study, aprotinin. *Transgenic Res.*, 2008, 17(4), 503–513. doi: 10.1007/s11248-007-9123-x

- Gil F., Brun A., Wigdorovitz A., et al. High-yield expression of a viral peptide vaccine in transgenic plants. *FEBS Letters*, 2001, 488(1), 13–17. doi: 10.1016/S0014-5793(00)02405-4
- Dus Santos M.J., Wigdorovitz A., Trono K., et al. A novel methodology to develop a foot and mouth disease virus (FMDV) peptide-based vaccine in transgenic plants. *Vaccine*, 2002, 20(7-8), 1141–1147. doi: 10.1016/S0264-410X(01)00434-0
- Тарасенко И.В., Таранов А.И., Фирсов А.П., и др. Экспрессия нуклеотидной последовательности пептида М2е вируса гриппа птиц в трансгенных растениях табака. Биотехнология, 2012, 4, 18-25.
- Dugdale B., Mortimer C.L., Kato M., et al. In plant activation: an inducible, hyperexpression platform for recombinant protein production in plants. *Plant Cell*, 2013, 25(7), 2429–2443. doi: 10.1105/tpc.113.113944

Agrobacterium-Mediated Transformation of Lemna minor L. with Hirudin and β -Glucuronidase Genes

O.N. KOZLOV¹, T.Yu. MITIUSHKINA¹, I.V. TARASENKO¹, L.A. SHALOIKO¹, A.P. FIRSOV^{1,*}, and S.V. DOLGOV¹

¹Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino Branch, 142290, Pushchino, Moskovskaya Oblast Russia

**e-mail*: aleksey_firsov@mail.ru

Received May 15, 2018 Accepted August 1, 2018

Abstract–The agrobacterium transformation of a plant of duckweed (*Lemna minor* L.) using the organogenic callus and nucleotide sequence of a gene for hirudin-1 or β -glucuronidase optimized for the expression in plants has been performed. Nine transgenic lines of hirudin-transformed duckweed and 7 lines transformed by the gene for β -glucuronidase were obtained. The expression of the glucuronidase gene was proved by the histochemical staining and Western-blotting. The ELISA of the transgenic plants showed that the content of β -glucuronidase in the plants varied from 0.28% to 1.43% of total soluble protein. The expression of the gene for hirudin-1 was confirmed by RT-PCR, the maximum hirudin accumulation being equal to 0.02% of total soluble protein. The obtained results can be used in the development of an expression system using the duckweed plant for obtaining hirudin and other recombinant proteins for pharmaceutical application.

Key words: duckweed, hirudin, β-glucuronidase, transgenic plants, recombinant proteins, biofarming.

Acknowledgements–The work was financially supported in accordance with the State task №01-2014-0069, with the use UNU "PHYTOTRON" (reg. No. 2-2.9)

doi: 10.21519/0234-2758-2018-34-5-23-36